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Abstract. In this paper, we have applied a three-dimensional approach for the calculation of the relativistic
nucleon-nucleon potential. The quadratic operator relation between the non-relativistic and the relativistic
nucleon-nucleon interactions is formulated as a function of relative two-nucleon momentum vectors, which
leads to a three-dimensional integral equation. The integral equation is solved by the iteration method,
and the matrix elements of the relativistic potential are calculated from non-relativistic ones. The spin-
independent Malfliet-Tjon potential is employed in the numerical calculations, and the numerical tests
indicate that the two-nucleon observables calculated by the relativistic potential are preserved with high
accuracy.

1 Introduction

The inputs for the relativistic three-body (3B) bound and
scattering state calculations [1–9] are the fully off-shell rel-
ativistic nucleon-nucleon (NN) t-matrices, which can be
obtained by solving the relativistic Lippmann-Schwinger
(LS) integral equation using relativistic NN interactions.

It is known that there is a nonlinear operator rela-
tion between the non-relativistic and the relativistic NN
interactions. So, the first step toward the calculation of
relativistic t-matrices is the calculation of the relativis-
tic potentials from non-relativistic ones. To this aim, the
matrix elements of the relativistic NN potential in mo-
mentum space are traditionally calculated by solving the
nonlinear equation using the following different methods.

In the spectral expansion method, the quadratic equa-
tion is solved by inserting a completeness relation of the
NN bound and scattering states into the right side of
the quadratic equation and by projecting the result into
the momentum space [10, 11]. So, by having the non-
relativistic potential one can first calculate the NN bound
state wave function and scattering half-shell t-matrix and
use the result to solve the nonlinear equation.

In the iteration method, the nonlinear equation is
solved by iteration. Kamada and Glöckle introduced a
powerful numerical technique to calculate the matrix el-
ements of the relativistic NN potential directly from the
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matrix elements of the non-relativistic NN potential [12].
In this method, the nonlinear integral equation is solved
using the iteration method to get relativistic and boosted
potentials from non-relativistic ones. It is successfully im-
plemented in the NN problem, but it has not yet been
extended to a three-dimensional (3D) approach.

Another method is to multiply the non-relativistic po-
tential by a function that depends on NN relative mo-
menta, in such a way that both the non-relativistic and
the relativistic potentials lead to same phase shifts and ob-
servables [13]. The function is defined in such a way that it
changes the non-relativistic kinetic energy to the relativis-
tic kinetic energy by rescaling the momentum variables,
which leads to the same 2N binding energy for both non-
relativistic and relativistic potentials.

In the past decade a 3D approach based on momen-
tum vector variables was developed to study the few-body
bound and scattering problems [7, 14–39]. In the 3D ap-
proach one works directly with vector variables which lead
to 3D integral equations, whereas the partial wave (PW)
representation in the angular momentum basis leads to
coupled equations. In the PW representation, depending
on the energy scale of the problem, one must sum PWs,
and consequently at higher energies one needs to consider
a larger number of PWs, however the 3D approach auto-
matically contains all PWs and the number of equations
is energy independent.

We would like to point out that as Polyzou and El-
ster have shown one can directly calculate the relativistic
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t-matrix from the non-relativistic one, without needing to
solve the nonlinear equation. Consequently, one does not
need to solve the LS equation for the embedded NN inter-
action, and one can calculate the fully off-shell relativistic
t-matrix by following a two-step process. The first step is
to obtain the relativistic right-half-shell (RHS) t-matrix
from the non-relativistic RHS t-matrix by an analytical
relation proposed by Coester et al. [40]. The second step
is to calculate the fully-off-shell t-matrix from the RHS
t-matrix by solving a first resolvent equation. Keister et
al. [41] proposed the method and it is implemented for the
first time in a 3B scattering calculation [7] in this way.
Using the direct calculation of the relativistic t-matrix
from the non-relativistic one, recently the relativistic ef-
fects were studied in the 3B binding energy using a 3D
scheme [14,16]. The relativistic 3B wave function was cal-
culated for the first time, and it was shown that the rel-
ativistic effects lead to a reduction of about 3% in the
3B binding energy for two models of a spin-independent
Malfliet-Tjon–type potential. Since the 3D approach au-
tomatically considers all PWs, if it works for the bound
state, it can also be extended to the scattering problem,
independent of the range of energy. The next step is to
consider the spin and isospin degrees of freedom and work
with realistic NN interactions.

