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Abstract. When the isospin chemical potential exceeds the pion mass, charged pions condense in the zero-
momentum state forming a superfluid. Chiral perturbation theory provides a very powerful tool for studying
this phase. However, the formalism that is usually employed in this context does not clarify various aspects
of the condensation mechanism and makes the identification of the soft modes problematic. We re-examine
the pion condensed phase using different approaches within the chiral perturbation theory framework.
As a first step, we perform a low-density expansion of the chiral Lagrangian valid close to the onset of
the Bose-Einstein condensation. We obtain an effective theory that can be mapped to a Gross-Pitaevskii
Lagrangian in which, remarkably, all the coefficients depend on the isospin chemical potential. The low-
density expansion becomes unreliable deep in the pion condensed phase. For this reason, we develop an
alternative field expansion deriving a low-energy Lagrangian analog to that of quantum magnets. By
integrating out the “radial” fluctuations we obtain a soft Lagrangian in terms of the Nambu-Goldstone
bosons arising from the breaking of the pion number symmetry. Finally, we test the robustness of the
second-order transition between the normal and the pion condensed phase when next-to-leading-order
chiral corrections are included. We determine the range of parameters for turning the second-order phase
transition into a first-order one, finding that the currently accepted values of these corrections are unlikely
to change the order of the phase transition.

1 Introduction

Systems with a nonvanishing isospin chemical potential,
μI , are very good playgrounds for gaining insight on
quantum chromodynamics (QCD) in the nonperturbative
regime. Indeed, several complementary approaches can be
employed to study them, possibly leading to a more solid
understanding of their properties. The first results on the
properties of matter at vanishing temperature as a func-
tion of μI have been obtained by chiral perturbation the-
ory (χPT), see [1,2]. At not too large μI , lattice QCD sim-
ulations of pions (and kaons) are feasible and have been
developed in [3–8]. The Nambu-Jona Lasinio (NJL) mod-
els can be used in a wide range of the isospin chemical
potential [9–15] and random matrix models have been de-
veloped as well [16, 17]. Perturbative methods have been
used in [18] for addressing a region outside the realm of
χPT, but possibly reachable by future lattice QCD sim-
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ulations. Finite temperature effects were also considered
in several works [15,19–22]. Nonhomogeneous phases at fi-
nite isospin densities have been studied in [23–26]. Clearly,
all of these models have a drawback. For example, present
lattice simulations at μI � 2mπ have large errors and NJL
model results depend on the parameter sets employed.

The isospin chemical potential has several effects on
hadronic matter. Not only it induces a Zeeman-like mass
splitting within isomultiplets, but it can also rotate the
quark-antiquark condensate. The latter phenomenon is
called pion condensation, because it is characterized by
the breaking of the U(1) global symmetry corresponding
to the conservation of the pion number and the occurrence
of a Bose-Einstein condensate (BEC) of pions. Since con-
densed pions are charged, the system is a superfluid of
charged particles, that is, an electromagnetic supercon-
ductor [27]. Using the leading-order (LO) χPT Lagrangian
it was found that at μI = mπ a second-order phase tran-
sition between the normal and the pion condensed (πc)
phase occurs [1].

In this work we will use a realization of χPT that in-
cludes only pions [28–31], meaning that we will restrict
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ourselves to |μI | < mρ ∼ 770MeV. We also assume that
the strange quark chemical potential is so small that it
does not allow the appearance of kaons. The present anal-
ysis can be easily extended to the kaon condensed phase,
see for example the discussion in [32]. Since we only deal
with mesons, the baryonic chemical potential μB does not
appear in the Lagrangian. We shall implicitly assume that
μB is below the nucleon mass, see for example the discus-
sion in [2] and in [27].

From the χPT perspective, the possibility of compar-
ing its results with those obtained using different meth-
ods would allow for a tuning of its parameters and lead
to a better understanding of the ground state and the
low-energy properties of the system. As a remarkable ex-
ample, in the lattice QCD simulations of [5] it was found
that the ratio between the energy density and the Stefan-
Boltzmann energy density has a peak at μpeak

I � 1.27mπ.
In [32] it has been shown that this peak structure can
be accurately described using the LO χPT Lagrangian,
with an analytic result for the peak position μpeak

I =
(
√

13 − 2)1/2mπ � 1.27mπ. This peak seems to be re-
lated with the saturation of the pion condensate. More-
over, we have indications from the LO χPT Lagrangian
that the system should make a smooth crossover from the
BEC phase to a Bardeen-Cooper-Schrieffer (BCS) phase
at μ̄I �

√
3mπ, in agreement with the NJL findings of [15],

giving μ̄I ∼ 1.6–2mπ, depending on the parameter set
considered.

Although the χPT expansion is extremely powerful for
the determination of the ground state properties and of
the low-lying excited states, the physical interpretation of
the πc phase is, in our opinion, not so clear. One of the
reasons is that for μI = 0 the charged pions are charge
conjugate fields. Turning on the isospin chemical poten-
tial explicitly breaks this symmetry, therefore the identifi-
cation of the physical states is cumbersome. The situation
becomes even more complicated in the πc phase, in which
the Lagrangian takes a nontrivial expression and the low-
lying states are given by complicated combinations of the
pion fields, see for example [27].

In order to shed some light on the πc phase, we will
provide different expansions of the χPT Lagrangian, aim-
ing at a more accessible physical interpretation of known
results obtained at T = 0. In particular, we will rewrite
the Lagrangian in forms similar to those obtained in con-
densed matter systems or in the study of superfluid phe-
nomena. In the context of weakly interacting bosonic sys-
tems, various different approaches can be used, see [33] for
a review. Close to the BEC onset we derive a low-density
expansion having exactly the form of a Gross-Pitaevskii
(GP) equation. This approach is similar to the one devel-
oped in standard dilute bosonic systems [33] considering
a
√

na3 expansion, where n is the number density and
a is the s-wave scattering length. We name it the low-
density expansion because, as we will see, the tree-level
2 → 2 scattering amplitude tends to a constant nonvan-
ishing value at the BEC phase transition point. Therefore,
the actual control parameter in the πc phase is the density
of pions in the condensate. Remarkably, both the effective

chemical potential, the effective mass and the 2 → 2 scat-
tering amplitude of the GP Lagrangian obtained by the
low-density expansion depend on μI . This identification
clarifies one of the reasons why the description of the πc
phase is complicated: by changing μI , all of these quan-
tities simultaneously change. For this part of the discus-
sion we will restrict ourselves to leading-order results, but
next-to-leading-order terms in the low-density expansion
can be straightforwardly determined.

