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Abstract. We study nuclear effects in the deuteron in the deep inelastic regime using the newest available
data. We put special emphasis on their Q2 dependence. The study is carried out using a scheme which
parameterizes, in a simple manner, these effects by changing the proton and neutron stucture functions
in medium. The result of our analysis is compared with other recent proposals. We conclude that precise
EMC ratios cannot be obtained without considering the nuclear effects in the deuteron.

1 Introduction

The study of nuclear effects in structure functions is
mandatory in order to understand the microscopic struc-
ture of nucleons and nuclei in terms of Quantum Chromo-
dynamics [1]. However, when studying the nucleon struc-
ture functions, the main difficulties are related to the de-
termination of the neutron structure function Fn

2 , because
neutrons cannot be prepared as scattering targets. Con-
sequently, Fn

2 has to be extracted from the measurable
deuteron structure function FD

2 , plus the knowledge of
the proton one F p

2 . In doing this analysis one is always
facing the problem of quantifying the nuclear structure ef-
fects in the deuteron. A priori it appears as a reasonable
approximation to consider the deuteron as a free proton
plus a free neutron system, because the binding energy is
small (2.224MeV). Nevertheless, deuteron is not strictly
a superposition of free constituents and for this reason the
smearing produced by nuclear binding effects has been the
subject of several analyses based on different physical con-
siderations [2–6]. These studies ended with a large variety
of values for the neutron structure function, all coming
from the same experimental data. In addition, our ability
to extract the neutron structure function is limited by the
large spread of results, even among extractions including
only traditional nuclear effects such as Fermi motion and
binding. This has made it difficult to identify a reliable
baseline which could be used to search for more involved
nuclear effects such as the so called EMC effect [7].

The new measurements on light nuclei [8] have gen-
erated a renewed interest in the EMC effect for both
polarized and unpolarized experiments [9–13]. EMC ra-
tios are usually taken with respect to the deuteron, but
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the deuteron may also exhibit an EMC effect. Several at-
tempts [2,3,14] have been made to determine REMC(D) =
FD

2 /(Fn
2 + F p

2 ) where Fn
2 (F p

2 ) are the free neutron (pro-
ton) structure functions. A good experimental determina-
tion of REMC(D) can shed some light on the cause of this
effect. The high quality data of BONuS [15–17] designed
to measure Fn

2 /F p
2 at high values of x allow a better de-

termination of REMC(D) [18]. On the other hand new
parameterizations of the nucleon structure functions have
appeared [19] which permit the study of observables with
higher precision and up to higher Q2. This wealth of data
has prompted us to review a description presented some
time ago [2,3] aimed at making compatible the Gottfried
sum rule with the data by considering nuclear effects in the
deuteron. This should allow to identify a reliable baseline
which could be used to search for nuclear effects such as
the modification of the nucleon structure function in nu-
clei or the presence of non-nucleonic degrees of freedom.

In the next section we recall the previously mentioned
analysis. In sect. 3 we show the results obtained under this
scheme, using all the presently available data and we make
a comparison with recent related proposals. We finish by
drawing some conclusions.

2 Nuclear effects in the deuteron

When the NMC Collaboration [20] presented in 1991 the
analysis of the ratio of the structure functions Fn

2 /F p
2

obtained in deep inelastic scattering of muons on hydro-
gen and deuterium targets, exposed simultaneously to the
beam, it was assumed that nuclear effects were not signif-
icant in deuteron, namely

FD
2 =

1
2

(F p
2 + Fn

2 ) (1)
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and consequently

Fn
2

F p
2

= 2
FD

2

F p
2

− 1. (2)

The formula (2) was used in ref. [20] to extract the
Fn

2 /F p
2 ratios from the experimental data on FD

2 /F p
2 .

