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Abstract. Singlet S-wave superfluidity of dilute neutron matter is studied within the correlated BCS
method, which takes into account both pairing and short-range correlations. First, the equation of state
(EOS) of normal neutron matter is calculated within the Correlated Basis Function (CBF) method in the
lowest cluster order using the 1S0 and 3P components of the Argonne V18 potential, assuming trial Jastrow-
type correlation functions. The 1S0 superfluid gap is then calculated with the corresponding component
of the Argonne V18 potential and the optimally determined correlation functions. The dependence of our
results on the chosen forms for the correlation functions is studied, and the role of the P -wave channel is
investigated. Where comparison is meaningful, the values obtained for the 1S0 gap within this simplified
scheme are consistent with the results of similar and more elaborate microscopic methods.

1 Introduction

Theoretical study of dilute neutron matter and its su-
perfluid phase continues to be an active subfield of nu-
clear theory [1]. As a model system of strongly interact-
ing fermions, it has been a testing ground for advances in
ab initio microscopic approaches to quantum many-body
problems. As an essential component of the inner crust
of neutron stars, interpenetrating a lattice of neutron-rich
nuclei, dilute neutron matter at baryon densities in the
range 0.2 fm−1 � kF � 1 fm−1 is of considerable impor-
tance in dense-matter astrophysics. Moreover, low-density
neutron matter may also be found in the skins or outer
envelopes of some exotic nuclei. Additionally, analogies
with ultracold fermionic atomic gases and their theoreti-
cal treatment can be fruitfully developed.

The main aim is to study the superfluid dilute neutron
matter and calculate the pairing gap in the 1S0 channel.
The existence of such phase in the inner crust of neutron
stars has direct consequences for post-glitch relaxation,
neutrino emission and cooling of neutron stars [2–5] and
an accurate value for the gap is required. Many calcula-
tions of the 1S0 superfluid gap have been carried out since
the 1970s, using various microscopic many-body theories
(for a review see ref. [1]). Among them we mention direct
calculations based on the original Bardeen, Cooper, Schri-
effer (BCS) theory using bare two-nucleon potentials [6,7]

a e-mail: gepavlou@phys.uoa.gr

and three-nucleon potentials [8,9], application of the po-
larization potential model of Pines and coworkers [10],
inclusion of medium-polarization within a G-matrix for-
mulation [11,12], application of Dirac-Brueckner-Hartree-
Fock-Bogoliubov (DBHFB) theory [13], calculations us-
ing the Correlated Basis Function Method (CBF) [14–
16], applications of the Self-Consistent Green’s Func-
tion Method [17,18], a Renormalization Group (RG)
treatment [7], and pursuit of various Monte Carlo tech-
niques [19–23]. In spite of these many efforts, there is still
ambiguity in the value of the 1S0 gap as a function of the
density (or kF ), owing to the strong sensitivity of the gap
to inputs for the pairing interaction and self-energies.

The results reported here were obtained by imple-
menting a generalization of BCS theory within the CBF
framework, giving explicit consideration to the role of
short-range geometrical correlations induced by the strong
nuclear force [24,25]. These results supplement previous
work carried out with the same method [14], although
estimates of perturbation corrections within the CBF for-
mulation are not included. The correlation functions and
single-particle energies that enter are determined in a
straightforward manner from a lowest cluster order cal-
culation of the equation of state (EOS) of normal neutron
matter including the S and P partial-wave components of
the realistic Argonne V18 potential [26].

It turns out that our results for the energy per neu-
tron are, in some cases, quite similar to those obtained
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including higher-order cluster contributions and addi-
tional components of the Argonne V18 potential. The
EOS of mainly dilute neutron matter has of course
been calculated by a broad range of many-body tech-
niques (for a review see ref. [4]). Among these are: virial
expansion [27], the lowest-order constrained variational
(LOCV) method [28–30], the operator-chain variational
techniques [31,32], CBF calculations [33–35], the Dirac-
Brueckner-Hartree-Fock (DBHF) approach [36], Bethe-
Brueckner-Goldstone (BBG) methods [37], mean field cal-
culations with interactions derived by Renormalization
Group (RG) techniques [7,38], calculations using inputs
from effective field theory (EFT) [39,40] and Lattice Chi-
ral EFT [41]. Additionally there have been major efforts
within the general framework of Monte Carlo algorithms,
especially variational Monte Carlo (VMC), Green’s Func-
tion Monte Carlo (GFMC) [22,23,42] and Auxiliary-Field
Diffusion Monte Carlo (AFDMC) [15,19,20,40,43,44]. It
is expected that the correlation functions that we have
determined can be used with some reliability in the calcu-
lation of other observables of low-density neutron matter
besides the 1S0 pairing gap. Allowing for the simplifica-
tions made in our treatment of the 1S0 gap, the results
obtained are generally compatible with the estimates re-
ported by other authors. As it is well known, at low den-
sities only the S-wave interaction is required, whereas at
somewhat higher densities of neutron matter, it becomes
necessary to include the P -wave component. In the den-
sity regime considered, higher partial waves have negligi-
ble impact, and corrections from higher cluster orders and
three-nucleon forces are expected to be minimal.

