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Abstract. We formulate a generalisation of the blast-wave model which is suitable for the description of
higher-order azimuthal anisotropies of the hadron production. The model includes anisotropy in the density
profile as well as an anisotropy in the transverse expansion velocity field. We then study how these two kinds
of anisotropies influence the single-particle distributions and the correlation radii of two-particle correlation
functions. Particularly we focus on the third-order anisotropy and consideration is given averaging over
different orientations of the event plane.

1 Introduction

The hot matter excited in ultrarelativistic heavy-ion colli-
sions at colliders like the LHC or RHIC exhibits a sizeable
anisotropy in particle production perpendicularly to the
beam direction [1–5]. The azimuthal anisotropy of hadron
momentum distributions, measured in terms of Fourier
coefficients, is caused by the anisotropy of the fireball at
freeze-out in spatial density and expansion pattern. That,
in turn, results from its evolution which starts from an-
isotropic initial conditions [6–10] and may further receive
anisotropic excitations on the way [11–14]. The evolu-
tion depends on the Equation of State and the trans-
port coefficients [15–17]. Thus by measuring the final state
anisotropies one gets an access to the intrinsic properties
of the matter [18]. Note that the anisotropies are unique in
each event and a large fraction of them, especially higher-
order anisotropies, are averaged out if measured in a sam-
ple consisting of a large number of events.

Hadrons are emitted at the moment of freeze-out and
this is when their distributions are formed. Hence, the di-
rect information that they are carrying is about the state
of the fireball at this very moment. The present paper
deals with this relation. It is then the task for hydrody-
namic and/or transport simulations to conclude about the
preceding evolution of the fireball.

There are two kinds of anisotropies of the fireball at
the moment of freeze-out, that may cause an anisotropy of
the hadron distribution [19–22]. Firstly, if the transverse
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expansion velocity in some directions is higher than in the
others, the stronger blueshift of the momentum spectra
in those directions will cause momentum anisotropy. Sec-
ondly, alone an expanding and spatially anisotropic fire-
ball may also produce an anisotropy of the momentum
distribution. Unfortunately, the two mechanisms cannot
be distinguished by mere measurement of the momentum
anisotropies.

For the second-order anisotropies it has been shown
that the solution is offered by the azimuthal dependence
of the femtoscopic correlation radii, which are more sensi-
tive to spatial anisotropy. Detailed studies with the help
of blast-wave [19] and Buda-Lund [20] models have been
performed. After PHENIX has published the azimuthal
dependence of the correlation radii [23] with respect to
the third-order event plane, the problem has been recon-
sidered at that order in [21]. It has been demonstrated
in framework of a toy model that at RHIC the spatial
anisotropy is the driving feature which determines the
phase of the oscillation of the correlation radii. This is in
agreement with the second-order results [19, 20]. Today,
higher experimental statistics allows for more detailed in-
vestigations and the data on third-order azimuthal depen-
dence of correlation radii call for more detailed theoretical
studies [24–26]. The third-order anisotropy together with
azimuthal dependence of the correlation radii have been
investigated by some of us in detail in framework of the
Buda-Lund model recently [22]. The dependence of the
oscillation amplitudes on parameters of the model which
gauge the anisotropies in space and flow has been calcu-
lated in great detail up to 6th order.
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The present paper is analogical to [22]. We reconsider
the problem in framework of the blast-wave model. This is
perhaps the most commonly used model for the analysis of
soft hadron data in high-energy heavy-ion physics. There-
fore, we first systematically extend it for anisotropies of
higher order, although we later use it only up to the third
order. By doing this we actually modify the formulation of
the model proposed in [27], since that was adequate only
up to second order. Note that our extension also slightly
differs from the one proposed in [28], since we want to
allow for varying transverse size of the fireball.

Then, with the generalised blast-wave model we in-
vestigate in quite detail how the oscillation amplitudes of
the correlation radii depend on parameters which measure
the flow and the shape anisotropy. On top of the schematic
picture obtained in [21] we add the details by providing
parameter maps, i.e. contour plots of the dependence of
oscillation amplitudes on both flow and space anisotropy,
similarly as was done for the Buda-Lund model in [22].
Such maps should allow, at least in principle, to infer both
values for flow and space anisotropy from the measured
data. We also go beyond the toy-model study of [21] by in-
cluding both the second- and the third-order anisotropies
into the calculation and integrating over the order not ac-
tually being investigated, analogically to real experiment.

In the next section we introduce and explain the
extension of the blast-wave model used in this study.
Then, sect. 3 is devoted to calculations of the anisotropies
of single-particle distributions. Oscillations of correlation
radii are investigated in sect. 4. We demonstrate our re-
sults with the help of qualitative data analysis in sect. 5.
All results are summarised in the concluding section. Some
technical details are explained in the appendices.