For larger values of μI , the low-density expansion
breaks down. The basic reason is that the system is no
more dilute, with a large number of pions occupying the
ground state. In order to gain insight on the properties of
the system we provide an alternative description of the πc
phase, similar to the low-energy description of quantum
magnets. We identify two different excitations: the radial,
or Higgs, mode corresponding to amplitude fluctuations of
the pion condensate, and the phase oscillation of the con-
densate corresponding to the massless Nambu-Goldstone
boson (NGB). This mode is associated with the breaking
of the global U(1) symmetry related to the pion num-
ber conservation and is also known in condensed matter
physics as the Anderson-Bogoliubov mode; it can also be
interpreted as the quasiparticle associated with the prop-
agation of pressure perturbations, thus we sometimes call
it the phonon. We find a soft Lagrangian similar to the
Heisenberg model for quantum magnets in which isospin
plays the role of spin in condensed matter. Therefore, the
pion condensed phase can be thought as an ordered mag-
netic phase with isospin aligned along the μI direction.
By integrating out the radial fluctuations we derive all
the interaction terms and the surface terms of the soft
Lagrangian. In particular, since the isospin chemical po-
tential explicitly breaks the Lorentz-boost invariance but
not the rotation invariance, the kinetic term and the in-
teraction terms can be written using an analogue model
of gravity.

Finally, we scrutinize the effect of the next-to-leading-
order (NLO) chiral corrections in the static Lagrangian.
We examine, for the first time, the effect of these correc-
tions on the phase transition between the normal and the
pion condensed phases. After including these corrections,
the phase transition happens at values of μI of the or-
der of the NLO pion mass. We also determine the range
of the NLO low-energy constants necessary for changing
the order of the transition between the normal and the πc
phases.

The present paper is organized as follows. In sect. 2
we summarize some of the most interesting properties of
the πc phase at vanishing temperature obtained in the
literature. In sect. 3 we present a low-energy effective the-
ory valid close to the normal phase-BEC phase transition.
In sect. 4 we provide an alternative description of the πc
phase valid within the χPT validity range. In sect. 5 we
consider the effect of the NLO corrections in the static
Lagrangian. We draw our conclusions in sect. 6. In ap-
pendix A we speculate on the existence of self-bound pion
stars. In appendix B we clarify some aspects of the alter-
native procedure developed in sect. 4.
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2 Brief summary of the standard χPT results
on the pion condensed phase

The O(p2) χPT Lorentz-invariant Lagrangian describing
the interaction of pions with an external vector field, vμ,
can be written as follows [2, 28,31]:

L2 =
f2

π

4
Tr(DνΣDνΣ†) +

f2
πm2

π

4
Tr(Σ + Σ†), (1)

where
DμΣ = ∂μΣ − i

2
[vμ, Σ] (2)

is the covariant derivative and Σ is an SU(2) matrix col-
lecting the pion fields. Any explicit expression for Σ will
correspond to a given parameterization of the pion fields,
although results for physical observables are independent
of the parameterization of Σ used [34–36]. We will ex-
ploit this freedom to develop different expressions of the
chiral Lagrangian. In the standard description, see for ex-
ample [2], the pion degrees of freedom are introduced by
considering

Σ = uΣ̄u with u = eiσ·ϕ/2, (3)

where ϕi (i = 1, 2, 3) are real scalar fields, σi are the Pauli
matrices and

Σ̄ = eiα·σ = cos α + in · σ sinα, (4)

is the most general SU(2) vacuum, with α and n vari-
ational parameters to be determined by maximizing the
static Lagrangian. The low-energy constants (LECs) fπ

and mπ in eq. (1) correspond to the pion decay constant
and to the pion mass, respectively. These LECs can be
related to microscopic quantities of the underlying quark
model, see for example [28–31]. We assume that all three
pions have exactly the same mass at vanishing chemical
potential. The isospin chemical potential can be intro-
duced as the time component of the external vector field,
that is

vμ = μIδμ0σ3, (5)

and it is considered as a tunable parameter in the grand-
canonical approach. Clearly, it breaks Lorentz-boost in-
variance and isospin symmetry, because it indicates a priv-
ileged reference frame as well as a direction in isospin
space.

In the normal phase α = 0, meaning that Σ̄ = I
and the only effect of introducing μI is a Zeeman-like en-
ergy splitting proportional to the isospin charge. Thus, the
charged pion fields corresponding to

π± =
ϕ1 ∓ iϕ2√

2
, (6)

have effective masses

mπ± = mπ ∓ μI , (7)

and since the neutral pion field π0 = ϕ3 has vanishing
isospin, it follows that mπ0 = mπ. In the following we

will assume for definiteness μI ≥ 0 and we will use the
adimensional quantity

γ =
μI

mπ
, (8)

as control parameter to characterize the strength of the
isospin chemical potential.

In principle, a system of pions decays into leptons.
Therefore, in order to perform a study like ours, one typi-
cally neglects electroweak interactions (usually by consid-
ering time scales much shorter than their characteristic
one). However, let us emphasize that for μI > mπ − me,
where me is the electron mass, the effective mπ+ is so small
that it cannot decay into leptons [27]. The corresponding
pion number, Nπ+ , is thus conserved even when includ-
ing electroweak interactions. However, at γ = 1 the π+

becomes massless and the U(1) symmetry corresponding
to Nπ+ conservation is spontaneously broken: the system
becomes a superfluid. Since the condensed bosons are elec-
trically charged, the resulting phase is actually a super-
conductor [27]. This symmetry breaking mechanism can
be described by maximizing the O(p2) ground state La-
grangian. For γ > 1, the energetically favored phase is
characterized by cos α = 1/γ2, meaning that the large
isospin chemical potential has changed the property of the
vacuum.