This paper is organized as follows: in sect. 2 we outline
our method of calculation within the framework of non-
orthogonal CBF theory, for both the equation of state and
the 1S0 superfluid gap. In sect. 3 we present our results
and compare them to those of other authors. Section 4 is
devoted to a brief summary of our results and to some
concluding remarks.

2 Methods of calculation

2.1 Equation of state

Our calculations are carried out within the method of cor-
related basis functions (CBF) [33], in which a correlation
operator FN (1, . . . , N) for N fermions generates not only
a trial ground state wave function but also a complete set
of non-orthogonal basis states constructed as follows:

|m〉 ≡ |Ψm〉 = I−1/2
mm FN (1, . . . , N)|Φm〉. (1)

Here {|Φm〉} is a complete orthonormal set of states of a
suitable independent-particle model and Imm is the nor-
malization constant given by

Imm ≡ 〈Φm|F †
N (1, . . . , N)FN (1, . . . , N)|Φm〉. (2)

To describe normal neutron matter we adopt as model
states |Φm〉 a complete orthonormal set of wave functions

of an ideal Fermi gas of non-interacting neutrons. The
Hamiltonian matrix elements Hmn = 〈m|Ĥ|n〉 in the cor-
related basis may be used to generate perturbative expan-
sions [33] for the ground-state energy and other quantities.
For the interaction we will consider essential components
of the Argonne V18 two-nucleon potential [26].

The correlation operator FN (1, . . . , N) in eq. (1) is
taken as a Jastrow product [33,34] of central two-body
correlation functions F2(ij) = f(rij)

FN (1, . . . , N) =
∏

i<j

F2(ij), (3)

where rij = |ri − rj |. Denoting the ground state of the
non-interacting Fermi gas by |Φ0〉, the Hamiltonian expec-
tation value E0 = 〈Ψ0|H|Ψ0〉 with respect to the “ground”
correlated basis state

|Ψ0〉 =
∏

i<j

F2(rij)|Φ0〉 (4)

is developed in a cluster expansion [33] in orders of the
smallness parameter

ξ = N−1
∑

ij

hmimj ,mimj
, (5)

where

hm1m2,m1m2 = 〈m1m2|f2(r) − 1|m1m2 − m2m1〉, (6)

with mi and mj representing the orbitals of two parti-
cles in the non-interacting Fermi sea, and r denoting their
separation.

For the diagonal matrix elements of the Hamiltonian
in the correlated basis we find

Hmm =
∑

i

ε(0)
mi

+
∑

i<j

wmimj ,mimj
+ 0(ξ), (7)

where the terms ε
(0)
mi are the single-particle energies of the

orbitals composing the independent-particle model state
|Φm〉 and

wm1m2,m1m2 = 〈m1m2 − m2m1|w2(12)|m1m2〉 (8)

are matrix elements of the effective two-body potential
which equals

w2(r) =
�

2

M
(∇f(r))2 + v(r)f2(r). (9)

with the Jastrow correlations. Here M is the neutron mass
and v(r) is an appropriate central component of the two-
body nucleon-nucleon potential. With Fermi-gas energy
eigenstates taken for the model states |Φm〉, it is straight-
forward to derive the formula

E

N
= EN = EF + 2πρ

∑

S

∫ ∞

0

wS
2 (r)GS(kF r)r2dr (10)
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for the ground-state energy per particle of neutron matter.
In this expression, i) EF = 3�

2k2
F /(10M) is the energy

per particle for a Fermi gas of non-interacting particles
with M the bare neutron mass, ii) the sum runs over the
two possible states of two-nucleon spin (singlet S = 0 and
triplet S = 1), and iii) wS

