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Abstract. In this paper, we present a model which is composed of two parts related to the special critical
points, E(5) (the phase transition between spherical oscillator and γ-soft) and X(3) (a γ-rigid version of
X(5)). This model is studied to investigate the interplay situations by the free parameter χ. These situations
are cited between the γ-unstable and γ-rigid version of the Bohr Hamiltonian. The corresponding wave
equation has been considered and the eigenvalues as well as eigenfunctions have been determined by solving
this equation. Moreover, we have calculated the energy spectra and transition rates in order to compare
our results with experimental data.

1 Introduction

Many physical systems (nuclei, molecules, atomic clusters,
etc.) are specified in their equilibrium configuration by a
shape [1]. Although, in many cases, these shapes are rigid,
there are several situations in which the system under-
goes a phase transition between two different shapes [1].
One method to describe these situations is within the
framework of algebraic models [2,3]. These models sug-
gest helpful reference concepts such as dynamical sym-
metries [4,5] which have played an essential role in the
spectroscopy of nuclei, in particular in the description of
their collective properties [6]. Indeed, a dynamical sym-
metry corresponds to the Hamiltonian constructed from
the Casimir operators of the Lie algebras in a subalgebra
chain (G ⊃ G′ ⊃ G′′ ⊃ . . .) [2,3].

Typical examples of dynamical symmetries in nu-
clear structure are those defined in the Interacting Bo-
son Model [2] as U(6) symmetry subgroups: U(5), O(6),
and SU(3). These algebras identify the limiting cases of
the geometric structure: spherical oscillator [U(5)], γ-soft
rotor [SO(6)], and axially symmetric rotor [SU(3)] struc-
ture [2]. However, the intermediate situations between the
structural limits are of the greatest interest, both for appli-
cations to actual transitional nuclei [7,8] and in the study
of phase transitions between the structural limits [9].
These critical point symmetries [1,10] lead to parameter-
independent predictions which are found to be in good
agreement with experiment [11–15].
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Two critical point symmetries, E(5) [10] and X(5) [1],
describe the shape phase transitions U(5)-O(6), and re-
spectively U(5)-SU(3). These critical points are actually
fitting descriptions provided by similarly simple shapes
of the potential surface in Bohr model [16] in which the
quadrupole shapes are described by using total five vari-
ables [17], two associated to the nuclear shape oscillations
(β and γ) and three Euler angles θi describing the rota-
tional motion.

The E(5) critical-point symmetry has provided the ba-
sis for both experimental studies and further theoretical
developments [11,18,19]. This model is actually an exact
realization of the Euclidean group in five dimensions [6]
while the group theoretical structure of the X(5) critical
point symmetry, which is materialized in the N = 90 iso-
tones 150Nd [20], 152Sm [13], 154Gd [21], and 156Dy [21], is
not known. The latter employs two approximations, one
related to the separation of variables and the other based
on the small angles for the γ shape variable. However, the
γ-rigid version of the X(5) model is called X(3) [15]. The
γ-rigid condition means a static γdeformation which for
the associated quantum Hamiltonian will have a different
structure as per Pauli quantization prescription [22]. Also,
the X(3) model is described only by the collective coor-
dinate β and two Euler angles because of the assumption
related to the γ-rigid condition (γ = 0).

Recently in refs. [23,24], it was shown that X(5) and
X(3) models are partial Euclidean dynamical symme-
tries [25,26] in the sense that a set of states satisfy exactly
the associated symmetrical differential equation. In addi-
tion, in ref. [27], a four-dimensional model which shares
similar symmetry features emerges by a coherent interplay
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of γ-stable and γ-rigid collective conditions [28,29] relat-
ing to the X(5) and X(3) models. However, in this paper
we consider a Hamiltonian composed of two parts relat-
ing to the X(3) and E(5) critical points. This Hamilto-
nian together with its solution, eigenfunctions as well as
eigenvalues is presented in sect. 2 while the corresponding
numerical results included in sect. 3. This section involves
two parts namely energy spectra (part a) and transition
rates (part b), whereas sect. 4 contains a conclusion of the
present work.