2 The extended blast-wave model

Particle production is described with the help of the emis-
sion function S(x, p), which is the Wigner function, i.e.
the phase-space density of hadrons that are being emitted
from the fireball. In the blast-wave model [27, 29–32] it is
parametrised as

S(x, p)d4x =
g

(2π)3
mt cosh(Y − ηs)

r dr dθ τ dη
dτ√
2πΔτ

exp
(
− (τ − τ0)2

2Δτ2

)

Θ(r − R(θ)) exp
(
−pμuμ

T

)
. (1)

Here, g is the spin degeneracy factor, T is the local tem-
perature, uμ is the expansion velocity field, and Θ(x) is
the Heaviside step function. We parametrise the momen-
tum of a particle with the help of transverse momentum
pt, transverse mass mt, rapidity Y and the azimuthal an-
gle φ as

pμ = (mt cosh Y, pt cos φ, pt sinφ,mt sinhY ). (2)

In this paper we shall denote the rapidity with capital
letter in order to distinguish it from the spatial coordinate.

As spatial coordinates we use the radial coordinate
r and the azimuthal angle θ, as well as the space-time
rapidity ηs = 1

2 ln((t+ z)/(t− z)) and longitudinal proper
time τ =

√
t2 − z2. Then

xμ = (τ cosh ηs, r cos θ, r sin θ, τ sinh ηs). (3)

Furthermore, R(θ) is the transverse size of the fire-
ball, depending on the azimuthal angle θ. The spa-
tial anisotropy of the model is specified by the partic-
ular prescription for R(θ). The transverse size is then
parametrised as

R(θ) = R0

(
1 −

∞∑
n=2

an cos(n(θ − θn))

)
, (4)

where the amplitudes an and the phases θn are model
parameters. Note that θn’s denote the orientations of the
so-called n-th–order event planes. Note that in the series
we have skipped the first-order term which leads to mere
shift of the shape. Also note that the amplitudes for the
oscillation are parametrised in an unusual way, with the
help of (−an). In this way, the resulting vn is to first order
proportional to an, as will be seen later.

Note that in [19] a different parametrisation for the
elliptic shape of the fireball was used, with radii Rx and
Ry along the two axes of the ellipse

Rx = aR′, Ry =
R′

a
, (5)

with R′ and a being parameters of the model. The advan-
tage of that parametrisation is that when a is being tuned,
the volume stays constant and proportional to R2. Nev-
ertheless, such a prescription cannot be naturally gener-
alised to higher orders. Therefore, we will now use eq. (4).
Some comments on the relation of the two parametrisa-
tions can be found in appendix A.

It is convenient for further calculation to define a di-
mensionless transverse coordinate

r̄ =
r

R(θ)
. (6)

Particle production in our model occurs for r̄ in the range
[0, 1].

Expansion is described by the velocity field uμ. Veloc-
ity includes longitudinal as well as transverse component

uμ = (cosh ηs cosh ρ, sinh ρ cos θb,

sinh ρ sin θb, sinh ηs cosh ρ), (7)

where
θb = θb(r, θ) (8)

is the angle of the transverse vector of the velocity and
will be specified below. Furthermore

ρ = ρ(r̄, θb) (9)

is the rapidity connected with the transverse velocity, so
that the transverse velocity at midrapidity is vt = tanh ρ.
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The canonical (azimuthally symmetric) blast-wave
model is recovered if R(θ) and ρ(r̄, θ) do not depend on
the angle and θb = θ. Here we construct the extension to
arbitrary order of anisotropy.

In a fireball without azimuthal symmetry we must
specify the direction of the transverse expansion velocity.
In [19], two models were investigated which differed in the
choice of that direction. Note, however, that only second-
order anisotropy was studied there. It turned out that
femtoscopic data [24] agreed with the choice in which the
transverse velocity was always perpendicular to the sur-
face of the fireball. We adopt this choice also here. Trans-
verse velocity will be locally perpendicular to surfaces with
constant r̄. Note that this is the natural direction of trans-
verse pressure gradient and thus the acceleration. Hence,
we actually identify the direction of the velocity with that
of acceleration. Such a choice is expected to be valid if the
fireball decouples fast.

The azimuthal angle of the velocity θb is then obtained
from

tan
(
θb −

π

2

)
=

dy

dx
=

dy
dθ
dx
dθ

, (10)

where the derivative is taken along a surface with constant
r̄. The solution is straightforward and we summarise it
together with the final result for θb in appendix B.

Finally, let us define the magnitude of the transverse
velocity, which is parametrised with the help of the trans-
verse rapidity

ρ(r̄, θb) = r̄ρ0

(
1 +

∞∑
n=2

2ρn cos (n(θb − θn))

)
. (11)

The overall transverse flow is tuned with the help of ρ0

and the anisotropies have amplitudes ρn. Note that we
choose the same phase factors θn as we did for the spatial
anisotropy. They are related to the event planes measured
experimentally. Note also the introduction of the factor 2
before ρn, unlike in eq. (4).

In this paper we will restrict ourselves to anisotropies
up to third order; higher orders will be omitted.

Note also that we did not include corrections to the
momentum distribution due to viscosity [33], as done, e.g.,
in [34, 35]. We plan to investigate this important issue in
the future.