2 is obtained from eq. (9) by
inserting for v(r) the central potential acting in the corre-
sponding two-neutron state of total spin S. The factors GS

are the spatial pair distribution functions in singlet and
triplet spin states, given by

GS=0(kF r) =
1
4
(1 + l2(kF r)) (11)

and
GS=1(kF r) =

3
4
(1 − l2(kF r)), (12)

where l(x) is the Slater function

l(x) = 3x−3(sin x − x cos x). (13)

Our numerical calculations of the EOS of neutron mat-
ter were based on eq. (10) along with (9), (11), and (12).
Ideally, the correlation function f(r) would be determined
by Euler-Lagrange minimization of the ground-state en-
ergy expectation value EN . Following other authors, we
approximate EN by its leading cluster order and mini-
mize it with respect to the parameters of a suitable ana-
lytic form for f(r). This practice has proven satisfactory
at the low densities involved in the S-wave pairing prob-
lem. In our study, we have considered two forms for f(r),
i) the so-called Davé type of ref. [14], i.e.,

fS(r) = exp
{
−1

2

(
b

r

)m

exp
[
−

(r

b

)n]}
, (14)

having parameters b, m, and n, and ii) the Benhar
type [45]

fS(r) =
[
1 − exp

(
−r2

b2

)]2

+ gr exp
(
−r2

c2

)
, (15)

with parameters b, c, and g. The parameter g is deter-
mined by applying the orthogonality condition [34]

ρ

∫
dr [1 − fS(r)] GS(kF r) = 0 (16)

to each spin state where f(r) is written as fS(r) to em-
phasize that the parameters in the correlation choices (14)
and (15) can depend on the spin state involved.

Two sets of calculations of the EOS were performed
based on the Argonne V18 interaction. In the more general
case (called “spin-dependent”), contributions from both
singlet and triplet components of the interaction are in-
cluded. The singlet component is given by its S-wave part,
i.e., the interaction acting in the 1S0 partial wave. The
spin-triplet component, having no S-wave part in neutron
matter, is taken as the interaction acting in the 3P partial
wave, averaged over the three substates involved, thus

v3P =
1
9
v3P0 +

3
9
v3P1 +

5
9
v3P2 . (17)

In the simpler case, only the 1S0 component of the inter-
action is included (“S-wave only”).

The same two forms of correlation function (Davé and
Benhar types) are assumed for “S-wave only” and “spin-
dependent” cases, but with individually determined pa-
rameter values. These optimal parameters are obtained
by numerical minimization of the corresponding energy
expectation value (10) at zeroth order in the small param-
eter ξ (leading cluster order), at each density considered.

2.2 1S0 superfluid gap

We adopt Correlated BCS theory [24,25] to study 1S0 su-
perfluidity in neutron matter. In this theoretical approach,
the non-orthogonal CBF method is used to generalize BCS
theory to treat strongly correlated Fermi systems. The cor-
related BCS ground state is constructed as

|CBCS〉 =
∑

N

∑

m

(
I(N)
mm

)−1/2

FN |Φ(N)
m 〉〈Φ(N)

m |BCS〉,

(18)
where the kets |Φ(N)

m 〉 form a complete orthonormal set of
independent-particle (Fermi gas) eigenstates and |BCS〉 is
the BCS ground state

|BCS〉 =
∏

k

(
uk + υkα†

k↑α
†
−k↓

)
|0〉. (19)

Here k is the usual wave vector, uk and υk are Bogoliubov
amplitudes, and a†

k↑, α†
−k↓ are fermion creation operators,

with the arrow subscripts indicating spin projections. The
conventional normalization of (19) to unity implies the
condition

u2
k + υ2

k = 1 (20)

on the Bogoliubov amplitudes uk and vk. In the normal
state, they reduce respectively to ◦

uk = 1− θ(kF − k) and
◦
υk = θ(kF − k), where θ(x) is a step function, unity for
kF > k, zero otherwise and where k = |k|.