2 The wave equation

A combined axial symmetric γ-rigid and γ-soft nuclear
system is studied by considering the following Hamilto-
nian [28]:

Ĥ = χT̂1 + (1 − χ)T̂2 + V (β, γ), (1)

where
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2B

(
1
β2

∂

∂β
β2 ∂

∂β
+

1
3β2

(
Q̂2

1 + Q̂2
2

))
(2)

is the prolate γ-rigid kinetic energy operator [15], and

T̂2 = − h̄2

2B

(
1
β4

∂

∂β
β4 ∂

∂β
+

1
β2

1
sin 3γ

∂

∂γ
sin 3γ

∂

∂γ

− 1
4β2

3∑
k=1

Q̂2
k

sin2
(
γ − 2kπ

3

)
)

(3)

is the same operator corresponding to the usual

five-dimensional Bohr Hamiltonian. �̂
Q is the angular-

momentum operator from the intrinsic frame of reference
with Q̂k (k = 1, 2, 3) denoting the operators of its pro-
jections. The operator (Q̂2
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2) appearing in eq. (2) is

written as follows [15]:
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β and γ are the usual collective coordinates [16], B is the
mass parameter and the control parameter χ (0 ≤ χ < 1),
which measures the system’s γ-rigidity, manages differ-
ent behaviors of the γ shape variable [27]. The Hamilto-
nian appearing in eq. (1) clearly operates in a mixed-shape
phase space because T̂1 is described in terms of three curvi-
linear coordinates while T̂2 in five [4]. Thus, the integration
measure of this space must be χ-dependent to describe a
coherent theory [27]. This deformation of the shape space
metric was explained in refs. [29,30].

The main aim of this study is solving the Schrödinger
equation associated to eq. (1), as in case of the well-known
E(5) model [6], in order to obtain the energy spectra and
transition rates. For this purpose, we consider the total
wave function as

Ψ(β, γ,Ω) = ξ(β)ϕ(γ,Ω). (5)

Therefore, the wave equation for Hamiltonian in eq. (1)
can be written as

ĤΨ(β, γ,Ω) = EΨ(β, γ,Ω). (6)

By substituting eqs. (1) and (5) into eq. (6) and consider-
ing a gamma-independent potential

V (β, γ) = V (β) (7)

one obtains the following separated equations:(
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where u(β) = 2B
h̄2 V (β) and ε = 2B

h̄2 E are reduced potential
and energy, respectively.

Equation (8b) was first solved by Bes [31]. The eigen-
value is given as Λ = τ(τ + 3), in terms of the seniority
quantum number τ introduced by Rakavy [32] in connec-
tion to the eigenvalue of the Casimir operator of the SO(5)
symmetry and the eigenfunction is presented as [33]

ϕτ,ῡΔ,L,M (γ,Ω) =
L∑

K=0
even

ητ,ῡΔ,L,K(γ)ΦL
M,K(Ω), (9)

where
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In eqs. (9) and (10), DL
M,K(Ω) is a Wigner function

and the notations Ω, ῡΔ, L, M and K denote the Eu-
ler angles, an additional multiplicity index which is de-
fined more in ref. [2], angular-momentum quantum num-
ber, angular-momentum projection on the laboratory z-
axis [34] and angular-momentum projection on the body-
fixed z-axis [34], respectively.