The identification of the ground state having α �= 0
with a superfluid is based on several facts that we briefly
review. It is possible to show that the chiral condensate is
rotated to a pion condensate, more specifically [2]

〈ūu〉 = 〈d̄d〉 ∝ cos α, (9)
〈d̄γ5u + h.c.〉 ∝ sin α, (10)

where u and d are up and down quarks, respectively (color
and spinorial indices have been suppressed). A nonvan-
ishing pion condensate implies that the vacuum does not
annihilate the isospin charge. The condensed pions con-
tribute to the total pressure and density of the system.
Since we are considering vanishing temperatures, these
contributions are due to the occupation of the zero energy
state by a macroscopic number of particles. The normal-
ized pressure (obtained subtracting the vacuum pressure)
and the number density are, respectively, given by [1,2]

P =
f2

πm2
π

2
γ2

(
1 − 1

γ2

)2

, nI = f2
πmπγ

(
1 − 1

γ4

)
,

(11)
leading to the O(p2) equation of state [32]

ε(P ) = −P + 2
√

P (2f2
πm2

π + P ). (12)

The isospin number density, which is equivalent to the
electric charge one, exactly corresponds to the number
density of particles in the ground state.

Regarding the excitations, it can be shown that there
exists a flat direction of the potential, which is a typical
feature of the BEC phase because it is associated with the
existence of NGBs. Indeed, by a variational procedure it
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is possible to show that the unit vector n in eq. (4) has to
be orthogonal to the direction taken by the vector field vμ

in isospin space [27]. This residual O(2) isospin symme-
try corresponds to the flat direction of the potential. The
low-energy excitations are given by two orthogonal com-
binations of the pion fields; the corresponding dispersion
laws can be found in [27]. The dispersion law of the NGB
mode is given by

E =
mπ√
2γ

√√√√3 + γ4 + 2p2
γ2

m2
π

−
√

(3 + γ4)2 + 16p2
γ2

m2
π

,

(13)
which can be expanded in two different regimes:

E =
p2

2mπ
, for γ = 1, (14)

E = csp + O(p)3, for γ > 1, (15)

where

cs =

√
γ4 − 1
γ4 + 3

(16)

is the sound speed. The above results indicate that this is
indeed a gapless mode. However, at the phase transition
this mode seems to interpolate between two different ex-
citations. Indeed, for γ = 1 it has a quadratic dispersion
law and thus describes the π+ that becomes massless at
the phase transition point. For γ > 1, it describes a mode
propagating with the speed of sound (which can as well be
obtained from the equation of state, eq. (12)) and should
therefore correspond to the phonon. Technically, this in-
terpolation is possible because the sound speed vanishes
at the phase transition point.

Although the above discussion is formally correct, it
does not actually illustrate the symmetry breaking mech-
anism in detail. As we will see, the procedure for obtaining
the ground state includes the nonperturbative interactions
of the O(p2) Lagrangian and this is one of the reasons
why the result looks cumbersome. Moreover, the soft La-
grangian for the NGB is difficult to identify, because the
massless mode is a combination of the two charged ones.
Finally, in the standard description of the broken phase
there is still a massive mode, which should be integrated
out in order to obtain the soft Lagrangian. In the following
section we will discuss the symmetry breaking mechanism
using a low-energy expansion, valid in the normal phase
and close to the BEC phase transition, which has a more
intuitive interpretation. In sect. 4 we present a method for
obtaining the soft Lagrangian for any γ within the χPT
range.

3 Low-energy description of the normal
phase-BEC phase transition

The U(1) symmetry breaking corresponding to the viola-
tion of the pion number conservation can be described by
considering the standard expression of the chiral fields

Σ = eiσ·ϕ, (17)

but assuming a nonzero vacuum expectation value (vev)
of one of the charged fields. Since the π0 will not play any
role, we restrict our analysis to the charged fields, meaning
that we will only consider the ϕ1 and ϕ2 components. By
expanding the O(p2) Lagrangian in eq. (1) including terms
up to ϕ4, we find

L = f2
πm2

π+if2
πμI(π−∂0π+−π+∂0π−)+f2

π (∂νπ+∂νπ−)

−f2
π(m2

π − μ2
I)π+π− +

f2
π

6
(m2

π − 4μ2
I)(π+π−)2 + . . . ,

(18)

where the pion fields have the same expression reported in
eq. (6) and we have neglected derivative terms O(ϕ3) and
higher. The presence of terms coupling π+ and π− fields
makes the study of the Lagrangian complicated. However,
close to the phase transition it is possible to consider ex-
citations at arbitrarily small energies because a massless
mode exists, see also eq. (32) below. Therefore, in this re-
gion, we can restrict the analysis to the terms with the
lowest derivative power, leading to a further simplified
soft-pion Lagrangian

L = f2
πm2

π + if2
πμI(π−∂0π+−π+∂0π−)−f2

π (∇π+ · ∇π−)

−f2
π(m2

π − μ2
I)π+π− +

f2
π

6
(m2

π − 4μ2
I)(π+π−)2. (19)

From this, one obtains the following equations of motion
for the π± fields:

±2if2
πμI∂0π∓ = −f2

π∇2π∓ + f2
π(m2

π − μ2
I)π∓

−1
3
f2

π(m2
π − 4μ2

I)(π+π−)π∓, (20)

showing that π+ corresponds to the low-energy particle
state and π− to the low-energy antiparticle one. As al-
ready noted in [37], there is only one independent degree
of freedom, because in the low-energy limit π+ and π− are
conjugate fields. For any μI > 0 we can define

ψ =
√

2f2
πμI π+, (21)

thus eq. (19) takes the form of a Gross-Pitaevskii (GP)
Lagrangian

LGP = f2
πm2

π + iψ∗∂0ψ + μeffψ∗ψ − g

2
|ψ∗ψ|2 + ψ∗ ∇2

2M
ψ,

(22)
with

μeff =
μ2

I − m2
π

2μI
, g =

4μ2
I − m2

π

12f2
πμ2

I

, M = μI , (23)

the relevant GP coefficients. It is quite striking to see the
very nontrivial effect of the isospin chemical potential. Not
only it changes the effective chemical potential, but it also
changes the boson-boson coupling and the coefficient of
the Laplacian operator. The effective coupling constant is
related to the π+π+ scattering length, a, by the standard
GP relation a ∝ g mπ. However, the scattering amplitude
of different pions cannot be simply determined in this way
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because isospin is explicitly broken in the Lagrangian, see
eqs. (1) and (5). In particular, no simple relation exists
between the scattering amplitudes in the various isospin
channels.