In the correlated BCS state (18), the expectation value
of an operator ÔN that conserves the particle number is
given by

〈
Ô

〉

s
=

〈CBCS|ÔN |CBCS〉
〈CBCS | CBCS〉 , (21)

with the subscript s standing for “superfluid”.
In analyzing the properties of the correlated BCS state,

we employ the commonly assumed decoupling approxima-
tion [6], which amounts to treating one Cooper pair at a
time. Formally, the ratio (21) is expanded in a Taylor se-
ries around the normal correlated ground state, retaining
terms of first order in the deviation of the quantity υ2

k

from its normal-state counterpart ◦
υ

2

k and of second or-
der in ukυk. After some algebra [24], one may obtain the
following result for the expectation value of a number-
conserving operator ÔN :

see eq. (22) on the next page
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◦
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Y

k′′

“

1 − ◦
υ
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k′′

”
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m |F †

N

“
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oo
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X
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“
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X

N

X
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mm
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m
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k′′
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N

“

ÔN − O(A)
oo

”

FN |Φ(N)
m 〉

+

m
X

l

m̄
X

k

ulυlukυk

X

N

X

m

“

I(N)
mm

”−1
m
Y

k′ �=l

◦
υ

2
k′

m̄
Y

k′′ �=k

◦
u

2
k′′〈Φ(N)

m |F †
N

“

ÔN − O(A)
oo

”

FNa†
k↑a

†
−k↓a−l↓al↑|Φ(N)

m 〉, (22)

where m̄ stands for the set of single-particle orbitals com-
plementary to m, the subscript “oo” refers to the nor-
mal correlated state, and A denotes the actual number of
fermions. Substituting the number operator

N̂ =
∑

k

(
α†

k↑αk↑ + α†
−k↓α−k↓

)
(23)

into this general formula, we find that the number of par-
ticles is not conserved by the correlated BCS state, as
anticipated. However, number conservation in the mean is
imposed by introduction of a Lagrange multiplier μ, iden-
tified in general with the chemical potential, and coinci-
dent with the single particle energy of the Fermi level εF

at zero temperature in the absence of interactions. Thus,
instead of the expectation value of Ĥ itself, one calcu-
lates [24,25]

〈
Ĥ − μN̂

〉

s
= H(N)

oo − μN + 2
∑

k′>kF

υ2
k′ [ε(k′) − μ]

−2
∑

k<kF

u2
k[ε(k) − μ]

+
∑

k′

∑

k �=k′

uk′υk′ukυkVkk′ (24)

in terms of the energy H
(N)
oo of the correlated normal state

of N neutrons, the single-particle energies ε(k), and the
correlated (or effective) pairing matrix elements Vkk′ .

The gap function, defined as

Δk = −
∑

k′

Vkk′uk′υk′ , (25)

measures the in-medium binding energy of the Cooper
pair. Applying the Euler-Lagrange variational principle to
the form (24) while observing the constraint (20) on the
variational Bogoliubov amplitudes, one is led to the fol-
lowing equation for determination of the gap function in
the case of singlet S-wave pairing under consideration: [24,
25]:

Δ(k) = − 1
π

∫ ∞

0

V (k, k′)√
(ε(k′) − μ)2 + Δ2(k′)

Δ(k′)k′2dk′,

(26)

where

V (k, k′) =
1

kk′

∫ ∞

0

wS=0
2 (r) sin(kr) sin(k′r)dr (27)

and wS=0
2 (r) is the effective potential defined by eq. (9)

for the state 1S0. The same correlation functions are used
for both superfluid and normal states.

Equation (26) is a nonlinear integral equation in which
the denominator on the right side becomes vanishingly
small as k′ approaches the Fermi wave number kF . In spite
of this impending singularity, straightforward integration
of the equation can be practical if a suitable starting value
of the gap is available [14]. We choose instead to imple-
ment the more efficient and accurate separation method
proposed in ref. [6]. Let ϕ(k) = V (k, kF )/VF and assume
that VF ≡ V (kF , kF ) �= 0. The matrix elements of the
pairing potential are then decomposed identically as fol-
lows:

V (k, k′) = VF ϕ(k)ϕ(k′) + W (k, k′) (28)

into a separable term and a remainder W (k, k′) that van-
ishes when either argument is on the Fermi surface. Substi-
tution of eq. (28) into the original gap equation (26) leads
to an equivalent system of two coupled equations for the
factors χ(k) and ΔF of the product Δ(k) = ΔF χ(k) [6].
The first equation is a quasi-linear integral equation for
the shape χ(k) = Δ(k)

ΔF
of the gap function

χ(k) = ϕ(k)− 1
π

∫ ∞

0

W (k, k′)χ(k′)k′2dk′
√

(ε(k′) − μ)2 + (ΔF χ(k′))2
. (29)

The second equation, which embodies the log singularity,
is a nonlinear integral equation for a number, namely the
gap amplitude ΔF ≡ Δ(kF )