A potential V (β) which is flat with respect to β al-
lows the nucleus to assume either a spherical (β = 0) or
deformed (β > 0) shape with minimal energy penalty [6].
Therefore, an idealized approximation near the critical
point is the five-dimensional infinite square-well poten-
tial [17]:

u(β) =

{
0, β ≤ βw,

∞, β ≥ βw.
(11)

Substituting this potential and ξ(β) = βχ− 3
2 f(β) in

eq. (10) one obtains the Bessel equation[
d2
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+

1
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β2

]
f(β) = 0, (12)
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where
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Thus the eigenvalues of eq. (8) can be written as follows:

Es,τ,L =
h̄2

2B

(
xs,ν

βw

)2

, (14)

where xs,ν is the sth zero of the Bessel function of the first
kind Jν(xs,ν

βw
β), s = nβ +1 and nβ = 0, 1, . . .. The solution

of eq. (10) is then

ξs,τ,L(β) = Cs,νβχ− 3
2 Jν

(
xs,ν

βw
β

)
, (15)

where Cs,ν is determined by calculating the following in-
tegral: ∫ βw

0

[ξs,τ,L(β)]2 β4−2χdβ = 1. (16a)

By using this relation together with the properties of the
Bessel function, we reach to the final form of the normal-
ization constant

Cs,ν =
1

βw√
2
[Jν+1(xs,ν)]

. (16b)

It should be noticed that in ref. [27] the same eq. (12)

occurs, but with ν =
√

(χ − 3
2 )2 + L(L+1)

3 , so it can be
seen that in ref. [27], the limiting cases of X(3) and X(5)
happens for χ = 1 and χ = 0 while in our case X(3) and
E(5) appears which is simply obtained from (13a). The
reason for this discrepancy is that the potential V (β, γ) is
different in the two studies. Indeed, the critical point sym-
metries, like E(5) or X(5), are actually fitting descriptions
provided by similarly simple shapes of the potential sur-
face in the Bohr model.

Finally, the total wave function is given by the product
of angular, β and γ wave functions

Ψ(β, γ,Ω) = Cs,νβχ− 3
2 Jν

(
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3 Numerical results

3.1 Energy spectrum

To determine the energy spectra, we normalize eq. (14) as
follows:

A (E1,0,0)H + B = 0,
A (E1,1,2)H + B = 1. (18)

Indeed, we normalize the energy of the first and second
levels of the ground-state band to zero and one, respec-
tively, so the normalized energy for each state labeled by
the quantum numbers s(s = nβ + 1), τ and L takes the
form

Ẽs,τ,L =
x2

s,τ,L − x2
1,0,0

x2
1,1,2 − x2

1,0,0

. (19)

As is obvious from eqs. (14) and (13a), the only
free parameter to determine the energy spectra is
the control parameter χ. In order to see the evolu-
tion of the several normalized energy levels [(τ, L, n) =
(1, 2, 0), (2, 2, 0), (2, 4, 0), (0, 0, 1), (2, 4, 1), (3, 6, 0), (4, 8, 0),
(3, 4, 0), (3, 3, 0), (3, 0, 0), (1, 2, 1), (2, 2, 1), (4, 6, 0), (4, 5, 0),
(4, 4, 0), (4, 2, 0)] as a function of the control parameter,
we have depicted fig. 1. In this figure, one can see
the relevant evolution in five parts (a, b, c, d and e)
corresponding to the five values adopted for the control
parameter (χ = 0, 0.25, 0.50, 0.75 and 0.95). It is obvi-
ously seen that inserting the parameter χ removes the
degeneracy on the energy levels related to the E(5) model
(χ = 0), the splits increase with increasing the value of
χ and the relevant energy levels shift to the first level
of the ground-state band. It should be also mentioned
that the different columns of fig. 1 correspond to the
different bands of a nucleus. In other words, the “first”;
“second and third”; “fourth and fifth”; “sixth”; “seventh”
columns correspond to the “ground-state band”; “γ-band
(K = 2)”; “band based on 0+”; “first β-band”; “band
maybe based on 2+”, respectively. The band based on 0+

has been experimentally observed. For instance, in 110Pd
nucleus, the values related to the normalized energy
levels of this band are as follows [35]: 2.53, 3.25 and 4.60
corresponding to 0+, 2+ and 4+, respectively.

