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Abstract. The scattering state of the Duffin-Kemmer-Petiau equation with the Varshni potential was
studied. The asymptotic wave function, the scattering phase shift and normalization constant were obtained
for any J states by dealing with the centrifugal term using a suitable approximation. The analytical
properties of the scattering amplitude and the bound state energy were obtained and discussed. Our
numerical and graphical results indicate that the scattering phase shift depends largely on total angular
momentum J , screening parameter β and potential strengths a and b.

1 Introduction

There has been an increasing interest in finding the analyt-
ical solutions of a linear relativistic wave equation (Duffin-
Kemmer-Petiau equation known as DKP equation) for
some physical potential models in quantum mechanics.
This is due to the fact that its analytical solutions can
be used to describe the behaviour of spin-one and spin-
zero particles [1–4]. The equivalence of this equation with
the Klein-Gordon equation has raised a lot of arguments
by various researchers in times past: see the detail reviews
in [5–8] and the references therein.

The DKP equation has a wide range of application
in cosmology and theoretical nuclear physics and its for-
malism has been used to study the deuteron-nucleus scat-
tering [9] and quark confinement problems of quantum
chromodynamics (QCD) theory in particle physics [10].
The search for scattering state solutions within different
type of potential models has been a subject of interest
to researchers in relativistic and non-relativistic quantum
mechanics [11–19].

Furthermore, the scattering and bound states of the
DKP equation have been solved using various meth-
ods within some interesting potential models including
Deng-Fan Interaction [5], Hulthén potential [6,20], Hell-
man potential [7,21], coupled Hulthén-Woods-Saxon po-
tentials [8], non-minimal vector double-step potential [22],
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non-minimal vector smooth step potential [23], Sextic os-
cillator [24], Yukawa potential [25–27], Coulomb interac-
tion [28], Deformed Woods-Saxon potential [29], Harmonic
oscillator and Coulomb potential [30], pseudoharmonic po-
tential [31], Smorodinsky-Winternitz potential [32], hy-
perbolical potential [33], Kratzer potential [34], Manning-
Rosen potential plus a ring-shaped–like potential [35]
among others.

The purpose of this work is to investigate the scatter-
ing state solutions of the DKP equation with the Varshni
potential model, obtain the phase shift, normalization con-
stant, bound state energy formula and also discuss the
possible limiting case.

The Varshni potential is given as [36–38]

V (r) = a

[
1 − b

r
e−βr

]
, (1)

where r is the internuclear distance, a and b are the
strengths of the potential and β is the screening parameter
which controls the shape of the potential energy curve.

This potential is a short range repulsive potential en-
ergy function which has been investigated within the for-
malism of the Schrödinger equation and it also plays a
fundamental role in chemical and molecular physics [36,
37]. The Varshni potential was also studied by Lim us-
ing the 2-body Kaxiras-Pandey parameters [37]. In his
work, he reported that Kaxiras and Pandey used this po-
tential to describe the 2-body energy portion of multi-
body condensed matter. In 2014, Arda and Sever investi-
gated the pseudospin and spin symmetric solutions of the
Dirac equation with the Hellmann potential, the Wei-Hua
potential and the Varshni potential [38]. The relativistic
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bound state energies and spinor wave function were also
reported.

The organization of this work is as follows: section 2
contains the scattering states of the DKP equation with
the Varshni potential. Section 3 contains the discussion on
the numerical and graphical results while the conclusion
is given in sect. 4.

2 Scattering states of the Duffin-Kemmer-
Petiau equation with the Varshni potential

The DKP equation with energy En,J , total angular mo-
mentum centrifugal term and the mass m of the particle
is given as [6,28,29]:

F ′′
n,J(r)−J (J+1) r−2+

[(
En,J +U0

v

)2−m2
]
Fn,J (r)=0.