3 Anisotropy of single-particle distributions

The single-particle spectrum is obtained by integrating
the emission function

N1(pt, φ, Y ) =
d3N

pt dpt dY dφ
=

∫
S(x, p)d4x. (12)

The normalisation is such that the integral of N1(pt, φ, Y )
over all momenta gives the number of particles. For the
integrations of transverse directions in eq. (12) it would be
convenient to use polar coordinates r and θ. However, it is
even more convenient to use r̄, defined in eq. (6), instead

of r. This requires a new Jacobian

r dr dθ = r̄ R2(θ) dr̄ dθ. (13)

Before moving on towards the anisotropy it is inter-
esting to explore if and how introducing spatial and flow
anisotropy into the model modifies the azimuthally inte-
grated single-particle spectrum. We have checked that if
we introduce only a spatial anisotropy (i.e. the an co-
efficients may be non-vanishing, but all ρn’s are set to
0), then the normalisation may be slightly modified but
the slope is unchanged. This is not the case for the flow
anisotropy, however. As shown in fig. 1(a) and fig. 1(b),
flow anisotropy leads to slightly flatter spectra. We also
show in fig. 1(c) how the azimuthally integrated spectrum
depends on the phase difference of the second and third-
order event planes (cf. eq. (4))

Δ = θ3 − θ2. (14)

We do not expect any correlation between the second-
order and the third-order event planes and to our knowl-
edge there is no such correlation seen in the data. Hence,
all phase differences are realised equally likely. In a data
sample averaged over a large number of events the mean
value of all observed curves would be measured.

Now we move on to the anisotropies of spectra which
will be obtained as

vn =
∫

N1(pt, φ, Y ) cos(n(φ − θn)) dφ∫
N1(pt, φ, Y ) dφ

. (15)

The single-particle distributions are calculated via
eq. (12). The anisotropy coefficients vn can be then ex-
pressed as

vn(pt) =
Cn(pt)
C0(pt)

, (16)

where

Cn(pt) =
∫ 1

0

dr̄

∫ 2π

0

dθ r̄ R2(θ) cos(n(θb(θ) − θn))

×In

(
pt sinh ρ(r̄, θ)

T

)
K1

(
pt cosh ρ(r̄, θ)

T

)
,

(17)

where In and K1 are modified Bessel functions and the
integration over the azimuthal angle of the momentum φ
was already performed here.

The result of the calculation, however, would depend
on the value of the phase difference Δ. This dependence
is hidden in R(θ) and ρ(r̄, θ). In an experimental analysis,
one effectively takes an average over all its possible values.
It has been shown in [22] that the averaging may have an
effect on the results. We thus have to add this averaging
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Fig. 1. The ratios of azimuthally integrated single-particle
spectra from fireballs with anisotropies to a reference spectrum
calculated for the same set parameters except all anisotropy
coefficients set to 0. Calculated for (directly produced) pi-
ons and T = 120 MeV, ρ0 = 0.8, R0 = 7 fm, τ0 = 10 fm/c.
(a) Ratios of spectra with second-order flow anisotropy and
a2 = a3 = ρ3 = 0. (b) Ratios of spectra with third-order flow
anisotropy and a2 = a3 = ρ2 = 0. (c) Ratios of spectra with
a2 = a3 = ρ2 = ρ3 = 0.1 and different values of Δ = θ3 − θ2.

and introduce

C̄n(pt) =
∫ 2

3 π

0

dΔ

∫ 1

0

dr̄

∫ 2π

0

dθ r̄ R2(θ)

× cos(n(θb(θ) − θn))

×In

(
pt sinh ρ(r̄, θ)

T

)
K1

(
pt cosh ρ(r̄, θ)

T

)
.

(18)

Fig. 2. Dependence of vn’s on spatial anisotropy an and flow
anisotropy ρn of the same order. Results are shown for pions
(upper row) and protons (lower row) at pt = 300 MeV. Model
parameters are T = 120 MeV, ρ0 = 0.8, R0 = 7 fm, τ0 =
10 fm/c. The thick lines identify v2 or v3 equal to 0, the thin
lines correspond to increment or decrease of v2 (v3) by 0.005.

Then, the event-averaged vn is obtained as

vn(pt) =
C̄n(pt)
C̄0(pt)

. (19)

We calculated the dependence of v2 and v3 on the
anisotropy coefficients an and ρn. We have checked that
the vn’s of given order basically depend only on coeffi-
cients of the same order, therefore we shall only investi-
gate such same-order dependences. In fig. 2 we show the
contour plots where dependence on both spatial and flow
anisotropy can be seen. A complex structure is observed.
In general, we can conclude, similarly to [19, 20, 22], that
only by measuring the anisotropy of single-particle distri-
bution one is unable to determine uniquely both spatial
and flow anisotropy. For heavy particles, like protons, vn’s
seem to be driven by the spatial anisotropy. Nevertheless,
flow anisotropy kicks in as the value of an grows. There is
even a maximum assumed by v2 and v3 as a function of
the corresponding an, although it may well be beyond the
phenomenologically relevant parameter region. The rea-
son is that for high enough values of an the outer sur-
face of the fireball becomes concave and a smaller region
moves transversely in the direction of the event plane. Al-
though a unique combination of source parameters might
possibly be determined from the combination of measure-
ments with different particle species, a clear answer shall
be provided by measuring the azimuthal dependence of
the correlation radii.
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4 Spatial anisotropy seen by femtoscopy

The femtoscopic technique which uses two-particle corre-
lations is a standard tool for measuring the space-time
characteristics of the emitting source. Here we employ the
standard formalism where the correlation function is de-
fined as

C(p1, p2) =
N2(p1, p2)