On the other hand, we have implemented the fitting
procedure for the normalized energy in a way that our
results for each nucleus have the best agreement to the
relevant experimental data or the standard error has the
minimum value. This statistical error is defined as follows:

σ =

√√√√ 1
N − 1

N∑
i=1

[(
Ẽs,τ,L

)
th

−
(
Ẽs,τ,L

)
exp

]2

i

, (20)

where N denotes the number of available experimental
data for each nucleus. The obtained results together with
the parameters N , χ and σ are reported in table 1. In this
table our theoretical results are compared with the exper-
imental data through the value of σ. As one can see, there
are a rather good agreement between our results and the
experimental data. Indeed, the value of statistical error for
each of nucleus is equal to or smaller than one. The best
agreement to the experimental data belongs to the 126Xe,
110Pd, 128Xe and 114Pd nuclei. Moreover, it should be
mentioned that the notations “–”, “( )” and “[ ]” relate to
the cases in which “the relevant experimental data is not
available”, “we are not sure about the reported data” and
“the data is related to the backbending phenomena [36]”.
This kind of data has been ignored in the fitting procedure
because further out there is a backbending (the energy
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Fig. 1. The evolution of the several normalized energy levels as a function of the control parameter χ. Red and blue colors
specify the angular-momentum quantum number L and the normalized energy values, respectively.
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Table 1. The theoretical normalized energy (upper line) for some levels of ground state, the first β band and the first γ band
compared with the available experimental data (lower line) [35].

Ẽs,τ,L
100Ru 104Ru 110Pd 112Pd 114Pd 116Pd 118Xe 120Xe 122Xe 124Xe 126Xe 128Xe

[35,37]

Ẽ1,2,4

2.23 2.24 2.25 2.25 2.23 2.21 2.20 2.20 2.22 2.23 2.25 2.25

2.27 2.48 2.46 2.53 2.56 2.58 2.40 2.47 2.50 2.48 2.42 2.33

Ẽ1,3,6

3.67 3.69 3.73 3.74 3.68 3.61 3.59 3.59 3.66 3.67 3.72 3.74

3.85 4.35 4.21 4.45 4.51 4.58 4.14 4.33 4.43 4.37 4.21 3.92

Ẽ1,4,8

5.33 5.36 5.43 5.45 5.34 5.20 5.17 5.17 5.30 5.33 5.41 5.45

5.67 6.48 6.14 6.65 6.66 6.89 6.15 6.51 6.69 6.58 6.27 5.67

Ẽ1,5,10

7.18 7.24 7.35 7.33 7.20 6.99 6.93 6.93 7.14 7.18 7.32 7.37

7.85 8.69 8.21 8.75 [8.60] – 8.35 8.90 9.18 8.96 8.64 [7.22]

Ẽ2,0,0

3.01 3.00 2.99 2.99 3.00 3.03 3.03 3.03 3.01 3.01 2.99 2.99

2.10 (2.76) 2.53 3.27 2.62 3.26 2.46 2.82 3.47 3.58 3.38 3.57

Ẽ2,1,2

4.80 4.80 4.80 4.80 4.80 4.80 4.80 4.80 4.80 4.80 4.80 4.80

3.46 4.23 3.25 4.02 4.18 – 3.64 3.95 4.51 4.60 4.32 4.51

Ẽ2,2,4

6.85 6.87 6.90 6.91 6.85 6.80 6.78 6.78 6.84 6.85 6.89 6.91

4.36 5.81 4.60 4.92 – – 5.13 5.31 – 5.69 5.25 (5.39)