That data set was also used in order to test the valid-
ity of the Gottfried sum rule that includes the integrand
(F p

2 (x) − Fn
2 (x))/x [21]. It is of importance that even

though the corrections to the naive expression (1) could
be small, their effect is highly amplified in this difference.
It was concluded that significant tests of the Gottfried
sum rule cannot be made on the basis of the deuteron
data without considering nuclear effects [22]. These mea-
surable nuclear effects in deuteron were in agreement with
predictions of several models such as the light cone ap-
proach to the deuteron structure function [23], the parton
recombination model [24] and the inclusion of pionic ef-
fects in the deuteron [25]. On the other hand, the picture
that emerged when comparing nuclear structure functions
with those of free protons was different from the standard
comparison with deuteron protons [26].

In ref. [3] the nuclear effects in deuteron were taken
into account by defining the bound nuclear structure func-
tion, FD

2 , by means of

FD
2 =

1
2

(
F ′p

2 + F ′n
2

)
, with F ′p

2 =
1

β(x)
F p

2 . (3)

Assuming isospin symmetry, the β(x) factor was taken
the same for the proton and neutron structure functions.
Then, the difference between the bound nucleon structure
functions was expressed as

(F ′p
2 − F ′n

2 ) = 2FD
2

1 − F ′n
2 /F ′p

2

1 + F ′n
2 /F ′p

2

=
1

β(x)

[
1
3

x (uv − dv) +
2
3

x (ū − d̄)
]

, (4)

where at the rhs of this equation the Morfin and Tung
parameterization [27] of the structure functions was used.
The ratio F ′n

2 /F ′p
2 is related to experiments by

Fn
2

F p
2

∣
∣
∣
∣
exp

= 2
FD

2

F p
2

− 1 =
F ′n

2

F ′p
2

+
1

β(x)
− 1. (5)

This equation leads to

(F ′p
2 − F ′n

2 ) = 2FD
2

⎡

⎣2

(

β(x)

(
Fn

2

F p
2

∣
∣
∣
∣
exp

+ 1

))−1

− 1

⎤

⎦ ,

(6)
from which the function β(x) can be adjusted by using
the experimental data on the deuteron combined with a
parametrization of the quark distributions and the suit-
able parametrization of FD

2 . Reference [3] used the val-
ues of FD

2 presented in table I of ref. [20], which is the
parametrization of earlier data (see references in [3]).
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Fig. 1. The values of 1/β(x) calculated using NMC [20] data
and Morfin and Tung [27] (filled circles) and MSTW [19] (filled
triangles) distributions. The lines are shown to guide the eye.

In fig. 1 we show the original calculation of the param-
eter 1/β(x) as a function of Bjorken x from ref. [22] using
eq. (6) and a new one using an updated parametrization
of the structure functions. We use eq. (2) with the experi-
mental data on the ratio Fn

2 /F p
2 |exp from ref. [20] and the

deuteron structure function from a fit to published data
from other experiments. For quark distributions we show
two parametrizations: the Morfin and Tung parametriza-
tion (s-fit in the DIS scheme) [27], shown with filled circles
and the more recent MSTW parametrization [19] shown
with filled black triangles. The lines are to guide the eye.
See ref. [28] for a clear explanation on the downturn of the
low Q2 data associated to target mass corrections. Some
features of nuclear effects are apparent in fig. 1. The anti-
shadowing maximum appears clearly in both parametriza-
tions around x = 0.2 persisting for low x with Morfin and
Tung [27], but not so with MSTW [19], where it seems
absent for x � 0.15.

The above results show that the procedure to de-
fine the nuclear structure function ratios with respect to
deuteron is not precise for extracting nuclear effects, since
the composite nature of deuteron at the nuclear level has
to enter into the theoretical description of those effects.
It is therefore relevant to see how the new data complete
this picture.

3 Results

The study of nuclear effects in the deuteron has been a
subject which has gained great interest in the last years.
Other schemes have completed the description above and
we proceed to discuss them next. We will summarize their
results at the end of this section when we compare them
with our findings in the β(x) scheme.