N1(p1)N1(p2)
=

d6N
dp3

1dp3
2

d3N
dp3

1

d3N
dp3

2

. (20)

Instead of the momenta of the two particles, the correla-
tion function is usually parametrised in terms of the av-
erage momentum K and the momentum difference q:

K =
1
2
(p1 + p2), (21a)

q = p1 − p2. (21b)

Due to the on-shell constraint K · q = 0, the time compo-
nent q0 can be expressed as

q0 =
K

K0
q = βq. (22)

Hence, only three spatial components of q shall be taken
as independent. Note that we have introduced the pair
velocity β. The analysis is performed in the standard out-
side-longitudinal reference frame where the outward di-
rection is identified with the direction of the transverse
component of K and the longitudinal axis is parallel to
the beam. The correlation function is then measured for
K from some interval and its inverse widths in q carry
information about the space-time structure of the source.
At a given K-range one does not measure the size of the
whole fireball but rather its homogeneity lengths. Those
are the sizes of homogeneity regions. The homogeneity re-
gion is a part of the whole fireball which produces hadrons
with momentum K from a given range. Due to expansion
it is usually smaller than the whole fireball. We shall par-
ticularly look at how the homogeneity lengths vary with
the azimuthal angle φ of the K vector.

We will assume in what follows that the dependence
of the correlation function on the momentum difference q
can be reasonably well parametrised by a Gaussian pre-
scription

C(q,K) − 1 = exp
(
− R2

oq
2
o − R2

sq
2
s − R2

l q
2
l

−2R2
osqoqs − 2R2

olqoql − 2R2
slqsql

)
, (23)

where Ro, Rs, Rl, Ros, Rol, and Rsl are the correlation
radii which can depend on K. They will be directly cal-
culated from the emission function, see below.

It is important to realise that the coordinate frame
in which correlations are measured is specified by the
hadrons used in the measurement. It is different from any
coordinate system which is attached to the fireball. The
rotation between the two frames defines the explicit an-
gular dependence of the correlation radii. In addition to
this, due to collective expansion of the fireball, hadrons

flying in different directions come from different parts of
the fireball and carry information about their homogeneity
lengths. This introduces the implicit angular dependence
of the correlation radii [36].

Generally, in the out-side-longitudinal system it can be
derived that the correlation radii are given by the space-
time variances as

R2
o(K) =

〈
(x̃o − βot̃)2

〉
, (24a)

R2
s(K) =

〈
x2

s

〉
, (24b)

R2
l (K) =

〈
(x̃l − βlt̃)2

〉
, (24c)

R2
os(K) =

〈
(x̃o − βot̃)x̃s

〉
, (24d)

R2
ol(K) =

〈
(x̃o − βot̃)(x̃l − βlt̃)

〉
, (24e)

R2
sl(K) =

〈
x̃s(x̃l − βlt̃)

〉
. (24f)

Note that the space-time variances depend on the aver-
age momentum K. Here we have introduced the averaging
over the source

〈f(x)〉 =
∫

S(x, p) f(x) d4x∫
S(x, p) d4x

(25)

and we also introduced the shifted coordinates as

x̃μ = xμ − 〈xμ〉. (26)

Recall that the coordinates xo, xs, xl are connected
with the direction of the emitted particles. The explicit
angular dependence is obtained simply by expressing the
out-side-longitudinal coordinates in terms of the coordi-
nates x, y, which are fixed with the fireball:

x̃o = x̃ cos φ + ỹ sin φ, (27a)
x̃s = −x̃ sin φ + ỹ cos φ, (27b)

where φ is the azimuthal angle of the emitted hadron pairs.
This leads to

R2
s =

1
2

(
〈x̃2〉 + 〈ỹ2〉

)
+

1
2

(
〈x̃2〉 − 〈ỹ2〉

)
cos 2φ

−〈x̃ỹ〉 sin 2φ, (28a)

R2
o =

1
2

(〈
x̃2

〉
+

〈
ỹ2

〉)
− 1

2
(〈

ỹ2
〉
−

〈
x̃2

〉)
cos 2φ

+ 〈x̃ỹ〉 sin 2φ + β2
o

〈
t̃2

〉
− 2βo

〈
x̃t̃

〉
cos φ

−2βo

〈
ỹt̃

〉
sin φ, (28b)

R2
l =

〈(
z̃ − βlt̃

)2
〉

, (28c)

R2
os = 〈x̃ỹ〉 cos 2φ +

1
2

(〈
ỹ2

〉
−

〈
x̃2

〉)
sin 2φ

+βo

〈
x̃t̃

〉
sinφ − βo

〈
ỹt̃

〉
cos φ, (28d)

R2
ol =

〈(
z̃ − βlt̃

)
x̃
〉
cos φ +

〈(
z̃ − βlt̃

)
ỹ
〉
sin φ

−βl

〈(
z̃ − βlt̃

)
t̃
〉
, (28e)

R2
sl =

〈(
z̃ − βlt̃

)
ỹ
〉
cos φ −

〈(
z̃ − βlt̃

)
x̃
〉
sin φ. (28f)

In what follows we want to study the azimuthal depen-
dence of the correlation radii. To this end, they are cus-
tomarily expanded into Fourier series. The space-time co-
variances also depend non-trivially on φ, although we have
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suppressed writing this out explicitly. They can be writ-
ten out and inserted in the right-hand sides of eqs. (28).
Then, by combining all sine and cosine terms on the r.h.s.
of the obtained equations one can analytically identify all
terms of Fourier expansion of the correlation radii. This
has been done earlier for the second order [36, 37]. The
results of the third and higher orders are presented in ap-
pendix C.