Ẽ1,2,2

2.07 2.04 1.98 1.97 2.06 2.17 2.20 2.20 2.10 2.07 2.00 1.97

2.52 2.49 2.18 2.11 2.09 2.17 2.75 2.72 2.55 2.39 2.26 2.19

Ẽ1,3,3

3.38 3.32 3.22 3.21 3.36 3.54 3.59 3.59 3.42 3.38 3.25 3.21

3.49 3.47 3.24 3.14 3.04 3.13 4.05 3.94 3.67 3.59 3.39 3.23

Ẽ1,3,4

3.46 3.42 3.36 3.35 3.45 3.56 3.59 3.59 3.48 3.46 3.38 3.35

3.82 4.20 3.74 3.91 3.97 4.04 4.27 4.34 4.23 4.06 3.83 3.62

Ẽ1,4,5

4.94 4.89 4.79 4.77 4.93 5.12 5.17 5.17 4.99 4.94 4.82 4.77

4.78 5.23 4.71 5.04 4.90 5.05 5.70 5.63 5.36 5.19 4.90 4.51

Ẽ1,4,6

5.05 5.03 4.97 4.97 5.05 5.14 5.17 5.17 5.08 5.05 4.99 4.97

5.01 – 5.32 5.74 5.94 6.17 5.92 6.15 6.21 6.06 5.70 5.15

Ẽ1,5,7

6.72 6.67 6.58 6.56 6.71 6.89 6.93 6.93 6.76 6.72 6.60 6.56

6.39 7.33 – 7.12 6.88 7.32 7.59 7.63 7.42 7.27 6.85 –

Ẽ1,5,8

6.86 6.84 6.81 6.80 6.86 6.92 6.93 6.93 6.87 6.86 6.82 6.80

6.58 7.95 7.09 7.57 7.98 8.35 7.78 8.23 8.44 8.23 7.88 6.72

N 14 12 13 14 12 11 14 14 13 14 14 11

χ 0.17 0.21 0.28 0.29 0.18 0.04 0 0 0.14 0.17 0.26 0.29

σ 0.88 0.85 0.90 0.90 0.71 0.88 0.91 1.0 1.0 0.91 0.77 0.28

difference between consecutive energy levels is no longer
monotonically increasing) which suggests that higher spin
states are no longer purely collective. Moreover, the rea-
son for the selection of this kind of levels in table 1, the
levels up to L = 10 and L = 8 in the ground state and the
γ-band respectively, is the backbending phenomena.

Furthermore, in table 1, it is obviously seen that for
the xenon isotopes the parameter χ increases with increas-
ing the mass number. It may be means that nuclei (only
for the xenon isotopes) with lower mass number can be in-
vestigated through the E(5) model while the nuclei with
more mass number by the X(3) model.

3.2 Transition rates

In general, the quadrupole transition operator is [15,38]

T (E2)
μ = tαμ = tβ

[
D2

μ,0(Ω) cos γ +
1√
2

[
D2

μ,2(Ω)

+D2
μ,−2(Ω)

]
sin γ

]
, (21)

where Ω denotes the Euler angles and t is a scale factor.
By employing this operator together with the eq. (17), one
can reach to the E2 transition probability which has the
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Table 2. Several B(E2) ratios (upper line) of nuclei in table 1 compared to the experimental data [35] (lower line). All transition
values are normalized to1, 1, 2 → 1, 0, 0. The errors relate to the experimental errors [35].

s, τ, L→s′, τ ′, L′ 100Ru 104Ru 110Pd 112Pd 114Pd 116Pd 118Xe 120Xe 122Xe 124Xe 126Xe 128Xe