Since the mode is bosonic, the effective chemical po-
tential in the unbroken phase must be nonpositive, and
indeed this happens for μI ≤ mπ. Since we are working
at T = 0, the region μI < mπ corresponds to the vacuum
with no pions, whereas for μI = mπ pions appear and the
effective chemical potential vanishes. Whether this condi-
tion corresponds to the onset of the BEC regime depends
on the sign of the effective interaction. For attractive in-
teractions the system should collapse, while for repulsive
ones it becomes superfluid. From our analysis, eq. (23) in-
dicates that the interaction coupling becomes positive for
μI > mπ/2, thus the interaction between the ψ fields is
repulsive and the system is expected to turn into a BEC
when the effective chemical potential vanishes. It is quite
remarkable that well before reaching the transition point,
the interaction turns from attractive to repulsive. It might
be of interest to study within this GP model what happens
at a small nonvanishing temperature for μI < mπ/2, cor-
responding to a system in which few thermal excitations
interact with a negative scattering length. In this case the
GP Lagrangian in eq. (22) is still valid because the ne-
glected derivative interactions are thermally suppressed.
This approximation is expected to break down only close
to μI = mπ/2, when g vanishes. We postpone this study
to future work.

From eq. (22), we have the potential

V (n) = μeff n − g

2
n2, (24)

where n = ψ∗ψ. The ground state number density is ob-
tained from ∂V/∂n = 0, leading to

n = 6f2
πmπγ

γ2 − 1
4γ2 − 1

, (25)

where γ has been defined in eq. (8). Close to the BEC
phase transition we can write

γ = 1 + ε (26)

with ε � 1, and we obtain the approximate expression

n = 4εf2
πmπ. (27)

The adimensional parameter ε in eq. (26) corresponds in
cold atoms experiments to the quantity x = na3, with a
being the s-wave scattering length of the bosonic atoms
or molecules involved in the condensate [38]. In particu-
lar, the condition x � 1 assures the validity of the GP
description. Since the neglected terms in eq. (18) are of
order (ψ∗ψ)3 ∝ ε3, it follows that the obtained approx-
imation is only valid at the leading order in ε. Indeed,
the ground state number density in the broken phase is
given by eq. (11), which agrees with eq. (27) at the leading
order in ε. This expansion is therefore a low-density ex-
pansion, and is expected to breakdown for large n, or more

precisely, for ε of order unity. Physically, the low-density
expansion makes sense because close to the πc phase tran-
sition the number density of particles is arbitrarily small,
thus interactions involving higher-order terms are sup-
pressed.

Close to the phase transition point, the normalized
pressure is given by

P =
g

2
n2 = 2ε2f2

πm2
π, (28)

which agrees with the result reported in eq. (11) at the
leading order in ε. We thus conclude that close to the
normal phase-BEC phase transition, the system can be
approximated by the low-density expansion of the chiral
Lagrangian that can be mapped to the GP Lagrangian of
eq. (22) having

μeff = ε, g =
1

4f2
π

(
1 +

3
2
ε

)
, M = mπ(1 + ε),

(29)
and the resulting pressure and ground state number den-
sity are, respectively,

P = 2ε2f2
πm2

π, n = 4εf2
πmπ. (30)

Regarding the excitations, the equation of motion
takes the form of a GP equation

i∂0ψ = − ∇2

2μI
ψ − μeff ψ + g|ψ|2ψ, (31)

thus, neglecting interactions, the dispersion law of the ψ
mode is given by

ε(p) =
p2

2μI
− μeff , (32)

which already includes the effect of the effective chemical
potential. Thus, the mode is gapless with a quadratic dis-
persion law at γ = 1, matching the result obtained in the
previous section, see eq. (14), if one expands for small ε.
Within the GP framework it is also possible to obtain and
to better understand the linear dispersion mode given in
eq. (15). Since in the broken phase the interaction is re-
pulsive, the low-energy excitation is a Bogolyubov mode,
or NGB, with dispersion law

εNGB(p) = p

√
ng

μI
= p

√
ε, (33)

which agrees with the result reported in eq. (16) consid-
ering the expansion in eq. (26).

The two different limits of the dispersion law reported
in eqs. (14) and (15), do actually correspond to different
modes: the first one is the quasiparticle mode becoming
massless at the phase transition point, while the second
one is the long-wavelength fluctuations corresponding to
longitudinal compression mode, which exists because the
boson-boson interaction is repulsive.

The second-order phase transition can therefore be de-
scribed by the standard GP Lagrangian for sufficiently
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small values of ε. It is maybe of interest the fact that at
the leading order the effective coupling depends only on
1/f2

π . Moreover, the strength of the interaction increases
with μI . This is the expected behavior for a system evolv-
ing towards a BCS phase. Unfortunately, the BEC-BCS
crossover is expected to happen at γ �

√
3, see [32], and it

is therefore outside the range of the low-density expansion.

4 Alternative description of the pion
condensed phase

In the previous section we have clarified that the pion
condensation mechanism can be better understood by a
mapping of the chiral Lagrangian into a GP Lagrangian,
which however should include an infinite number of terms
for μI much larger than mπ. Therefore, we should find an
alternative way for treating the system in that regime. In
this section we present an approach to the pion condensed
phase aiming at a soft Lagrangian density valid for mo-
menta below μI . We expand our Lagrangian close to the
potential minimum to identify the flat direction of the po-
tential. The important aspect is that in the broken phase,
where γ > 1, there still exists a massive degree of freedom
corresponding to the radial fluctuation of the condensate,
which is the so-called Higgs mode. In order to determine
the correct expression of the soft Lagrangian we have to
integrate out this mode. Clearly, one has first to identify
it.