In practical calculation, however, one can proceed dif-
ferently. The whole azimuthal dependence can be calcu-
lated from eqs. (28a)–(28f). Then one can extract any
Fourier coefficient from the result. With increasing com-
plexity of higher-order terms this procedure appears com-
putationally more efficient.

Moreover, these are not yet the correlation radii which
correspond to the measured ones, even if the assumption
of Gaussian correlation function is valid. In order to mea-
sure the correlation radii in real collisions, hadron pairs
must be collected over a large number of events. The
events must be rotated so that the event planes are all
aligned. Otherwise the azimuthal dependence would be
averaged out. For measuring the second-order oscillations
one rotates the events so as to align the second-order event
planes. For the third-order oscillation one aligns the third-
order event planes. Since the event planes of different or-
ders may be assumed to be uncorrelated these alignments
effectively introduce averaging over the direction of the
other event planes. This must be included in calculations.
It has been investigated in [22] that this averaging may
introduce a few percent effect on the resulting correla-
tion radii. Hence, when calculating the correlation radii
from eqs. (28), one additional integral over θ2 or θ3 must
be calculated, depending on which order of oscillations we
shall be interested in. We include this averaging over other
event planes in our calculation.

Therefore, the second-order and the third-order
Fourier amplitudes that we are going to calculate do not
belong to the same Fourier series. In the former case the
emission function is averaged over all possible values of θ3,
in the latter averaging runs over θ2. This will be also re-
flected in notation: the correlation radii will be expanded
into series

R2
i (φ) = R2

i,j,0 +
∞∑

n=1

R2
i,j,n cos(n(φ − φn)), (29)

where i = o, s, and j = 2, 3, depending on which event
plane θj has been put to 0. In general, terms of the same
order may differ, if they come from averaging with differ-
ent event-planes fixed. For example, we note that

R2
o,2,0 �= R2

o,3,0, (30a)

R2
s,2,0 �= R2

s,3,0. (30b)

Second-order oscillations have been calculated in [19],
but the averaging over the third-order event plane was
not performed there. In order to fill this gap, we have
done the calculation here and show the results in fig. 3.

Fig. 3. The dependence of transverse correlation radii and
their oscillation amplitudes on second-order anisotropies in
space and transverse flow. The values are calculated for out-
ward pair momentum Ko = 300 MeV. Model parameters used
in the calculation are T = 120MeV, ρ0 = 0.8, R0 = 7 fm,
τ0 = 10 fm/c. Third-order anisotropy parameters were set to
a3 = ρ3 = 0.1.

The most important parameter which sets the scale of the
transverse correlation radii is R0. We can see that even
the average radii R2

i,2,0 depend on both anisotropy pa-
rameters a2 and ρ2. For the higher-order Fourier terms,
we would like to factorise out their trivial scaling with
R0, thus for the analysis we divide all amplitudes by the
zeroth-order term. As was observed previously [19], the
second-order oscillation amplitude is mainly set by the
spatial anisotropy parameter a2. The dependence on ρ2 is
weak. This confirms the early conjecture that the second-
order spatial deformation can be measured with the help
of correlation radii [19]. Both spatial and flow anisotropy
can then be obtained from combined measurement of v2

and the azimuthal dependence of correlation radii. Fig-
ure 3 also shows that in this model higher-order terms in
the decomposition of the correlation radii are very small.
The fourth-order terms are smaller than the second-order
terms by two orders of magnitude. Although it shows an
interesting dependence on a2 and ρ2, it is most likely be-
low any reasonable experimental sensitivity.



Eur. Phys. J. A (2017) 53: 161 Page 7 of 13

Fig. 4. The dependence of transverse correlation radii and
their oscillation amplitudes on third-order anisotropies in space
and transverse flow. The values are calculated for outward pair
momentum Ko = 300 MeV. Model parameters used in the cal-
culation are T = 120 MeV, ρ0 = 0.8, R0 = 7 fm, τ0 = 10 fm/c.
Second-order anisotropy parameters were set to a2 = ρ2 = 0.1.

We have also looked at third-order oscillation in case of
averaging over all possible directions of the second-order
event plane. The resulting dependence of the correlation
radii on a3 and ρ3 is plotted in fig. 4.

Again, even the azimuthally averaged radii show some
dependence on both anisotropy parameters. The third-
order spatial anisotropy is best reflected in the third-order
scaled amplitude of the outward radii R2

o,3,3/R2
o,3,0. For

the sideward radius the third-order oscillation depends on
both a3 and ρ3. Note, however, that the third-order oscil-
lation is typically smaller by an order of magnitude if it
is compared to the second-order oscillation in fig. 3. Even
more suppressed is the next higher order, which is the
sixth in this case. In absolute numbers the scaled ampli-
tudes are on the level of a few per mille or even less. We
do not expect that such a weak signal could be reasonably
measured in experiments.