1, 2, 4→1, 1, 2
1.70 1.70 1.72 1.72 1.70 1.68 1.67 1.67 1.69 1.70 1.71 1.72

1.4±0.1 1.4±0.1 1.6±0.1 – – – 1.1 1.15 1.5 1.17 – 1.35±0.25

1, 3, 6→1, 2, 4
2.22 2.23 2.25 2.26 2.22 2.18 2.17 2.17 2.21 2.22 2.25 2.26

< 4.6±0.1 – 1.95 – – – 0.9±0.2 1.15 1.5 1.52±0.10 – 1.33±0.24

1, 4, 8→1, 3, 6
2.62 2.64 2.68 2.68 2.63 2.57 2.55 2.55 2.61 2.62 2.67 2.68

– – – – – – 0.45 0.95 1.0 1.14±0.33 – 2.04±0.23

1, 5, 10→1, 4, 8
2.95 2.97 3.01 3.02 2.95 2.88 2.86 2.86 2.93 2.95 3.00 3.02

– – – – – – > 0.75 0.9±0.1 1.5 0.36±0.04 – 5.28±1.21×10−4

2, 1, 2→2, 0, 0
0.76 0.76 0.76 0.76 0.76 0.75 0.75 0.75 0.76 0.76 0.76 0.76

0.9 – – – – – – – – – – –

2, 2, 4→2, 1, 2
1.26 1.26 1.27 1.27 1.26 1.25 1.24 1.24 1.26 1.26 1.27 1.27

– – – – – – – – – – – –

1, 2, 2→1, 1, 2
1.69 1.70 1.71 1.71 1.70 1.68 1.67 1.67 1.69 1.69 1.71 1.71

0.9 0.95 0.8 – – – – – – 0.55±0.09 – 1.23±0.20

1, 3, 4→1, 2, 2
1.15 1.15 1.15 1.16 1.15 1.14 1.14 1.14 1.15 1.15 1.15 1.16

– – 0.6±0.1 – – – – – – 1.2±0.4 – 0.6±0.1

1, 3, 3→1, 2, 2
1.57 1.57 1.58 1.58 1.57 1.55 1.55 1.55 1.56 1.57 1.57 1.58

0.3±0.1 – – – – – – – – 0.16±0.06 – 4.50

1, 3, 4→1, 2, 4
1.05 1.06 1.07 1.07 1.06 1.04 1.03 1.03 1.05 1.05 1.07 1.07

0.8±0.5 – 0.6±0.1 – – – – – – 0.58±0.21 – 0.61±0.07

following form [39]:

B (E2; sτL → s′τ ′L′) = t2 (τ ′, L′; 1, 2‖τ, L)2

× [〈τ |‖α‖|τ ′〉IsτL;s′τ ′L′ ]2 , (22)

where (τ1, L1; τ2, L2‖τ3, L3) is the SO(5) Clebsch-Gordan
coefficient whose usually encountered values are tabulated
in ref. [33] and the corresponding non-vanishing reduced
matrix element has the following simple form [40,41]:

〈τ |‖α‖|τ ′〉 =
√

τ

2τ + 3
δτ,τ ′+1 +

√
τ + 3
2τ + 3

δτ,τ ′−1 (23)

while I is the integral over the β shape variable

IsτL;s′τ ′L′ =
∫ ∞

0

βξsτL(β)ξs′τ ′L′(β)β4−2χdβ. (24)

Some transition rates for nuclei presented in table 1 have
been calculated by using eq. (22). The obtained results
are shown in table 2. In this table, in order to evaluate
our results, we compared them with the relevant available
experimental data. There is a rather good agreement be-
tween our data and the experimental one. As is expected,
the transition rates related to the levels of the ground state
band for all nuclei in table 2 take place between the E(5)
and X(3) models. This subject can be seen by comparing
the values of table 2 with the results of refs. [6] and [15].

4 Conclusion

In summary, we considered a mixed Hamiltonian com-
posed of two parts related to the E(5) and X(3) models.
The exact expressions for the eigenvalues and eigenfunc-
tions of the corresponding wave equation were also pre-
sented. Moreover, we calculated the normalized energies
and transition rates. The corresponding results have been
reported in tables 1 and 2, respectively. As we know, one
of the disadvantages of the X(3) model is that it cannot
predict the energy spectra related to the levels of γ-bands.
However, the X(3) model should be considered as a sepa-
rate case which cannot be achieved in the present formal-
ism as a limiting model without considering the modifi-
cation of the Bohr symmetry restrictions on the parity of
the angular momentum states. On the other hand, since
in the E(5) model the normalized energy is depend on
the seniority quantum number τ and the quantum num-
ber nβ(s), it suggests the same energy values for different
levels like levels with L = 3 and L = 4 of the γ-band while
the experimental data do not show this degeneracy. But,
when we combine the X(3) and E(5) models, as we have
done in this work, these two problems will disappear. This
point is clearly seen in fig. 1 and table 1.

It is a great pleasure for the authors to thank the referees for
their helpful comments.
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