(2)
Due to the total angular momentum centrifugal term,
eq. (2) cannot be solved analytically for J �= 0 states.
Therefore, we employ the following suitable approxima-
tion scheme [5,14,21,38–40]:

1
r2

≈ β2

(1 − e−βr)2
, (3)

to overcome the effect of this centrifugal. This approxi-
mation has been reported to be valid for βr � 1 [40].
Inserting eqs. (1) and (3) into eq. (2) and transforming by
using the variable y = 1 − e−βr, yields

F ′′
n,J (y) − 1

(1 − y)
F ′

n,J (r)

+
1

y2(1 − y)2
[
−h1y

2 + h2y − h3

]
Fn,J (y) = 0, (4)

where

−h1 =
2abEn,J

β
− 2a2b

β2
− a2b2 − J(J + 1) − k2

β2
, (5)

h2 =
2abEn,J

β
− 2a2b

β2
− 2a2b2, (6)

−h3 = J(J + 1) − a2b2, (7)

and k =
√

(E2
n,J − m2) + a2 − 2aEn,J − J(J + 1)β2,

which is the asymptotic wave number. Assuming the wave
function of the form

Fn,J(y) = yλ(1 − y)−i(k/β)fn,J(y), (8)

and inserting it into eq. (4), yields the following hyperge-
ometric equation [41]:

y(1 − y)f ′′
n,J(y) +

[
2λ −

(
2λ − 2i

k

β
+ 1

)
y

]
f ′

n,J(y)

+

[(
λ − i

k

β

)2

+ h1

]
fn,J(y) = 0, (9)

where we have used the following phase shift parameters:

λ=
1
2

+

√
1
4

+ J(J + 1) − a2b2 , (10)

η1 =λ−i
k

β
−

√
2abEn,J

β
− 2a2b

β2
−a2b2 − J(J + 1)− k2

β2
,

(11)

η2 =λ−i
k

β
+

√
2abEn,J

β
− 2a2b

β2
−a2b2 − J(J + 1)− k2

β2
,

(12)
η3 =2λ. (13)

The radial wave functions for any arbitrary J-wave scat-
tering states for the Varshni potential are obtained as

Fn,J(r) = Nn,J

(
1 − e−βr

)λ
eikr

2F1

(
η1, η2, η3; 1 − e−βr

)
,

(14)
where Nn,J is the normalization constant to be deter-
mined.

2.1 The scattering phase shifts and normalization
constant

We can obtain the phase shifts δJ and normalization
constant Nn,J by employing the recurrence relation of
the hypergeometric function or analytic-continuation for-
mula [41]:

2F1 (η1, η2, η3; y) =
Γ (η3)Γ (η3 − η1 − η2)
Γ (η3 − η1)Γ (η3 − η2)

2F1

× (η1; η2; 1 + η1 + η2 − η3; 1 − y)

+(1 − y)η3−η1−η2
Γ (η3)Γ (η1 + η2 − η3)

Γ (η1)Γ (η2)
×2F1(η3 − η1; η3 − η2; η3 − η1 − η2 + 1; 1 − y). (15)

Equation (15) with the condition that 2F1(η1, η2, η3; 0) =
1, when r → ∞, leads to

2F1

(
η1, η2, η3; 1 − e−βr

)
−−−→
r→∞

Γ (η3)

×
∣∣∣∣ Γ (η3−η1−η2)
Γ (η3−η1)Γ (η3−η2)

+e−2ikr

∣∣∣∣ Γ (η3−η1−η2)
Γ (η3−η1)Γ (η3−η2)

∣∣∣∣
∗∣∣∣∣ ,

(16)

where we have used the following phase shift relations:

η3 − η1 − η2 = (η1 + η2 − η3)
∗ = 2i(k/β), (17)

η3 − η2 = λ + i
k

β

−
√

2abEn,J

β
− 2a2b

β2
−a2b2 − J(J + 1)− k2

β2
=η∗

1 , (18)

η3 − η1 = λ + i
k

β

+

√
2abEn,J

β
− 2a2b

β2
−a2b2−J(J+1)− k2

β2
=η∗

2 . (19)
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Table 1. Scattering phase shifts for the DKP equation under
Varshni potential as a function of the screening parameter β
with En,J = m = 1.