-0.03

0.0091

0.03

-0.03 0.0069 0.03

a 3

ρ3

Fig. 5. Combined contour lines of constant v3 (red from top
left to bottom right) and constant R2

s,3,3/R2
s,0,3 (green from

bottom left to top right). Thick lines show the values of data
for pt = 863MeV (v3) [40] and Kt = 877 MeV (correlation
radii) [25]. The increment between neighbouring lines is 0.01.

5 Relation to data

The present model has been designed with the aim
to better characterise measured data on spectra and
anisotropies. However, such an analysis requires to take
into account many more issues and is technically much
more involved. In order to reach physically relevant re-
sults, resonances must be included in the analysis [38].
This highly increases the complexity of calculations. Then,
all data, i.e. identified spectra, anisotropy coefficients, and
correlations, should be fitted simultaneously. The new
Bayesian technique [18] seems well suitable to this aim.
Such a thorough analysis, however, goes far beyond our
scope here. Nevertheless, we want to illustrate the qual-
itative features presented in previous sections with the
help of comparison to data. We hasten to stress that this
comparison should be understood merely on qualitative
level.

The STAR Collaboration has measured data from
Au+Au collisions at

√
sNN = 200GeV. They have anal-

ysed second-order oscillations of correlation radii as func-
tions of azimuthal angle with the blast-wave model ex-
tended to that order in [39]. In that analysis, the tem-
perature T and transverse flow gradient ρ0 were inferred
from a simultaneous fit to pion, kaon, and proton pt spec-
tra and v2. Analysis of the azimuthally sensitive correla-
tion radii yielded the sizes of the fireball and the second-
order anisotropy parameters. From this analysis of 10–
20% centrality STAR data, the following model param-
eter values have been extracted by the STAR Collabora-
tion [39]: T = 98MeV, ρ0 = 0.98, ρ2 = 0.05, τ0 = 7.8 fm/c,
Δτ = 2.59 fm/c. The second-order spatial anisotropy can
be translated into our model as R0 = 11.4 fm, a2 = 0.0439.

With these values fixed we calculate the combined con-
tour plot for the dependences of v3 and third-order scaled
amplitude R2

s,3,3/R2
s,3,0 on a3 and ρ3. It is shown in fig. 5.
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Fig. 6. The pt-dependence of v3 for identified pions measured
by the PHENIX Collaboration [40] compared with the theo-
retical curve from the blast-wave model with parameters de-
termined in fig. 5.

The curves decreasing to the right are lines with constant
v3, the others correspond to constant R2

s,3,3/R2
s,0,3. Thick

lines represent the data values by PHENIX [25, 40]. Out
of available data we had to choose bins in pt for v3 and
correlation radii, which overlap. Unfortunately, these two
sets of data are measured in slightly different momentum
ranges. In order to use overlapping pt bins, we have taken
v3 point for pions at pt = 863MeV [40] and correlation
radii for Kt = 877MeV [25]. The values extracted from
such a simple comparison with data are: a3 = 0.0091 and
ρ3 = 0.0069.

With the extracted model parameters we tried to cal-
culate theoretical predictions for v3 (fig. 6) and the az-
imuthal angle dependence of the correlation radii (fig. 7).
For the latter we chose to plot the radii measured for
Kt = 530MeV/c as was also done by the PHENIX Col-
laboration in [25]. The model fails completely in repro-
ducing the absolute size of the correlation radii. The cor-
responding parameter, however, has been fixed from the
STAR analysis of second-order oscillations of correlation
radii. The mean values of the radii should be very similar
for second and the third-order oscillations. This clearly
demonstrates the need of simultaneous fit to all available
data in single analysis if one wants to go beyond the qual-
itative level.

We also show in fig. 8 the third-order scaled amplitudes
of correlation radii as functions of Kt. The experimental
error bars are huge and we explained that we have based
our analysis on the point at highest Kt. It seems that the
PHENIX data require amplitudes of opposite signs, which
the blast-wave model can accommodate.

We want to close this section with a few comments
on the applicability of the model to preliminary ALICE
data from Pb+Pb collisions at

√
sNN = 2.76TeV [41].

The data seem to indicate that the third-order oscillation
amplitudes of both R2

s and R2
o are negative. By inspecting

fig. 4 we find that such situation only happens in a small
region in parameter space with a3 around 0 and positive
ρ3. Thus from combined measurements of outward and

Fig. 7. The azimuthal dependence of correlation radii with
respect to the third-order event plane for Kt = 530 MeV/c.
Data by the PHENIX Collaboration [25] are compared with the
results from the blast-wave model with parameters determined
in fig. 5.

sideward radii one could deduce that the fireball at the
LHC has rather symmetric shape and the anisotropy is
set by the transverse collective velocity field.

6 Conclusions

We have generalised the blast-wave model so that it in-
cludes third-order anisotropies in both space and expan-
sion. Analogically to the second order, from the combi-
nation of fig. 2 and fig. 4 we can infer that it is indeed
possible to reconstruct both anisotropy coefficients of this
model: a3 and ρ3, from measurements of the azimuthal
anisotropy of single-particle momentum distributions and
HBT radii.

We have also pointed out the need for averaging over
the difference of second- and third-order reaction planes
when focusing on a selected order of Fourier decomposi-
tion of the hadron distribution or the correlation radii.
This is effectively done in data analysis when all events
are aligned according to the event plane of the selected
order.