In this work, we have applied the iteration method pro-
posed by Kamada and Glöckle to construct the relativis-
tic NN potential from the non-relativistic Malfliet-Tjon
potential in a 3D scheme, without using the PW decom-
position.

2 Three-dimensional formulation of the
quadratic operator relation between the
relativistic and non-relativistic NN potentials

According to Bakamjian and Thomas [42] and Fong and
Sucher [43], the relativistic NN dynamics is specified in
terms of the NN mass operator h

〈p|h|p′〉 = ω(p) δ(p − p′) + Vr(p,p′), (1)

where ω(p) = 2E(p) = 2
√

m2 + p2, m is the mass of
the nucleons and p is the relative momentum of two nu-
cleons. The connection between the relativistic and non-
relativistic NN potentials, i.e. Vr and Vnr, is defined by
the quadratic operator equation [12]

Vnr =
1

4m

(
ω(p̂)Vr + Vrω(p̂) + V 2

r

)
. (2)

The matrix elements of the relativistic potential can be
obtained from the non-relativistic NN potentials by the
projection of eq. (2) into the NN basis states |p〉

〈p|Vr|p′〉 +
1

ω(p) + ω(p′)

∫
dp′′〈p|Vr|p′′〉 〈p′′|Vr|p′〉 =

4m〈p|Vnr|p′〉
ω(p) + ω(p′)

. (3)

Table 1. Parameters of the Malfliet-Tjon I potential.

VA (MeV fm) μA (fm−1) VR (MeV fm) μR (fm−1)

−626.8932 1.550 1438.7228 3.11

In our study we have followed Kamada and Glöckle’s strat-
egy [12] to obtain the matrix elements of the relativis-
tic NN potential, i.e. 〈p|Vr|p′〉, directly from the non-
relativistic one, i.e. 〈p|Vnr|p′〉 without using PW decom-
position. Here we discuss the numerical solution of eq. (3)
as a function of the magnitude of the momentum vectors
and the angle between them. In our calculations we have
used the spin-independent Malfliet-Tjon (MT) potential,
which is a superposition of short-range repulsive and long-
range attractive Yukawa interactions [44]

Vnr(p,p′) =
1

2π2

(
VR

q2 + μ2
R

+
VA

q2 + μ2
A

)
, (4)

where q = p′ − p. The parameters of the MT-I potential
are given in table 1. In order to obtain the matrix ele-
ments of the relativistic potential, we have solved eq. (3)
by the iteration method. A coordinate system is defined
by choosing the relative momentum vector p parallel to
the z-axis and vector p′ in the x-z plane, so that eq. (3)
can be written explicitly as

Vr(p, p′, x′) +
1

ω(p) + ω(p′)

∫ ∞

0

dp′′p′′2
∫ 1

−1

dx′′
∫ 2π

0

dφ′′

×Vr(p, p′′, x′′)Vr(p′′, p′, y) =
4mVnr(p, p′, x′)
ω(p) + ω(p′)

, (5)

where

x′ = p̂′ · p̂,

x′′ = p̂′′ · p̂,

y = p̂′′ · p̂′ = x′x′′ +
√

1 − x′2
√

1 − x′′2 cos φ′′. (6)

We start the iteration with

V (0)
r (p, p′, x′) =

4mVnr(p, p′, x′)
ω(p) + ω(p′)

, (7)

and stop it when the calculated relativistic potential sat-
isfies eq. (5) with a relative error of 10−6 at each set point
(p, p′, x′). To speed up the convergence procedure in solv-
ing eq. (5) we can redefine the relativistic potential in
each step of the iteration as a linear combination of the
calculated relativistic potential in the last two successive
iterations as

V (n)
r (p, p′, x′) −→ αV

(n)
r (p, p′, x′) + βV

(n−1)
r (p, p′, x′)

α + β
;

n = 1, 2, . . . . (8)

Kamada and Glöckle have used α = β = 1 in their cal-
culations for the AV18 potential. Our numerical analysis
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Fig. 1. The matrix elements of the non-relativistic (left panel), the relativistic (middle panel) NN potentials and their differences
(right panel) calculated by the MT-I potential as a function of 2B relative momenta p = p′ and the angle between them x′.