Let us use the following field definition:

Σ = eiσ·ϕ = cos ρ + iσ · ϕ̂ sin ρ, (34)

where ϕ = ρϕ̂, thus ρ describes the radial field, and ϕ̂
is a unit vector field, such that ϕ̂ · ϕ̂ = 1. This field de-
composition can be thought as obtained from eq. (4) by
promoting α and n to dynamical fields. In the following
we will neglect the ϕ̂3 field, corresponding to the π0 di-
rection. We will comment on the π0 field in appendix B.
Since we are restricting our analysis to the charged fields,
n is a unit vector in a 2-dimensional space and the field
ϕ̂ corresponds to only one independent degree of freedom
describing the fluctuations of this unit vector. For later
convenience we define

ϕ̂1 =
√

1 − ϕ̂2
2, (35)

meaning that we will treat ϕ̂2 as the independent degree
of freedom. As we will see, this fluctuation can be iden-
tified with the NGB of the broken phase. We notice that
the present procedure resembles closely the one exploited
to derive low-energy effective models of (1 + 1)d quan-
tum magnets, such as the Heisenberg-type ones [39–43].
The reason behind this analogy is that although pions are
pseudoscalar particles, they have isospin I = 1. In partic-
ular, the charged pions have I3 = ±1 and are therefore
analogues to magnets in isospin space. Thus, the system
can be thought as an isospin quantum magnet and the
broken phase corresponds to an ordered magnetic phase,

with quantum isospins aligned along one particular direc-
tion in isospin space.

Upon substituting eq. (34) in eq. (1), we obtain the
O(p2) Lagrangian

L =
f2

π

2
(
∂μρ∂μρ + sin2 ρ ∂μϕ̂i∂μϕ̂i

− 2mπγ sin2 ρ ε3ikϕ̂i∂0ϕ̂k

)
− V (ρ), (36)

where

V (ρ) = −f2
πm2

π

(
cos ρ +

γ2

2
sin2 ρ

)
, (37)

is the potential. Remarkably, this expression of the O(p2)
Lagrangian is not obtained by making any expansion in
the fields. The potential does not depend on the field ϕ̂,
showing that, at least at this order, the field ϕ̂ does not
have nonderivative couplings, as appropriate for NGBs.
Clearly, this result is due to the residual O(2) symmetry
corresponding to the flat direction of the potential.

The stationary point of the potential can be obtained
by solving

∂V

∂ρ

∣∣∣∣
ρ̄

= 0 → ρ̄ = arccos
1
γ2

, (38)

with ρ̄ corresponding to a minimum of V for γ > 1. Upon
substituting this expression in eq. (37) one obtains the
same expression of the pressure reported in eq. (11). On
the other hand, for γ < 1 the minimum of the potential
is in ρ = 0. Therefore, the ρ field has the typical behavior
of the radial mode, which acquires a nontrivial vev in the
broken phase. Instead, the field ϕ̂2 corresponds to a mass-
less fluctuation, that is to the NGB, only in the broken
phase when sin ρ̄ �= 0; see appendix B. To further clarify
how the massive and massless modes appear we expand
the Lagrangian in eq. (36) close to the stationary point.

To tackle the properties of the NGB boson, we first
neglect the radial fluctuations. In the broken phase the
Lagrangian for the ϕ̂ field turns out to be

Lϕ̂ =
f2

π sin2 ρ̄

2
(∂μϕ̂i∂μϕ̂i − 2mπγε3ikϕ̂i∂0ϕ̂k), (39)

and to make contact with the standard expression of the
NGB Lagrangian we can make a further variable change,

θ = arctan
(

ϕ̂2

ϕ̂1

)
= ϕ̂2 +

2ϕ̂3
2

3
+ O(ϕ̂5

2), (40)

where in the last equality we have used eq. (35) and conve-
niently assumed that the condensate is oriented along the
1-direction in isospin space, thus ϕ̂2 is a small fluctuation.
The soft Lagrangian now reads

L =
f2

π sin2 ρ̄

2
∂μθ∂μθ, (41)

where we have neglected a total derivative. The field θ
is the genuine NGB, or phonon, or Anderson-Bogoliubov
mode, because it is the phase associated with the rotation



Eur. Phys. J. A (2017) 53: 35 Page 7 of 12

of the condensate. Note that the propagation velocity of
this mode is not equal to the sound speed cs reported in
eq. (16), but it is equal to 1. This result depends on the
fact that we have completely neglected the interaction of
the phonon with the background, or more precisely, with
the radial fluctuations.

For considering the radial fluctuation in the broken
phase we define ρ = ρ̄ + χ, finding that, for γ ≥ 1,

V (χ) =
f2

πm2
π

γ2

(
−1 + γ4

2
+

γ4 − 1
2

χ2

)
+ O(χ3), (42)

which shows that the Higgs mode has a non-negative mass
that vanishes at the phase transition point, as appropriate
for second-order phase transitions.

The Lagrangian that includes both the quadratic fluc-
tuations can be obtained from eqs. (36) and (42), leading
to

L = −1
2
χD−1χ − Jχ +

f2
π sin2 ρ̄

2
∂μϕ̂∂μϕ̂ + Ls, (43)

where

D−1 = f2
π

(
� + m2

π

γ4 − 1
γ2

)
, (44)

J = f2
πμI sin(2ρ̄)ε3ijϕ̂i∂0ϕ̂j , (45)

and
Ls = −f2

πμI sin2(ρ̄)(ϕ̂1∂0ϕ̂2 − ϕ̂2∂0ϕ̂1), (46)

corresponds to a surface term. Indeed, using eq. (35) this
term can be written as a total derivative

Ls = −f2
πμI sin2 ρ̄ ∂0 arcsin(ϕ̂2). (47)

Integrating out the radial fluctuations we obtain the O(p2)
effective Lagrangian describing the propagation and the
interaction terms

Leff = f2
π sin2 ρ̄

(
1
2
∂μϕ̂i∂

μϕ̂i

+
2

γ4 − 1
((ϕ̂1∂0ϕ̂2 − ϕ̂2∂0ϕ̂1)2)

)
, (48)

which we can expand using eq. (35) to obtain

Leff =
f2

π

2
γ4 + 3

γ4

∞∑
n=0

ϕ̂2n
2

(
(∂0ϕ̂2)2 − c2

s(∇ϕ̂2)2
)
, (49)

with the speed of sound given by the same expression re-
ported in eq. (16). It is possible to write the effective La-
grangian in the slightly more compact and suggestive way

Leff =
f2

π

2
γ4 + 3

γ4

∞∑
n=0

ϕ̂2n
2 gμν∂μϕ̂2∂νϕ̂2, (50)

where gμν = diag(1,−c2
s,−c2

s,−c2
s) is the so-called acous-

tic metric, see for example the discussion in [44] and the
review [45]. A remarkable aspect is that the above La-
grangian not only includes the kinetic term but also all the

O(p2) interaction terms. It is strictly valid for momenta
much below μI , see appendix B, and the appearance of
the acoustic metric in eq. (50) is due to the fact that the
ϕ̂2 field is the analogous of a sound mode.