The contour plots shown in fig. 4 exemplify the state-
ment made in [21] that at fixed flow anisotropy the am-
plitude of correlation radii oscillation can be tuned with
the help of spatial anisotropy and even a flip in the phase
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Fig. 8. The Kt-dependence of the third-order oscillation am-
plitude of the correlation radii. Data by the PHENIX Collab-
oration [25] are compared with the results from the blast-wave
model with parameters determined in fig. 5.

can be obtained. Such a flip of the phase corresponds to a
change of the sign of the amplitude. Keeping constant flow
anisotropy and changing space anisotropy corresponds to
moving vertically in the panels of fig. 4 and the phase
flip corresponds to crossing the thick line in that figure.
Our results are much more detailed since we show the full
dependence on the two parameters.

We have also calculated the subleading terms for the
third-order anisotropies in the oscillations of correlation
radii. These are the sixth-order oscillations. They were
shown to be an order of magnitude smaller than the
lower order and hardly measurable at current experimen-
tal statistics. We have actually derived expressions for os-
cillation amplitudes at general order, but there is currently
no need to go to higher orders also with model studies as
sufficient statistics would hardly be available.

It is interesting to compare our results to those ob-
tained in an analogical study which used the Buda-Lund
model [22]. In that model, the way in which observ-
ables depend on the combination of the space and flow
anisotropy is different to the one presented here. Partially,
this is due to our definition of the spatial profile with the
minus sign in eq. (4). The corresponding sign in the Buda-
Lund model was kept to be plus. On the qualitative level,
the oscillations of the correlation radii within the Buda-
Lund model seem to be much more sensitive to the flow
anisotropy than it is the case in this study.
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Fig. 9. Transverse profiles of the emission function for the
blast-wave model with source parameters as in fig. 4, for par-
ticles with pt = 300 MeV in the indicated direction φ. Left
column: only density profile anisotropy; right column: only
flow anisotropy. Other source parameters are T = 120MeV,
τ0 = 10 fm, R0 = 7 fm, Δτ = 1 fm, ρ0 = 0.8. Shown are the
effective sources which are calculated by integrating over all
directions of the third-order anisotropy with a3 = ρ3 = 0.1.
The contours correspond to levels of 0.8, 0.6, 0.4, and 0.2 of
the maximum.

In order to explore the difference of the two models
in more details, in figs. 9 and 10 we plot transverse pro-
files of the emitting sources according to the blast-wave
and Buda-Lund models, respectively. Plotted are not the
emission functions directly. We have assumed that there
are the third-order anisotropies, as well, which have their
third-order event planes completely independent from the
second-order event plane directions. Then, we have inte-
grated over all possible directions of the third-order event
plane and obtained an effective emission function with
only second-order anisotropy. In the figures, we have as-
sumed pions with pt = 300MeV and two different az-
imuthal angles of particle emission: φ = 0 (upper rows)
and φ = π/2 (lower rows).

Figures 9 and 10 clearly demonstrate that the two
models behave rather differently. In the Buda-Lund
model, the deformations caused by the density anisotropy
(fig. 10, left) and by flow anisotropy (fig. 10, right) look
qualitatively similar. On the other hand, the sharp source
boundary in the blast-wave model has severe influence.
The spatial anisotropy (fig. 9, left) makes the two sources
for φ = 0 and φ = π/2 qualitatively much more different
from each other than the flow anisotropy (fig. 9, right).
Note that the sources should be compared in the out-side-
long coordinate system, and the outward axis is directed
in the direction of φ. Thus we see the much stronger de-
pendence on shape anisotropy than on flow anisotropy.
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Fig. 10. Analogical to fig. 9, but calculated with the Buda-
Lund model, with source parameters T = 120 MeV, τ0 = 10 fm,
a2 = 0.3, b = −0.1, R = 7, Z = 15, H = 8, Hz = 16, ε3 = χ3 =
0.1. The model is explained in [22]. The values of the second-
order anisotropy parameters are indicated in the figure. The
averaging over all directions of the third-order anisotropy is
performed with ε3 = χ3 = 0.1.

Having the two models which appear so differently,
the choice of the more suitable model should be decided
by data. Note, however, that neither this schematic study,
nor the one of ref. [22] included meson production from
the decays of resonances and the modification of the corre-
lation function due to viscosity. Their influence should be
investigated in the future in order to arrive at a conclusive
answer.
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collisions” (THOR). Partial support by VEGA 1/0469/15 (Slo-
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search Scholarship of the Hungarian Academy of Sciences.

Appendix A. Relation between different
parametrisations of second-order spatial
anisotropy

In this appendix we derive the relation between our pa-
rametrisation of the transverse shape and the one used
in [19].

First of all, it should be clearly stated that the two
parametrisations are different. Hence, the elliptic shape
that has been used in [19] would be fully reproduced with
the help of parametrisation (4) only if higher-order terms

are included. Of course, the importance of higher orders
drops with n.