1 +
VF

π

∫ ∞

0

ϕ(k′)χ(k′)k′2dk′
√

(ε(k′) − μ)2 + (ΔF χ(k′))2
= 0. (30)

The first step in finding the gap is evaluation of the
pairing matrix elements of the potential from eq. (27), us-
ing the optimal correlation functions determined in the
EOS calculation outlined in sect. 2.1. For the single-
particle energies, we adopt an effective-mass approxima-
tion, i.e., ε(k) = �

2k2/2M∗ + const., which should be
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Fig. 1. (Color online) Energy per neutron EN as a function
of the wave number kF based on the Argonne V18 interaction
in the four calculational treatments as described in the text.
The energy per neutron of the corresponding ideal Fermi gas
is plotted for comparison.

satisfactory at the low densities in question. Specifically,
with �(k) ≡ dε(k)/dk, M∗ is estimated as

M∗ = �
2kF �−1(kF ). (31)

In the general case where the singlet-S and triplet-P com-
ponents of the potential are included, the single-particle
energies are expressed more explicitly as

ε(k) =
�

2k2

2M
+ πρ

∫ ∞

0

r2wS=0
2 (r)

[
1 +

sin(kr)
kr

l(kr)
]

dr

+3πρ

∫ ∞

0

r2wS=1
2 (r)

[
1 − sin(kr)

kr
l(kr)

]
dr. (32)

Given these preparations, eqs. (29) and (30) are solved
by iteration starting from a constant value for ΔF χ(k′)
in eq. (30), continuing until satisfactory convergence is
achieved for ΔF [6] —typically in very few steps.

3 Results and discussion

3.1 Equation of state

We first present the results for the EOS of normal dilute
neutron matter. In fig. 1, the optimized energy per neutron
is shown as a function of the Fermi wave number kF , for
each of the four cases considered for the Argonne V18 two-
nucleon interaction (S-waves only; S and P waves; Davé
and Benhar correlation functions). Figure 2 features plots
of the optimized S and P correlation functions fS(r) at the
typical value kF = 0.9 fm−1, for each of the two types con-
sidered. Almost identical results [46] were obtained with
the corresponding components of the Argonne V4′ poten-
tial [47]. Even though kF values only up to about 1 fm−1

are needed to describe the inner crust of neutron stars,
the EOS has been plotted for kF up to 1.5 fm−1, in order

Fig. 2. (Color online) Correlation functions of the Jastrow
type fS(r) (Davé and Benhar versions), determined optimally
at Fermi wave number kF = 0.9 fm−1 and plotted versus the
separation r of a pair of neutrons interacting i) via the S-wave
component of the Argonne V18 potential (“S-wave only”), and
ii) also via the P component of this potential.

to show the influence of the P -state contribution as the
density increases.

Individually for the “S-wave only” and “spin-
dependent” cases, the energetic results obtained for the
optimal Davé and Benhar correlation functions are found
to be rather close, but with a discrepancy that increases
with density. This is quite as expected, since the differ-
ences between these functions at short range is better re-
solved at higher densities. Further, it is to be noted that
the Davé form has three free parameters, compared to two
in the Benhar case. Another distinction between these two
correlation functions, seen in fig. 2, is that the Benhar
form allows fS(r) to overshoot unity at small r, whereas
the Davé form does not. Comparing the energetic results
obtained in the “S-wave only” and “spin-dependent” cases
for a given correlation form, it is seen that inclusion of the
positive P -wave contribution begins to play a role with in-
creasing density, such that its incorporation becomes nec-
essary for kF values beyond about 0.8 fm−1.

Of special interest is the magnitude of the “smallness
parameter” ξ defined in eq. (5), which governs the con-
vergence of the cluster expansion of the energy. Over the
densities and correlation functions considered, this param-
eter rises monotonically with the density and ranges from
5.66 × 10−6 for kF = 0.1 fm−1 to 0.006 for kF = 1 fm−1

and to 0.026 for kF = 1.5 fm−1 for the Benhar case
and from 5.36 × 10−6 for kF = 0.1 fm−1 to 0.006 for
kF = 1 fm−1 and to 0.027 for kF = 1.5 fm−1 for the Davé
case. On this basis, the higher cluster corrections neglected
in the present study should not be important below about
kF = 1.0 fm−1, as far as the EOS itself is concerned.