Using eq. (40), we obtain the Lagrangian for the θ field

L =
f2

π

2
γ4 + 3

γ4
gμν∂μθ∂νθ

(
1 − 3θ2 + O(θ4)

)
, (51)

showing that now this field has the correct propagation ve-
locity. Higher-order terms can be obtained by considering
higher-order terms in eq. (40).

The proposed procedure, relying on the integration of
the radial fluctuations, allows us to easily evaluate the ki-
netic term and the interaction terms of the ϕ̂2 mode, with
the additional benefit of having a Lorentz covariant La-
grangian with the effective metric gμν . In principle, in the
broken phase it is possible to diagonalize the Lagrangian,
as done for example in [2,27], but this procedure is unnec-
essarily complicated if one is only interested in momenta
below μI .

5 NLO corrections

We now explore a different issue. An important result ob-
tained using the LO chiral Lagrangian is that there is a
second-order phase transition between the normal phase
and the πc phase. This means, among other things, that
the chiral condensate is continuously rotated into the pion
one, see eqs. (9) and (10). However, the fact that the ro-
tation is continuous does not seem to rely on any physical
reason, meaning that an abrupt tilting in some direction
in isospin space by an increasing μI would have been a
plausible a priori possibility. Consider, for example, that
the phase transition between the kaon condensed and the
pion condensed phases triggered by an increasing μI is of
the first order [2].

To study the robustness of the second-order transition
we include NLO χPT corrections. Following [31], for the
three-flavor case they are given by

L4 = L1

{
Tr[DμΣ(DμΣ)†]

}2

+L2 Tr
[
DμΣ(DνΣ)†

]
Tr

[
DμΣ(DνΣ)†

]
+L3 Tr

[
DμΣ(DμΣ)†DνΣ(DνΣ)†

]
+L4 Tr

[
DμΣ(DμΣ)†

]
Tr

(
χΣ† + χ†Σ

)
+L5 Tr

[
DμΣ(DμΣ)†

(
χΣ† + χ†Σ

)]
+L6

[
Tr

(
χΣ† + χ†Σ

)]2
+ L7

[
Tr

(
χΣ† − χ†Σ

)]2
+L8 Tr

(
Σχ†Σχ† + χΣ†χΣ†) + H2 Tr(χχ†), (52)

where Li, with i = 1, . . . , 8, and H2 are the relevant LECs
encoding properties of the underlying quark theory. In
principle one can use these NLO corrections for studying
the robustness of any phase transition of the SU(3) phase
diagram of [4]. Nevertheless, in the present paper we focus
on the phase transition between the normal phase and the
πc condensed phase. In this case χ = m2

π12×2 and Σ is
an SU(2) matrix. Within this restriction, our L4 reduces
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to the SU(2) expression originally derived in [28], and the
SU(3) LECs can be easily mapped to the SU(2) LECs
(see for example [46]).

Upon substituting eq. (4) in L4 we obtain the following
expression for the static NLO Lagrangian:

L̄NLO
stat = f2

πm2
π

(
cos α +

γ2

2
sin2 α + 2aγ4 sin4 α

+4bγ2 sin2 α cos α + 8c cos2 α + 2d

)
, (53)

where

a =
m2

π

f2
π

(2L1 + 2L2 + L3), b =
m2

π

f2
π

(2L4 + L5),

c =
m2

π

f2
π

(2L6 + L8), d =
m2

π

f2
π

(H2 − 2L8), (54)

are the relevant combinations of LECs and where γ is
given in eq. (8). Then, by taking α = 0 we obtain

P0 = f2
πm2

π (1 + 8c + 2d) , (55)

the NLO expression of the pressure in the normal phase.
At the same order we obtain in the normal phase

m2
π,4 = m2

π(1 + 16c − 8b), (56)

f2
π,4 = f2

π(1 + 8b), (57)

corresponding to the standard O(p4) values of the pion
mass and of the pion decay constant, respectively, see for
example [46]. We remark that P0 �= m2

π,4f
2
π,4, meaning

that the pressure renormalization must be carefully taken
into account. If one restricts the analysis to the normal
phase, this renormalization is immaterial, because we can
subtract an arbitrary constant. However, it is important
to take into account the nontrivial renormalization of the
pressure P = Pπc − P0, obtained by subtracting the vac-
uum pressure to the one of the πc phase. In particular,
the NLO corrections to the pressure of the broken phase
depend on a, b and c in a nontrivial way and they can
change the value of γ for which the transition to the BEC
phase takes place. We refer to γc as the value of the γ
parameter at the phase transition point.

To make the discussion as simple as possible, it is
convenient to subtract the normal phase pressure from
eq. (53), obtaining the normalized NLO static Lagrangian

LNLO
stat = f2

πm2
π(1 − z)

(
γ2

2
(1 + z) + 2aγ4(1 − z2)(1 + z)

−1 + 4b γ2z(1 + z) − 8c(1 + z)
)

, (58)

where z = cos α. The stationary condition for the La-
grangian is obtained by solving the cubic equation

γ2z−1+8aγ4(1− z2)z +4bγ2(3z2 −1)−16cz = 0, (59)

considering the appropriate value of γ. The first-order
phase transition is obtained when two roots are equal and

satisfy 0 ≤ z ≤ 1, corresponding to

8aγ4
c − 12b γ2

c + 8c >
γ2

c

2
. (60)

Before discussing the phase transition in detail, let us no-
tice that for a proper description of the critical value of the
isospin chemical potential, one should consider the NLO
corrections to the pion mass as well, meaning that the
order parameter should be rescaled as follows:

γ → γR ≡ γ
mπ

mπ,4
, (61)

with the O(p4) rescaled pion mass defined in eq. (56).
We note at this point that in spite of recent progress

with the help of lattice QCD (see [47, 48] for recent re-
views), some of the LECs are still poorly known. Further-
more, the effects of chiral logarithms, which carry a scale
dependence, are often non-negligible [46, 47]. Using the
values from one of the fits reported in [47] for the LECs
evaluated at the scale of the ρ mass, we obtain the follow-
ing values for our three relevant combinations:

a � −0.9 × 10−3,

b � −0.9 × 10−3,

c � +1.7 × 10−3, (62)

where we have used mπ = 140MeV and fπ = 92MeV.
Using these values, we find that the NLO corrections

shift the second-order transition to γc � 0.99. However,
when rescaling the control parameter we obtain γR

c � 1.
Let us now explore what happens for different values

of the NLO parameters. Since b enters with a minus sign
in eq. (60) and to simplify the analysis, we limit ourselves
to a particular parameter subspace characterized by

t = a = −b = c. (63)

Clearly, a more refined analysis can be done, however, es-
pecially considering the uncertainty on the values of the
LECs, it seems to us more appropriate to conduct a qual-
itative study in terms of one single variable.