Table 2. The number of iterations Niter, to reach the conver-
gence in the solution of eq. (5) for MT-I potential as a function
of the averaging parameters α and β.

α β Niter

1 0 17
1 1 18
2 1 12
3 1 10
4 1 8
5 1 10

shows that the larger values of α can lead to faster conver-
gence in the solution of eq. (5). In table 2 we have shown
the number of iterations to reach convergence in eq. (5)
for different values of α and β. This indicates that α = 4
and β = 1 leads to faster convergence for the calculation
of the relativistic potential from the MT-I bare potential.

For the discretization of the continuous momentum
and angle variables we used the Gauss-Legendre quadra-
ture. For the momentum variables a hyperbolic plus linear
mapping is used to cover the integration domain [0,∞) by
the subintervals [0, p1]

⋃
[p1, p2]

⋃
[p2, pmax]

p =
1 + x

1
p1

+ ( 2
p2

− 1
p1

)x
, (9)

p =
pmax − p2

2
x +

pmax + p2

2
. (10)

The typical values for p1, p2 and pmax are 4, 9 and 60 fm−1,
respectively. In our calculations we have used 100 mesh
points for the momentum variables, 50 mesh points for
the spherical and 10 mesh points for the azimuthal angle
variables. In each iteration we needed to interpolate on
the angle variable y and to avoid extrapolation we have
added the extra points ±1 to the angle mesh points x′.
In order to save run time and memory in the solution of
eq. (5) we have used the symmetry property of the kernel
to calculate the integration over the azimuthal angle φ′′

on the [0, π/2] domain
∫ 2π

0

dφ′′ f(cos φ′′) = 2
∫ π

2

0

dφ′′ [f(cos φ′′) + f(− cos φ′′)] .

(11)

Table 3. The convergence of the matrix elements of the rela-
tivistic potential Vr(p, p′, x′) (in units of MeV fm3) as a func-
tion of the iteration number calculated by the MT-I bare po-
tential in the fixed points (p = 0.87 fm−1, p′ = 2.09 fm−1,
x′ = 0,±1). The values of the MT-I bare potential Vnr(p, p′, x′)
are also given.

x′ = −1 x′ = 0 x′ = +1

Vnr(p, p′, x′)

1.1099096 0.7084511 −1.6327025

Iteration # Vr(p, p′, x′)

0 1.0525724 0.6718530 −1.5483583

1 0.7838006 0.3920976 −1.8512322

2 0.8895160 0.4979858 −1.7453002

3 0.8853336 0.4938142 −1.7495059

4 0.8848131 0.4932883 −1.7500527

5 0.8847858 0.4932573 −1.7500929

6 0.8847910 0.4932608 −1.7500930

7 0.8847932 0.4932623 −1.7500928

8 0.8847938 0.4932626 −1.7500930

9 0.8847939 0.4932626 −1.7500931

10 0.8847939 0.4932626 −1.7500932

11 0.8847939 0.4932626 −1.7500933

12 0.8847939 0.4932626 −1.7500933

In figs. 1 and 2 we have shown our numerical results
for the relativistic potential calculated from the MT-I po-
tential. The bare MT-I potential as well as the differ-
ence between the bare and constructed relativistic po-
tentials is also shown. The plots of fig. 1 show the non-
relativistic and relativistic potentials as well as their dif-
ference as a function of the relative momenta p = p′

and the angle between them x′. It seems that the so-
lution of the quadratic equation for the relativistic po-
tential completely changes the structure of the potential
at forward angles for diagonal matrix elements p = p′,
and the relativistic potential is almost smooth in compar-
ison with the non-relativistic potential. The correspond-
ing plots in fig. 2, show the partial wave projection of
the non-relativistic and the relativistic potentials and also
their differences, calculated from the 3D representation
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Fig. 2. The matrix elements of the partial wave projection of the non-relativistic (first column), the relativistic (second column)
NN potentials and their differences (third column) calculated by the MT-I potential as a function of 2B relative momenta p
and p′.

by Vl(p, p′) = 2π
∫ +1

−1
dx′ Pl(x′)V (p, p′, x′), as a function

of the relative momenta p and p′. As we can see the matrix
elements of the relativistic and non-relativistic potentials
are larger for the lower partial waves and consequently
their differences become higher.