Results obtained for EN with the Benhar correlation
function for the Argonne V18 interaction in the “spin-
dependent” case are plotted in fig. 3 along with results
from other computational many-body methods. In choos-
ing between the Davé or Benhar forms of the correlation
function fS(r) to show results on fig. 3 (and later on fig. 6)
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Fig. 3. (Color online) Comparison of results for the ratio of the
energy per neutron EN of neutron matter (i.e., its EOS) to the
energy per particle EF of a Fermi gas of non-interacting parti-
cles of the same mass, obtained by different microscopic many-
body methods, generally with differing input potentials, con-
sidered to be realistic. See text for details. The curve marked
with black squares traces the EOS obtained here for the Ar-
gonne V18 interaction when the Benhar correlation function is
adopted in the “spin-dependent” case.

we have decided in favor of the former for two reasons.
First, it gives a slightly lower upper bound for the en-
ergy. The second reason concerns the question whether
fS(r) should overshoot unity before going to zero to sup-
press the core region of the potential. There are some
studies that support the presence of such an overshoot:
i) LOCV calculations of the energy per particle (see for
example ref. [30]), which give results close to those of
FHNC/SOC and MC calculations upon solving Euler-
Lagrange equations at the two-body cluster level, pro-
duce correlation functions that seem to overshoot unity. ii)
Recently, optimized FHNC indicate a small overshoot in
neutron matter for the Argonne V18 interaction [48]. The
methods shown in fig. 3 include variational approaches
that introduce state-dependent correlations [29,28,30,31],
Brueckner-Bethe-Goldstone (BBG) theory [37], difermion
effective field theory (EFT) [39], a Mean Field calculation
using chiral N2LO three-nucleon forces (MFN2LO) (show-
ing error bounds) [38], Dirac-Brueckner Hartree-Fock the-
ory (DBHF) [36], Auxiliary Field Diffusion Monte Carlo
(AFDMC) [43] (including a three-nucleon interaction),
and Quantum Monte Carlo (QMC) [22,23]. The most
meaningful comparison of the present results would be
with the variational calculations of Friedman and Pand-
haripande (FP) [31] and of Modarres et al. [29,28,30]. It is
understandable that the “spin-dependent” Benhar curve
would lie somewhat above that of FP, since the latter cal-
culation involves a more flexible variational ansatz and
includes essentially all components of the assumed two-
nucleon interaction. The same is true for the results ob-
tained with the LOCV method which lie very near the
ones of the FP paper, but are available for kF ’s � 1 fm−1.
Results of ref. [30] are below those of refs. [42] and [44]
obtained with GFMC and FHNC methods respectively.

Fig. 4. (Color online) Gap function Δ(k) at kF = 0.9 fm−1

as a function of wave number k, obtained with an effective
pairing interaction determined from eq. (9), based on the Ar-
gonne V18 interaction. The four curves correspond to the four
different choices for the Jastrow correlation function fS=0(r),
as identified in the main text.

It is worth noting at this point that at similar densities,
precise calculation of the EOS of pure neutron matter is
less demanding than that for symmetrical nuclear matter,
where large-scale cancellations occur between kinetic and
potential contributions to EN . An additional considera-
tion is that in the density regime of neutron matter of
interest for 1S0 pairing, three-nucleon interactions are not
expected to play a very significant role [8,9,49–51].

3.2 1S0 superfluid gap

As explained above, we solve the gap equation (26) using
the separation method of Khodel, Khodel, and Clark [6]
and the optimal correlation functions fS=0(r) determined
here for the normal neutron matter. In fig. 4, the result-
ing gap function Δ(k) is plotted as a function of k for
kF = 0.9 fm−1 for all four correlation choices fS=0(r) (“S-
wave only”, “Spin Dependent” Davé and Benhar forms)
based on the Argonne V18 interaction. An interesting fea-
ture prominent in these plots is the occurrence of a node
in the gap function at k � 2 fm−1, which is generic to pair-
ing interactions that possess a substantial inner repulsion
in coordinate space, along with the outer attraction re-
quired by the experimental 1S0 phase shift. Due to the
non-monotic behavior of the interaction, the negative ex-
cursion of the gap function is generally necessary for the
existence of a solution of the gap equation, as emphasized
in ref. [6]. A feature specific to the present calculation is
the tiny discrepancy between the gap functions generated
in the S-wave only and “spin-dependent” cases. The effect
of the P -wave component of the two-nucleon potential on
the optimal correlation function fS=0(r) of either type is
minuscule in the gap function.