In refs. [29–31] nuclear corrections in deuteron resulted
in the improvement of the global fit quality and their im-
portance was extensively studied. In this works the cor-
rections were included in terms of a function c(x) (which
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is, in principle, essentially equal to our 1/β(x) factor) and,
for simplicity, was taken to be Q2-independent and of the
form

c(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(1 + 0.01N)(1 + 0.01c1 ln2(xp/x)) if x < xp

(1 + 0.01N)(1 + 0.01c2 ln2(x/xp)

+ 0.01c3 ln20(x/xp)) if x > xp

(7)
The values of the parameters for the deuteron correction
factor c(x) are given in table 1 of refs. [30,31].

Recently the ratios of deuteron to isoscalar nucleon
structure functions FD

2 /FN
2 was computed in refs. [32,33]

from the CJ15 PDFs for different values of Q2. For the
region of x � 0.4 nuclear effects can be taken into account
convoluting the bound nucleon PDFs and the momentum
distributions of nucleons in the deuteron. The nucleon off-
shell corrections were also employed. These resulting ra-
tios FD

2 /FN
2 can be compared to our factors 1/β(x).

In ref. [14] the In-Medium Correction (IMC) was de-
fined as the ratio of the DIS cross section per nucleon
bound in a nucleus relative to the unbound proton and
neutron pair cross section. It was extracted from the lin-
ear relation of the EMC slope (the ratio behaviour for
0.35 � x � 0.7) to the short range correlation scale factor.
This method allows to extract the ratio of neutron to pro-
ton structure functions using the measured deuteron and
proton structure functions in the range 0.35 � x � 0.7.
Thus corrected Fn

2 /F p
2 were presented in fig. 2 of ref. [14].

In ref. [18] the structure function ratio REMC(D) =
F d

2 /(Fn
2 +F p

2 ) was computed using the recently published
data on Fn

2 /F d
2 taken by the BONuS experiment using

CLAS at Jefferson Lab [15–17]. For F p
2 /F d

2 the available
global parametrizations were used. This structure function
ratio can easily be identified with our 1/β(x), taking into
account that the deuteron structure function FD

2 defined
in eq. (1) is a structure function per nucleon and it is
connected with the F d

2 used in ref. [18] by F d
2 = 2FD

2 .
We proceed to present our results in the β(x) scheme

using the newest available data. We use the experimen-
tal ratios FD

2 /F p
2 obtained by the New Muon Collabo-

ration (NMC) in 1997 and presented in ref. [34]. From
this data we extract 1/β(x) using eq. (6) and the new
MSTW parametrization of the structure functions [19].
For FD

2 we use the parametrization presented in ref. [35].
The data is given for equidistant points in the scale of
log10 Q2 from approximately 1GeV2/c2 and up to ap-
proximately 90GeV2/c2. The region of our interest lies
for Q2 � 3GeV2/c2.

Our calculation includes all data for all available Q2.
To fix ideas, we adjust the obtained 1/β(x) to a polyno-
mial function of the 4th order with coefficients pi (i =
0, . . . , 4, p0 = 1). This fit is represented by the solid line
which is compared in fig. 2 with the previously discussed
parametrizations. The thin long dashed line is the nuclear
correction c(x) calculated in ref. [30] for one of the param-
eter sets (namely, the 2nd). The corrections calculated
for the various values of Q2 given in ref. [32] are pre-
sented with thin continuous lines: dotted, short dashed,
solid and dot-dashed for Q2 = 2, 5, 10 and 100GeV2/c2,
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Fig. 2. The values of 1/β(x) extracted from the NMC data [34]
fitted by a 4th order polynomial for all Q2 (solid lines). See
the parameters of the fit in table 1. We compare this fit to
the nuclear corrections calculated in other works. See text for
details.

Table 1. The parameters of the polynomial fit of the extracted
factors 1/β(x) for different ranges of Q2.

Q2 range p1 p2 p3 p4

Low −0.317 3.03 −7.83 6.04

Intermediate −0.168 1.49 −3.55 2.41

High −0.244 1.70 −4.27 3.38

All −0.251 2.26 −5.70 4.26

respectively. The values of Rd
EMC obtained in ref. [18] are

shown with filled circles and contain error bars. Our fit to
all data is in good qualitative agreement with all previ-
ous schemes but has more structure. One can distinguish
the antishadowing bump and the beginning of the Fermi
motion rise.