Table 3 shows an example of the convergence of the
matrix elements of the relativistic potential by itera-
tion number for the fixed points (p = 0.87 fm−1, p′ =
2.09 fm−1, x′ = 0,±1) for α = 2 and β = 1.

3 Numerical tests of the relativistic potential

3.1 NN bound state

The total Hamiltonian of two interacting nucleons in the
center-of-mass system is

〈p|H|p′〉 = H0(p) δ(p − p′) + Vnr(p,p′), (12)

where H0(p) = p2

m is the free Hamiltonian, Vnr(p,p′)
is the non-relativistic NN interaction and p(p′) is the
initial (final) relative momentum of two nucleons. The
Lippmann-Schwinger equation for the two-nucleon bound
state is given as

|ψd〉 =
1

Ed − H0
Vnr|ψd〉, (13)

which can be represented in momentum space as the fol-
lowing eigenvalue equation:

ψd(p) =
1

Ed − p2

m

∫
dp′ Vnr(p,p′)ψd(p′). (14)

The relativistic Schrödinger equation for the two-nucleon
bound state has the form

h|ψd〉 = Md|ψd〉, (15)
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Table 4. Deuteron binding energy calculated for MT-I bare
and relativistic potentials and their relative difference.

Enr
d (MeV) Er

d (MeV) (Enr
d − Er

d)/Enr
d %

−2.23100 −2.23229 0.05782
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Fig. 3. The deuteron wave function calculated by the MT-I
bare and relativistic potentials.

where Md is the deuteron mass. The relativistic deuteron
wave function |ψd〉 satisfies the eigenvalue equation

ψd(p) =
1

Md − ω(p)

∫
dp′ Vr(p,p′)ψd(p′). (16)

Our numerical results for the deuteron binding energy
and wave function calculated by relativistic and non-
relativistic potentials are given in table 4 and fig. 3. As
we can see the constructed relativistic potential preserves
the deuteron binding energy obtained by the bare MT-I
potential with high accuracy and the relative percentage
difference of about 0.06.

3.2 NN scattering

The inhomogeneous Lippmann-Schwinger equation which
describes the two-nucleon scattering can be represented in
momentum space as

Tnr(p,p′;E) = Vnr(p,p′)

+
∫

dp′′ Vnr(p,p′′)
p2
0

m − p′′2

m + iε
Tnr(p′′,p′;E). (17)

The differential cross section for elastic NN scattering as
a function of the incident projectile energy Elab = 2Ecm =
2p2

0
m is given by

dσ

dΩ
= (2π)4

(m

2

)2

|Tsym(p0, p0, x
′)|2 , (18)

Table 5. The total elastic NN scattering cross section as a
function of the on-shell momentum p0 calculated by the MT-I
bare and relativistic potentials.

p0 (MeV) σnr (mb) σr (mb) |(σnr − σr)/σnr|%
1 15274.4 15273.3 0.00720

10 14526.4 14525.5 0.00620

25 11485.5 11484.9 0.00522

50 6367.46 6367.31 0.00236

75 3432.10 3432.08 0.00058

100 1926.16 1926.17 0.00052

200 297.580 297.586 0.00202

300 129.008 129.015 0.00543

400 94.6592 94.6631 0.00412

500 72.6167 72.6201 0.00468

600 56.9070 56.9111 0.00720

where

Tsym(p0, p0, x
′) = Tnr(p0, p0, x

′) + Tnr(p0, p0,−x′). (19)

Consequently, the total cross section can be obtained di-
rectly from the differential cross section as

σ = (2π)5
(m

2

)2
∫ +1

−1

dx′ |Tsym (p0, p0, x
′)|2 . (20)

The relativistic NN scattering can be described by the
relativistic form of the Lippmann-Schwinger equation as

Tr(p,p′) = Vr(p,p′)

+
∫

dp′′ Vr(p,p′′)
ω(p0) − ω(p′′) + iε

Tr(p′′,p′). (21)

The relativistic differential and total cross sections can be
obtained by eqs. (18) and (20) and by replacing m with√

m2 + p2
0.