In fig. 1 we report the value of γc (solid black line) as a
function of t. The vertical dotted line corresponds to the
onset of the first-order phase transition: the second-order
phase transition turns into a first-order phase transition
for t � 0.017. We note that depending on the sign of t,
γc can be larger or smaller than 1, however γR

c � 1 for
any considered value of t. This suggests that the phase
transition happens at μI = mπ,4.

In order to better understand the effect of the NLO
corrections on the order of the phase transition, we report
in fig. 2 the plot of the static Lagrangian for t = 0.018, top
panel, and for t = 0.02, bottom panel. We consider three
values of γ: below the phase transition point (dashed line),
at the phase transition point (solid line) and in the pion
condensed phase (dotted line). Close to the phase transi-
tion the vacuum and the LO pressures balance. Therefore
the quantity reported in fig. 2 basically corresponds to
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Fig. 1. Effect of the NLO χPT terms on the critical value
for the phase transition between the normal phase and the πc
phase. The NLO effects are parametrized by t = a = −b = c,
where a, b and c are the combinations of LECs given in eq. (54).
The solid black line corresponds to the critical value of γ =
μI/mπ. The dotted vertical red line indicates the onset of the
first-order phase transition.

Fig. 2. Lagrangian density, given in eq. (58), as a function of
the variational parameter z = cos α considering two different
values of t, see eq. (63). The different lines correspond to val-
ues of γ close to the phase transition between the normal phase
and the pion condensed phase. To be more specific, the dot-
ted (red) lines correspond to γ = γc + 0.001, the solid (black)
lines correspond to γ = γc and the dashed (blue) lines have
been obtained with γ = γc − 0.001. The maximum of LNLO

stat

corresponds to the NLO pressure of the system. Top panel: re-
sults obtained taking t = 0.018, the first-order phase transition
leads to a change Δz � 0.05 of the tilting angle of the pion con-
densate. Bottom panel: results obtained taking t = 0.02, the
first-order phase transition corresponds to a change Δz � 0.15
of the pion condensate.

the NLO contribution, generating a small additional struc-
ture inducing a weak first-order transition. The pressure of
the system corresponds to the maximum of the static La-
grangian and is obviously a continuous function of γ. How-
ever, the tilting angle α of the ground state, see eq. (4), is
discontinuous. This is accompanied by a discontinuity in
the number density with a jump ΔnI ∝

√
Δz. Present lat-

tice QCD simulations, see [5], use mπ = 390MeV, but do
not seem to show any jump in nI at the phase transition
point. It might be of interest to implement lattice QCD
simulations with a larger value of the pion mass. In this
case the physical value of the phase transition point does
not change much, however the phase transition might turn
to be of the first-order type, because a larger pion mass
implies a larger t.

6 Conclusions

The properties of matter at nonvanishing isospin chem-
ical potential are quite interesting and in some aspects
highly nontrivial. We have shown that the formation of
the pion condensate can be described by a standard GP
Lagrangian, in which all the coefficients depend on μI .
This is one of the reasons why the description of the con-
densation mechanism looks complicated. The GP approx-
imation breaks down deep in the pion condensed phase,
because it corresponds to a low-density approximation and
the number density of pions in the ground state grows with
μI . For this reason we have obtained a different expansion
of the χPT Lagrangian, in which the identification of the
massless NGB is more direct than in the standard ap-
proach. This new approach leads to a Lagrangian similar
to the one used for describing quantum magnets, with the
isospin playing the role of the spin in condensed matter
systems. The broken phase can be identified with an or-
dered magnetic phase in which the isospins are aligned
along the direction of the isospin chemical potential. In-
deed, the isospin chemical potential enters in the chiral
Lagrangian as an external source, pretty much as the mag-
netic field enters in the Lagrangian of a quantum magnet.
A positive chemical potential leads to the alignment of π+

mesons, that corresponds to a 〈π+〉 condensate. On the
other hand, a negative chemical potential aligns the π−
mesons, corresponding to a 〈π−〉 condensate. We have ob-
tained all the interaction and surface terms of the soft La-
grangian by integrating out the radial fluctuations around
the vev. The kinetic and interaction terms can be written
in the compact form reported in eq. (50), in which we
made use of the acoustic metric emerging from the inter-
action of the NGB with the vacuum fluctuations.

Finally, we have tested the order of the phase transi-
tion between the normal phase and the pion condensed
phase including NLO chiral corrections. For standard val-
ues of the LECs the transition remains of the second
order, but an intriguing possibility is that lattice QCD
simulations with a very large pion mass might observe a
first-order phase transition. Moreover, more refined lat-
tice QCD simulations could be used to determine the
combinations of the LECs that appear in the NLO chi-
ral Lagrangian.
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Appendix A. Self-bound pion stars

Since in the πc phase one of the charged pions is sta-
ble [27], we speculate on the possible existence of stars
consisting of condensed pions. We will assume a weak first-
order phase transition between the normal phase and the
πc phase, meaning that we focus on the region t � 0.017,
see sect. 5, probably corresponding to unphysical values
for the LECs.

This system, if sufficiently cold, will be self-bound and
it would not spread as a gas even if it is so small to be grav-
itationally unbound. The resulting stellar object would be
a particular type of Bose star. Bose stars are stellar objects
consisting of a large number of bosons in which the boson
wave function varies inside the star, see for example [49].
For non-interacting bosons with mass m, the maximum
mass of a Bose star has been determined in [50] and turns
out to be Mmax = 0.633/(Gm), where G is the gravita-
tional constant. For self-interacting bosons, the maximum
mass can be larger, as shown in [51] for axion stars. Cer-
tainly, Bose stars can only exist if a stable boson exists.