The resulting energy gap on the Fermi surface,
Δ(kF ) ≡ ΔF , is plotted in fig. 5 as a function of kF for the
case of the Argonne V18 interaction. As a check, we have
also solved the gap equation by straightforward iteration,
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Fig. 5. (Color online) Pairing gap ΔF on the Fermi surface
for the 1S0 superfluid state of neutron matter as a function of
Fermi wave number kF , as obtained with an effective pairing
interaction determined from eq. (9) based on the Argonne V18

interaction. The four curves correspond to the four different
choices for the Jastrow correlation function fS=0(r), as identi-
fied in the main text.

taking proper care in dealing with the small values of the
denominator around the Fermi surface. Good agreement
was found [46], the essential point being that the Jastrow
correlations act to “tame” the extreme non-monotonicity
of the bare interaction.

Comparing the two parametrized forms for the corre-
lation function we realize sensitivity. In the Davé case we
found a somewhat larger range of kF values over which
a non-zero gap exists, than for the Benhar form, as well
as a somewhat larger range of gap values. Comparing the
gap values in the S-wave–only case with those for which
the P -wave contribution affects the optimal choice of the
correlation function fS=0(r), we find that the latter are
slightly smaller than the former for kF � 0.7 fm−1. Ac-
cordingly, we again affirm that inclusion of the P channel
in our procedure has a small negative effect on the gap.
This is true for either form chosen for the correlation func-
tion. Concerning the Fermi wave number (effectively the
density) at which the peak value ΔF is reached, it is lo-
cated between kF = 0.8 fm−1 and kF = 0.9 fm−1, for the
Davé correlations, while for Benhar correlations it lies be-
tween kF = 0.7 fm−1 and kF = 0.8 fm−1. With respect to
the (upper) density at which the gap closes, our approach
gives a values close to kF = 1.5 fm−1 and 1.3 fm−1 for
Davé and Benhar choices, respectively. While differences
between Benhar and Davé forms may not matter much
at all for the energy, the different balance between the
positive and negative parts of the effective pairing inter-
actions for these two choices may matter a great deal in
determining the gap, the more so when compounded with
the quasi-exponential dependence of this quantity on the
inputs for the pairing interaction and self-energy. Here it
is again prudent to mention that although kF does not
exceed about 1 fm−1 in the neutron-star inner crust, we
have chosen to plot the gap results up to 1.5 fm−1 in order
to show how the P -wave component of the two-nucleon in-

Fig. 6. (Color online) Results for the 1S0 neutron gap ΔF

versus Fermi wave number kF , as obtained for the Argonne
V18 interaction using the Benhar-type correlation function in
the “spin-dependent” case (curve marked with black squares).
Results for ΔF calculated by other microscopic methods are
displayed for comparison (see text for details).

teraction might affect, through the two-body correlations
it influences, the density at which the gap closes. Analo-
gous calculations have been performed for the Argonne V4′

potential, with results [46] that show very little difference
from those reported here for the Argonne V18 interaction.

Our results for the S-wave gap may be compared with
those of refs. [6,46] that were obtained from ordinary BCS
theory using the bare 1S0 component of the AV18 potential
as pairing interaction (thus including no corrections for
short-range geometrical correlations or medium polariza-
tion). The corresponding curve of ΔF versus kF is marked
with crosses in fig. 6. The gap values calculated with
Benhar-type correlations in the “spin-dependent” case are
seen to be suppressed relative to the pure BCS gap by a
factor of about 2/3 in region of the peak, which occurs at
a slightly lower density in our calculation.

Since the Davé form for the Jastrow correlation func-
tion was employed in the non-orthogonal CBF approach
applied by Chen et al. [14] to the problem of 1S0 neutron
pairing, it is of special interest to compare the results ob-
tained here with the Davé form (“spin-dependent” case)
with those from this earlier CBF calculation (plotted as
“CBF” in fig. 6). Other than in the methods used to solve
the gap equation, both of which are sufficiently accurate,
the difference between the two studies lies primarily in the
inclusion, by Chen et al., of a correction of second order in
CBF perturbation theory to account for in-medium modi-
fication of the pairing interaction (“polarization effects”).
However this correction is very approximately estimated
and somewhat questionable, as discussed in refs. [14] and,
more recently, in [52]. Absent that correction, the results
for the gap are found to be very similar, as expected. The
impact of differences in the pairing interactions assumed
(Reid V4 in ref. [14] and Argonne V18 herein) is minimal.