We shall assume here that the second-order anisotropy
is small, i.e., the parameter a from eq. (5) is close to 1.
The ellipse of [19] includes points with coordinates

rx = Rx cos θ = aR′ cos θ, (A.1a)

ry = Ry sin θ =
R′

a
sin θ. (A.1b)

Thus the radius as function of the azimuthal angle is

R =
√

r2
x + r2

y =

√
a2R′2 cos2 θ +

R′2

a2
sin2 θ . (A.2)

This can be rewritten as

R = R′
√

a4 + 1
2a2

(
1 +

a4 − 1
a4 + 1

cos(2θ)
) 1

2

. (A.3)

Now we assume that a → 1 and therefore (a4−1)/(a4 +1)
is very small. Thus we can Taylor-expand the bracket up
to first order and obtain

R(θ) ≈ R′
√

a4 + 1
2a2

(
1 +

1
2

a4 − 1
a4 + 1

cos(2θ)
)

. (A.4)

The mean radius R0 of the present model is to be iden-
tified with

R0 = R′
√

a4 + 1
2a2

. (A.5)

The amplitude of the oscillations is to be identified
with (−a2)

a2 = −1
2

a4 − 1
a4 + 1

. (A.6)

Inverting this relation gives

a =
(

1 − 2a2

1 + 2a2

) 1
4

. (A.7)

Appendix B. The direction of transverse
velocity

Here we derive the direction of the transverse velocity,
which is given by the angle θb. Since it is supposed to be
perpendicular to the surface of constant r̄, we write down
its coordinates

x = r̄R0

(
1 −

∞∑
n=2

an cos(n(θ − θn))

)
cos θ, (B.1a)

y = r̄R0

(
1 −

∞∑
n=2

an cos(n(θ − θn))

)
sin θ. (B.1b)

In further calculations, however, we shall truncate the ex-
pansion after the third-order term.
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The (truncated) expressions (B.1) can be inserted into
the derivatives in eq. (10). This gives

θb =
π

2
+ arctan

A

B
, (B.2)

where

A = 4a2 sin θ + 3a3
sin 3(θ − θ3)

cos θ

−−1 + a2 cos 2(θ − θ2) + a3 cos 3(θ − θ3)
sin θ

, (B.3)

B = a2 cos θ + 3a3
sin 3(θ − θ3)

sin θ

−−1 + a2 cos 2(θ − θ2) + a3 cos 3(θ − θ3)
cos θ

. (B.4)

Appendix C. Fourier amplitudes of the
correlation radii

Here we give an overview of the Fourier amplitudes of
the azimuthal dependence of outward, sideward, and out-
side cross-term correlation radii. Note that these for-
mulas are model-independent. Dependence on a partic-
ular model comes into evaluation of individual space-time
(co-)variances. Note that analogical relations have been
derived in [21], where Milne coordinates were used instead
of the Cartesian ones.

We define the amplitudes

R2
o =

(
R2

o

)
0

+
∞∑

n=1

[(
R2

o

)s

n
sin(nφ) +

(
R2

o

)c

n
cos(nφ)

]

(C.1a)

R2
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)
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[(
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s

)s

n
sin(nφ) +

(
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s
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n
cos(nφ)

]

(C.1b)

R2
os =

(
R2

os

)
0

+
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n=1

[(
R2

os

)s

n
sin(nφ) +

(
R2

os

)c

n
cos(nφ)

]
.

(C.1c)

In a similar way we shall expand the space-time (co-)va-
riances

〈x̃μx̃ν〉 = 〈x̃μx̃ν〉0

+
∞∑

n=1

[〈x̃μx̃ν〉sn sin(nφ) + 〈x̃μx̃ν〉cn cos(nφ)] .

(C.2)

The series (C.2) are inserted into the model-
independent expressions (28) and the sine and cosine
terms are reorganised with the help of addition theorems.
Then one can collect the terms order by order and put
them in equality with the corresponding expansion of the

correlation radii. We obtain for the outward radius
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ỹ2

〉s

3
− 1

4
〈
x̃2

〉s

3

+
1
2
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〈x̃ỹ〉cn−2

−1
2
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Note that from the third order onwards we have given
general expressions for any order.

Analogically we derived the series for the sideward ra-
dius.
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〈x̃ỹ〉c4 , (C.4e)

(R2
s)

c
n =

1
2

〈
x̃2

〉c

n
+

1
2

〈
ỹ2
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〈x̃ỹ〉cn−2

+
1
2
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〈x̃ỹ〉s3 +

1
4

〈
ỹ2
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111 (2008).
21. C.J. Plumberg, C. Shen, U.W. Heinz, Phys. Rev. C 88,

044914 (2013) 88, 069901(E) (2013) arXiv:1306.1485 [nucl-
th].

22. S. Lökös, M. Csanád, T. Csörgő, B. Tomášik, Eur. Phys.
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32. B. Tomášik, U.A. Wiedemann, U.W. Heinz, Heavy Ion
Phys. 17, 105 (2003) arXiv:nucl-th/9907096.

33. D. Teaney, Phys. Rev. C 68, 034913 (2003) arXiv:nucl-
th/0301099.

34. A. Jaiswal, V. Koch, arXiv:1508.05878 [nucl-th].
35. Z. Yang, R.J. Fries, J. Phys. Conf. Ser. 832, 012056 (2017)

arXiv:1612.05629 [nucl-th].
36. U.W. Heinz, A. Hummel, M.A. Lisa, U.A. Wiedemann,

Phys. Rev. C 66, 044903 (2002).
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