J β δJ for a = b = 0.15 δJ for a = b = 1

0 0.2 −1.72757 −12.23212

0.4 2.49849 −2.24510

0.6 2.92309 0.13057

0.8 2.83386 1.02819

1.0 2.66856 2.79961

1 0.2 −5.10924 −11.57255

0.4 −0.74219 −1.92768

0.6 0.08681 0.29818

0.8 0.38141 1.13872

1.0 0.51906 1.54044

2 0.2 −10.00448 −11.76819

0.4 −5.66079 −2.68247

0.6 −4.78870 −0.67640

0.8 −4.47597 0.06604

1.0 −4.43997 1.51863

3 0.2 −16.16141 −12.72669

0.4 −12.03657 −4.27730

0.6 −11.22290 −2.48504

0.8 −10.93385 −1.83279

1.0 −10.79946 −1.52596

Now, by taking

Γ (η3 − η1 − η2)
Γ (η3 − η1)Γ (η3 − η2)

=
∣∣∣∣ Γ (η3 − η1 − η2)
Γ (η3 − η1)Γ (η3 − η2)

∣∣∣∣ eiδ,

(20)
and substituting this into eq. (16), we have

2F1

(
η1,η2,η3;1−e−βr

)
−−−→
r→∞

Γ (η3)
[

Γ (η3−η1−η2)
Γ (η3−η1)Γ (η3−η2)

]

×e−ikr
[
ei(kr−δ) + e−i(kr−δ)

]
. (21)

Consequently, we obtain the asymptotic form of eq. (14)
for r → ∞ as

Fn,J(r) −−−→
r→∞

2Nn,JΓ (η3)
[

Γ (η3 − η1 − η2)
Γ (η3 − η1)Γ (η3 − η2)

]

× sin
(
kr + δ +

π

2

)
. (22)

Finally, with the appropriate boundary condition, eq. (22)
yields [42]

Fn,J(∞) → 2 sin
(

kr + δJ − lπ

2

)
. (23)

The phase shifts expression and the normalization con-
stant are obtained, respectively, as follows:

δJ =
π

2
+

Jπ

2
+ δ =

π

2
(J + 1) + arg Γ (2i(k/β))

− arg Γ (η∗
2) − arg Γ (η∗

1) (24)

Table 2. Scattering phase shifts for the DKP equation under
Varshni potential as a function of the potential strength b with
β = 0.2 and En,J = m = 1.

J b δJ for a = 0.15 δJ for a = 0

0 −2 −1.70082 1.57080

−1 −1.79581 1.57080

0 −1.74554 1.57080

1 −1.57351 1.57080

2 −1.25398 1.57080

1 −2 −5.25693 0.76042

−1 −5.20360 0.76042

0 −5.12355 0.76042

1 −5.01663 0.76042

2 −4.88149 0.76042

2 −2 −10.13493 −4.07243

−1 −10.08067 −4.07243

0 −10.01526 −4.07243

1 −9.93844 −4.07243

2 −9.84973 −4.07243

3 −2 −16.26480 −10.56258

−1 −16.22031 −10.56258

0 −16.16957 −10.56258

1 −16.11245 −10.56258

2 −16.04873 −10.56258

and

Nn,J =
1

√
η3

∣∣∣∣Γ (η∗
1)Γ (η∗

2)
Γ (2i(k/β))

∣∣∣∣ . (25)

2.2 Bound state energy at the pole of scattering
amplitude

Here, we consider the analytical properties of the partial-
wave s-matrix to obtain the bound state energy at the
poles of the s-matrix in the complex energy plane. And
therefore, we need to discuss the following property Γ (η3−
η1) [42] as

η3 − η1 = λ + i
k

β

+

√
2abEn,J

β
− 2a2b

β2
− a2b2 − J(J + 1) − k2

β2
. (26)

The first-order poles of Γ (λ + i k
β +√

2abEn,J

β − 2a2b
β2 − a2b2 − J(J + 1) − k2

β2 ) are situated at

Γ

(
λ+i

k

β
+

√
2abEn,J

β
− 2a2b

β2
−a2b2−J(J+1)− k2

β2

)

+n = 0 (n = 0, 1, 2, . . .). (27)
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Table 3. Scattering phase shifts for the DKP equation under Varshni potential as a function of the total angular momentum
J with a = b = 0.15 and En,J = m = 1.