Also reproduced in fig. 6 are gap results obtained
through a number of other microscopic many-body meth-
ods, diverse in their inclusion (or not) of various physical
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effects influencing the pairing gap. These methods in-
clude the polarization-potential model of Pines et al. [10],
a medium-polarization calculation [11], an application
of RG theory [7], approaches grounded in Brueckner
theory [12], DBHFB [13], determinantal lattice QMC
(dQMC) [21], AFDMC [19], and QMC [23]. Other note-
worthy calculations not represented in fig. 6 are those of
refs. [8,9,15–18].

Qualitatively, our results for ΔF using Benhar corre-
lations are closer to those of refs. [12,13,21–23], while dif-
fering substantially from those of refs. [7,10,11,14]. The
density at which our predicted gap reaches a maximum
is similar to what found in refs. [10–13]. However, useful
conclusions cannot be drawn from such commonality or
disparity, due to differences in the pairing interactions as-
sumed and in calculational methods, especially the treat-
ment (or not) of in-medium modification of the bare in-
teraction.

It is not surprising that considerable uncertainty re-
mains in the quantitative determination of the behavior of
the 1S0 gap ΔF in neutron matter, in view of the inherent
strong sensitivity to the inputs for the pairing interaction
and the self-energies (or density of states).

4 Summary and conclusions

The 1S0 superfluid gap ΔF of dilute neutron matter in
the density range 0.2 fm−1 � kF � 1 fm−1 has been calcu-
lated in the framework of correlated BCS theory at low-
est cluster order, an approximation suitable in the low-
density regime where pairing occurs in the singlet S-wave
state of two neutrons. Inputs to this theory consist of the
bare Argonne V18 nucleon-nucleon interaction and cor-
responding optimized Jastrow-type correlation functions
that modify it to create an effective pairing interaction
that takes account of the effects of strong short-range cor-
relations present in nuclear systems. The CBF gap equa-
tion has been solved for this effective pairing interaction
using the robust and accurate separation method intro-
duced in ref. [6].

A many-body approach limited to inclusion of the ef-
fects of S- and P -wave components of the AV18 interac-
tion is adequate at the low densities relevant to pairing
in the 1S0 state. The parameters of the chosen forms of
Jastrow correlation function f(r) have been determined
by minimization of the expectation value of the system
Hamiltonian with respect to the Jastrow trial function

|Ψ0〉 =
∏

i<j

f(rij)|Φ0〉, (33)

where |Φ0〉 is the ground state of the neutron system with
interactions turned off. In practice, this expected energy is
evaluated to leading order in a small parameter ξ. Roughly
speaking, this parameter is given by the ratio of the vol-
ume per particle in which f2(r) − 1 is appreciable, to the
total volume per particle. Thus, the many-body descrip-
tion adopted rests on a low-density approximation, pre-
sumed to be adequate for description of the low-density

neutron matter in the inner crust of a neutron star, where,
roughly, ξ ∼ 0.1. As a by-product, execution of this op-
timization process yields a corresponding approximation
to the ground-state energy per particle of neutron mat-
ter, i.e., its equation of state (EOS), in the relevant den-
sity regime ranging up to about one-fourth the satura-
tion density of symmetrical nuclear matter. These EOS
results have been contrasted with those generated by other
many-body methods, generally with other choices of basic
interactions. In our calculation, the contributions of the
P -wave and higher partial-wave channels become impor-
tant for the EOS, and indirectly to the 1S0 pairing gap,
only for kF � 0.8 fm−1, as must also be the case in other
studies of neutron matter in this density regime. Simi-
larly, fundamental three-nucleon forces should have only
modest impact on the EOS and 1S0 superfluid gap in this
regime [8,9,49–51].

Comparison of the results for the 1S0 gap obtained
here with the results of the numerous antecedent cal-
culations is obscured by the wide range of both many-
body methods employed and types of input interactions
assumed. One significant finding is a quenching of the gap
obtained with the effective pairing interaction generated
by the CBF approach, relative to the gap predicted by
pure BCS theory for the bare Argonne V18 interaction.
It may also be noted that the gaps ΔF obtained with
our approach are found to be rather close to those calcu-
lated by Gezerlis and Carlson [23] using quantum Monte
Carlo techniques (also for the Argonne V18 interaction),
and similar to results from a determinantal lattice QMC
approach [21].
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