To study the importance of the Q2 dependence we di-
vide the data into three regions: low Q2 (includes data
for approximately 3, 4, 5, 6, 8, 11 and 14GeV2/c2), inter-
mediate Q2 (includes data for approximately 14, 19 and
26GeV2/c2), high Q2 (includes data for approximately 35,
47, 63, 90GeV2/c2).

In fig. 3 we show separately the extracted 1/β(x) fac-
tors for different regions of Q2 together with their fits. We
adjust these data again to a polynomial function of the 4th
order with coefficients pi (i = 0, . . . , 4, p0 = 1). It is found
that the largest deviation is obtained for the low and the
intermediate values of Q2. In the range 0.2 � x � 0.4 the
factors 1/β(x) exhibit a clearly seen antishadowing bump,
most pronounced for the case of low Q2 but also seen for
intermediate region of Q2. For large values of x the EMC
downfall of the data begins but for low Q2 the lack of avail-
able experimental data does not permit to draw final con-
clusions. For the intermediate region of Q2 for larger x we
see the rise of the 1/β(x) factor due to the Fermi motion
effect. It is clear that for large values of x (x � 0.55–0.6)
the data show a too large dispersion to be relied on. For
the region of higher values of Q2 we see a very strong
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Fig. 3. The extracted 1/β(x) factors and the resulting polynomial fitting functions for different regions of Q2. See the parameters
of the fit in table 1 and the explanations in the text.

dispersion in the data but still persists an indication of
the antishadowing bump although smaller compared to
the case of low and intermediate Q2. Also there is a EMC
downfall and Fermi motion rise of the 1/β(x) factor for
larger x in the case of large Q2. Generally the 1/β(x) fac-
tor obtained for large values of Q2 is smaller than 1.

In fig. 4 we compare the resulting fitting functions for
the three regions of low, intermediate and high Q2 val-
ues with that for all Q2. The results of the fit are the
following: the solid line represents the fit for all values of
Q2, the dashed line for the low values of Q2, the dotted
line shows the fit for intermediate Q2 and the dash-dotted
line stands for the fit for the region of high values of Q2.
As was already indicated before there is an antishadow-
ing bump for low Q2, which is not seen so clearly in the
fitting function for the large Q2. The fitted function for in-
termediate values of Q2 presents a smaller antishadowing
bump and generally lies between the curves for low and
high Q2 values. In the fit to all Q2 we also see the bump
structure appearing in low and intermediate Q2. This is an
indication that previous parametrizations of the data pro-
vide the magnitude but miss the structure of the nuclear
corrections as seen in fig. 2.

4 Conclusions

We have studied nuclear effects below the Fermi motion
dominated region (x � 0.7) on the deuteron using the

x
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Fig. 4. The resulting polynomial fitting functions for three
regions of Q2 compared with the result for all Q2. See the values
of the parameters of the fit in table 1 and the explanations in
the text.

newest available data by revisiting the β-scheme proposed
initially when the first NMC data was presented [2,3]. We
have compared our β-scheme with other analysis appeared
recently in the literature and have shown that they agree
in magnitude. We have studied the Q2 dependence of the
structure effects finding that there is a strong Q2 depen-
dence which manifests itself maximally for low Q2. The
extracted 1/β(x) factors exhibit an antishadowing bump
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clearly seen at low and intermediate Q2 region. Better
data are required to find the precise behavior although our
present analysis indicates that the effect will be smaller for
large Q2. To summarize, our analysis shows that the non-
trivial structure of the deuteron manifests itself in DIS.
Thus, one cannot neglect that nuclear structure when cal-
culating EMC ratios particularly at low Q2. The deuteron
structure modifies the ratios specially around the anti-
shadowing region and this might impede, if not taken into
account, a correct physical interpretation. We conclude
that the nature of the deuteron has to enter the descrip-
tion of the data from any QCD-based analysis.
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CONICET of Argentina, and by MINECO (Spain) Grant. No.
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