J δJ for β = 0.1 δJ for β = 0.2 δJ for β = 0.3 δJ for β = 0.4 δJ for β = 0.5 δJ for β = 0.6

0 −17.41433 −1.72757 1.49590 2.49849 2.83698 2.92309

1 −20.43171 −5.10924 −1.89091 −0.74219 −0.20652 0.08681

2 −24.78812 −10.00448 −6.83683 −5.66079 −5.09919 −4.78870

3 −30.32460 −16.16141 −13.14598 −12.03657 −11.51143 −11.22290

4 −36.88289 −23.39202 −20.57391 −19.55010 −19.06889 −18.80557

5 −44.38034 −31.53057 −28.91089 −27.96819 −27.52710 −27.28630

6 −52.55930 −40.43820 −38.00118 −37.13003 −36.72360 −36.50205

7 −61.48027 −50.00450 −47.73031 −46.92116 −46.54440 −46.33922

8 −71.01726 −60.14278 −58.01231 −57.25685 −56.90556 −56.71438

9 −81.10528 −70.78461 −68.78088 −68.07212 −67.74287 −67.56377

10 −91.68882 −81.87517 −79.98354 −79.31569 −79.00567 −78.83709

11 −102.72046 −93.36988 −91.57789 −90.94613 −90.65303 −90.49369

12 −114.15964 −105.23192 −103.52896 −102.92926 −102.65115 −102.50000

13 −125.97162 −117.43047 −115.80746 −115.23644 −114.97172 −114.82787

14 −138.12644 −129.93937 −128.38855 −127.84333 −127.59064 −127.45334

15 −150.59817 −142.73617 −141.25085 −140.72897 −140.48716 −140.35578

Fig. 1. (a) Scattering phase shifts for the DKP equation with the Varshni potential as a function of the screening parameter
β with a = b = 0.15 and En,J = m = 1. (b) The same as (a) with a = b = 1 and En,J = m = 1.

Consequently, the bound state energy equation for the
Varshni potential under the DKP equation is obtained as

k2 =−β2

[
(n+λ)2− 2abEn,J

β + 2a2b
β2 +a2b2−J(J+1)

2(n + λ)

]2

.

(28)

3 Numerical results and discussions

Table 1 shows that the scattering phase shift increases
with increasing screening parameter β for all total angular

momentum J . Column 3 (δJ for a = 0.15) of table 2 clearly
indicates that the scattering phase shift increases linearly
with increasing potential strength b for all total angular
momentum J . Column 4 (δJ for a = 0) of table 2 shows
that the scattering phase shift does not really depend on
the potential strength b but is significantly dependent on
the total angular momentum J .

Obviously, table 3 shows that the scattering phase shift
depends largely on the total angular momentum J as it
decreases exponentially with the increase in the total an-
gular momentum J for the selected potential parameters.
A linear increase in the values of the phase shift is ob-
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Fig. 2. (a) Scattering phase shifts for the DKP equation with the Varshni potential as a function of the potential strength b
for a = 0.15, β = 0.2 and En,J = m = 1. (b) The same as (a) for a = 0, β = 0.2 and En,J = m = 1.

Fig. 3. Scattering phase shifts for the DKP equation under
Varshni potential as a function of the total angular momentum
J with a = b = 0.15 and En,J = m = 1.

served as the screening parameter increases from 0.1 to
0.3. But a minor linear increase is noticeable as the screen-
ing parameter increases from 0.4 to 0.6. This shows that
the scattering phase shift depends mainly on the total an-
gular momentum J than any other potential parameters.
To see the trends and the beauty of our results, we dis-
played the graphical solutions in figs. 1–3. All the figures
confirmed that the scattering phase shift largely depends
on the total angular momentum J , screening parameter β
and potential strengths a and b.

4 Conclusion

We have studied the scattering state solutions of the DKP
equation with the Varshni potential by applying a suit-
able approximation scheme within the formalism of the

functional analytical method. The approximate scattering
phase shift, normalization constant and the correspond-
ing asymptotic wave function have been obtained. The
approximate bound state energy at the poles of the scat-
tering amplitude has been reported.

The numerical values of the scattering phase shift us-
ing some selected values of potential parameters and other
related quantities have been presented in tables 1–3. The
graphical results have been presented to see the trend,
clarity and dependence of the phase shift on the aforemen-
tioned parameters. It is evident and observed from both
the numerical and graphical results that the scattering
phase shift is dependent on the total angular momentum
J , screening parameter β and potential strengths a and
b. Our results find applications in chemical and nuclear
physics where the scattering of particles is of importance.
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