Let us assume that matter in the πc phase is produced
by some astrophysical event. Since it is self-bound it will
not evaporate and can possibly accrete matter capturing
positrons, converting them in π+ and ejecting neutrinos.
In other words, a small number of pions produced with a
certain asymmetric mechanism in such a way that there
are, say, much more π+ than π− (meaning that μI > 0)
may become larger and larger if the π+ condense. Indeed,
if this chunk of matter is sufficiently cold, the π+ will
form a condensate and will not decay in leptons [27]. On
the other hand the π− do not condense and will quickly
decay, mainly in muons and corresponding neutrinos [27].
However, we expect that the system does not eject elec-
trically charged particles because the electrons produced
by the muon decay will be bound by the electromagnetic
force.

The neutrality condition for this peculiar system reads

nI = ne, (A.1)

where ne is the electron number density. Although the
isospin chemical potential and the electron chemical po-
tential are not equal, a relation between them can be ob-
tained once the number densities are expressed in terms
of the corresponding chemical potentials. At T = 0 the
process e− + π+ → νe cannot happen because all pions
are in the condensate, corresponding to a state of zero
momentum. However, at T > 0, part of the π+ are in
excited states and can be annihilated by electrons in neu-
trinos. These neutrinos will certainly escape leading to a
cooling of the stellar object and a related reduction of the
excited π+. For this reason we can conveniently consider
the T = 0 case, meaning that no quasiparticle thermal
excitation is present.

If the system is sufficiently big it can certainly gravita-
tionally capture neutral particles, like neutrons or atoms,
but in the following we will assume the simplified scenario
that it only consists of e− and condensed π+.

Solving the Tolman-Oppenheimer-Volkoff equation,
see for example [52], one can determine the mass-radius

sequence for a system of pions in the πc phase neutral-
ized by a gas of electrons. Since matter is self-bound we
expect a mass-radius trajectory similar to that of strange-
stars [53], see for example [54]. The maximum mass of
these stellar objects depends on the various parameters of
the pion pressure. As a preliminary result we have found
that using mπ = 140MeV, fπ = 92MeV and t = 0.02,
stellar masses up to few times the solar mass with radii of
tens of kilometers can be formed. Further analysis is on-
going and we expect to report on this topic in the future.

Appendix B. More about the alternative
description of the πc phase

Let us clarify some aspects of the procedures presented in
sect. 4 that might be of some concern.

First of all, in the expansion of the potential in eq. (42)
we have neglected terms of order χ3 and χ2∂0ϕ̂2. To make
sure that our approach is correct, we derive from eq. (43)
the equation of motion of the χ field,

(
� + m2

π

γ4 − 1
γ2

)
χ = μI sin(2ρ̄)(ϕ̂1∂0ϕ̂2 − ϕ̂2∂0ϕ̂1),

(B.1)
that we can rewrite using eq. (35) as

(
� + m2

π

γ4 − 1
γ2

)
χ = μI sin(2ρ̄)∂0 arcsin(ϕ̂2), (B.2)

meaning that for any γ > 1 and at the leading derivative
order, χ ∝ ∂0ϕ̂2. Therefore both χ3 and χ2∂0ϕ̂2 terms
are O(p3) and should not be included in the O(p2) La-
grangian.

The second aspect that deserves some comment is re-
lated to the fate of the π0 field. In sect. 4 we have neglected
this mode, but it can be straightforwardly included by con-
sidering ϕ̂ = (ϕ̂1, ϕ̂2, ϕ̂3). This mode does not couple with
the radial fluctuations, because of the Levi-Civita symbol
in eq. (45). Therefore, it does not feel the background fluc-
tuations leading to the renormalization of the propagation
speed. In other words, the Lagrangian of this field is sim-
ply given by a standard Lorentz invariant expression. In
writing the Lagrangian including this mode it is impor-
tant to consider that the potential term in eq. (37) must
be written in the appropriate way

V = −f2
πm2

π

(
cos ρ + (ϕ̂2

1 + ϕ̂2
2)

γ2

2
sin2 ρ

)
, (B.3)

because now ϕ̂2
1 + ϕ̂2

2 �= 1. In both the normal phase and
the broken phase we can write the quadratic Lagrangian
in the separable form

L = Lϕ1,ϕ2 + Lϕ3 , (B.4)

thus we can restrict, at the quadratic order, to considering
the Lϕ1,ϕ2 Lagrangian. At higher orders in the fields this
separation is no longer possible. However, in the broken
phase mπ0 = μI , therefore, this mode decouples from the
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soft-Lagrangian when considering momenta and energies
below this scale. For this reason the soft Lagrangian in
eq. (50) is valid for momenta much smaller than μI .

Finally, let us sketch how the standard expression of
the quadratic Lagrangian, as given for example in [27],
can be obtained starting from the expression in terms of
radial and angular fields. We focus on the normal phase
(in the broken phase a similar reasoning can be used). The
leading-order Lagrangian is given by

L=
f2

π

2
(∂μχ∂μχ+χ2∂μϕ̂i∂μϕ̂i−2mπγχ2ε3ijϕ̂i∂0ϕ̂j)−V (χ)

(B.5)
with the potential term in eq. (B.3). By definition ϕi =
χϕ̂i, then considering that

∂μχ∂μχ + χ2∂μϕ̂i∂μϕ̂i = ∂μϕi∂μϕi, (B.6)

we obtain the quadratic Lagrangian

L =
f2

π

2
(∂μϕi∂μϕi − 2mπγε3ijϕi∂0ϕj)

+f2
πm2

π

(
1 − ϕ2

3

2
− 1 − γ2

2
(ϕ2

1 + ϕ2
2)

)
, (B.7)

that is the standard expression for the O(p2) quadratic
Lagrangian. Note that in the normal phase one can distin-
guish three modes, but only one mode appears in the ex-
pression of the Lagrangian in eq. (50). It seems, therefore,
that two modes disappear in the transition from the nor-
mal phase to the broken phase. As discussed above, one of
this mode is related to the π0, that decouples. The second
mode that disappears is actually integrated out. Indeed, at
the phase transition point the radial mode develops a non-
trivial vev and, as shown in sect. 4, the small fluctuations
around it can be integrated out. Note that the mode that
is integrated out is not one of the two charged modes, in-
stead it is given by the combination of the charged modes
that corresponds to the radial fluctuation.
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