In table 5, our numerical results for the total elastic
NN scattering cross sections obtained by the constructed
relativistic potential from the MT-I potential are given as
a function of the on-shell momentum p0. As we can see the
relativistic total cross sections are in excellent agreement
with the corresponding non-relativistic cross sections and
have a percentage relative difference of less than 0.007.
NN phase shifts in the PW scheme are calculated by

δl(p0) = arctan
(
ImTl(p0)
ReTl(p0)

)
, (22)

where the partial wave T -matrix, i.e. Tl(p0), can be ob-
tained from the 3D form of the T -matrix, i.e. T (p0, p0, x

′),
as

Tl(p0) = 2π
∫ +1

−1

dx′ Pl(x′)T (p0, p0, x
′). (23)

In table 6, we have shown our numerical results for the
s- and p-wave NN phase shifts as a function of the on-
shell momentum p0 calculated from the projection of the



Page 6 of 7 Eur. Phys. J. A (2017) 53: 18

Table 6. The s- and p-wave phase shifts, δ0 and δ1, calculated
by the MT-I bare and relativistic potentials as a function of
the on-shell momentum p0.

p0 (MeV) δnr
0 δr

0 |(δnr
0 − δr

0)/δnr
0 |%

1 178.399202 178.399259 0.00003

10 164.191097 164.191642 0.00033

25 142.727577 142.728682 0.00077

50 115.599510 115.600883 0.00119

75 96.723079 96.724553 0.00152

100 82.604149 82.605322 0.00142

200 46.516325 46.517103 0.00167

300 24.195385 24.196576 0.00492

400 8.220831 8.220032 0.00972

500 176.141274 176.139179 0.00119

600 166.764703 166.759452 0.00315

p0 (MeV) δnr
1 δr

1 |(δnr
1 − δr

1)/δnr
1 |%

1 0.000015228 0.000015228 0.0017533

10 0.01.520323 0.015203706 0.0030894

25 0.235486179 0.235489846 0.0015574

50 1.820265835 1.820327160 0.0033690

75 5.735591957 5.735736050 0.0025123

100 12.07379026 12.07410200 0.0025819

200 35.51818548 35.51899747 0.0022861

300 36.92310114 36.92426648 0.0031561

400 31.28393516 31.28424025 0.0009752

500 24.51728521 24.51716984 0.0004706

600 18.01488447 18.01311044 0.0098475

3D form of the non-relativistic and relativistic T -matrices
by eq. (23). As we can see the relativistic s- and p-wave
NN phase shifts are in excellent agreement with the cor-
responding non-relativistic ones and have a relative per-
centage difference of less than 0.004 and 0.01, respectively.

4 Discussion and outlook

In this paper, we have used a three-dimensional approach
to formulating the relativistic nucleon-nucleon potential
as a function of the two-body relative momentum vectors.
The quadratic equation which connects the relativistic and
non-relativistic nucleon-nucleon interactions is presented
in momentum space as a three-dimensional integral equa-
tion. For the first numerical implementation, the integral
equation is solved by the spin-independent Malfliet-Tjon
potential, and the matrix elements of the relativistic po-
tential are calculated as a function of the two-body rela-
tive momenta and the angle between them. Our numer-
ical analysis confirms that the two-body observables cal-
culated from the relativistic potential are preserved. The
extension of this formalism to realistic nucleon-nucleon in-
teractions with spin degrees of freedom in a momentum-
helicity basis state is currently underway.
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9. H. Kamada, W. Glöckle, H. Wita�la, J. Golak, R. Skibiński,
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20. W. Glöckle, I. Fachruddin, Ch. Elster, J. Golak, R.
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