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Abstract. A formalism and the corresponding numerical procedures that calculate the Fourier transform
of a single-particle wave function defined on a grid of cylindrical (ρ, z) coordinates is presented. Single-
particle states in spherical and deformed nuclei have been chosen in view of future applications in the field
of nuclear reactions. Bidimensional plots of the probability that the nucleon’s momentum has a given value
K =

p

k2
ρ + k2

z are produced and from them the K-distributions are deduced. Three potentials have been
investigated: a) a sharp surface spherical well (i.e., of constant depth), b) a spherical Woods-Saxon potential
i.e., diffuse surface) and c) a deformed potential of Woods-Saxon type. In the first case the momenta are as
well defined as allowed by the uncertainty principle. Depending on the state, their distributions have up to
three separated peaks as a consequence of the up to three circular ridges of the bidimensional probabilities
plots. In the second case the diffuseness allows very low momenta to be always populated thus creating
tails towards the origin (K = 0). The peaks are still present but not well separated. In the third case the
deformation transforms the above mentioned circular ridges into ellipses thus spreading the K-values along
them. As a consequence the K-distributions have only one broad peak.

1 Introduction

In many nuclear physics applications it is necessary to
know the momentum distribution associated with a given
wave function and therefore its Fourier transform is
needed. For instance, the calculation of the Fourier trans-
form (FT) of a single-particle wave function (WF) is re-
quired in theoretical approaches of direct nuclear reactions
of stripping, pick-up and knock-out types [1–3]. In partic-
ular, the FTs of the WFs of the bound nucleons in the
entrance and exit channels are essential ingredients in the
expression of the stripping and pick-up reaction ampli-
tudes, hence of the cross section. They represent the mo-
mentum transfers that occur during the reaction and give
the probability that such an event takes place. Likewise,
the knock-out cross section and the parallel momentum
distribution of the ejected nucleon are computed from the
FT of the corresponding WF.

With the recent development of radioactive ion beam
facilities, the field of direct nuclear reactions has been re-
visited and provides at present the most sensitive tools for
the spectroscopy of nuclei far from stability. Although the
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nuclei involved in these reactions are often deformed, the
calculations have been performed in spherical coordinates
neglecting the, undoubtedly important, role of the defor-
mation. This is mainly because a deformed WF is com-
monly expressed in cylindrical coordinates and the proce-
dure to calculate its FT is quite complicated. The purpose
of the present paper is to raise this challenge: develop a
formalism, an algorithm and the associated computer pro-
gram that allows to calculate the FT of a WF that is given
in cylindrical (ρ, z) coordinates. It is the first endeavour
of this kind.

Another application of the FT of a WF in extremely
deformed nuclei is in the field of nuclear fission. The mo-
mentum distribution of the scission neutrons (those that
are emitted during the neck rupture) is given by the FT of
the tail of their wave packets that is in the continuum [4].
From the momentum distribution one can deduce an im-
portant observable: the kinetic energy distribution. This
may allow us to distinguish the scission neutrons from the
neutrons evaporated from fully accelerated fragments.

In sect. 2 the single-particle WFs and their FTs are
introduced. Section 3 contains the sequence of necessary
formulae to calculate the FTs in cylindrical coordinates.
The formalism is tested in sect. 4 with a simple nuclear
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potential that has an easy-to-predict momentum distribu-
tion. Section 5 contains the cases of more realistic poten-
tials: spherical and deformed Woods-Saxon. The summary
and conclusions are found in sect. 6.

2 Single-particle WFs and their FTs

In the independent-particle shell model, both for spher-
ical [5] and for deformed [6] nuclei, the nucleonic wave
functions Ψ(�r ) are solutions of the Schrödinger equation
(eigenfunctions of the single-particle Hamiltonian) with
an average local potential (mean field) that is supposed
to be created by the interaction with all other nucleons.
These states are discrete and have well-defined energies.
They are usually given in the position space and provide
the probability in this space. If we want the probability in
the momentum space i.e., the probability that the nucleon
has its momentum �p in the volume element d3�p we need
to calculate the Fourier transform Φ(�p ) of Ψ(�r ):

Φ(�k ) =
1

(2π)3/2

∫ ∞

−∞
Ψ(�r )e−i�k�rd3�r, (1)

with �k = �p/h̄. This is how the momentum representation
is related to the space representation and viceversa:

Ψ(�r) =
1

(2π)3/2

∫ ∞

−∞
Φ(�k )ei�k�rd3�k. (2)

It is known that Ψ(�r ) and Φ(�k ) are equaly valid descrip-
tions of the state of the particle [7]. They are however
not generally equivalent when viewed as square integrable
functions.

3 Two-dimensional Fourier transform

We start with the standard form of the Fourier transform
in Cartesian coordinates:

F (u, v) = f̂(u, v) =
∫ +∞

−∞

∫ +∞

−∞
f(x, y)e−2πi(xu+yv)dxdy.

(3)
Let’s introduce the polar coordinates (ρ, θ):

x = ρ cos θ, y = ρ sin θ

and their conjugates (R,φ):

u = R cos φ, v = R sin φ.

From (3) we obtain the Fourier transform in polar coor-
dinates:

F (R,φ) =
∫ 2π

0

∫ ∞

0

f(ρ, θ)e−2πiρR cos(θ−φ)ρdρdθ.

(4)

When the function f is radial (or axially symmetric),
i.e. it depends only on ρ, not on θ, the transform (4) takes
the form:

F (R) = 2π
∫ ∞

0

f(ρ)J0(2πρR)ρdρ, (5)

where J0 is the zero-order Bessel function of the first kind.
Note that the Fourier transform of a radial function is also
radial. The formula for F (R) in terms of f(ρ) is called the
zero-order Hankel transform or the Fourier-Bessel trans-
form.

For the relation to the form used in quantum me-
chanics see the appendix. Note here that u = kx/(2π),
v = ky/(2π), R = kρ/(2π). The variables x, y, ρ belong
to the position space, while u, v, R, kx, ky, kρ belong to
the momentum space. The factor 1/2π is introduced as a
phase convention.

If we have a function in cylindrical coordinates, which
does not depend on the angles φ and θ, its Fourier trans-
form will be

F (R,Z) =

2π

∫ ∞

−∞

[∫ ∞

0

f(ρ, z)J0(2πρR)ρdρ

]
e−2πizZdz, (6)

where Z = kz/(2π) according to the relation with the
quantum mechanics variables.

Thus, the Fourier transform in cylindrical coordinates
implies a combination of one-dimensional Fourier and
Hankel transforms. Let us note that according to Parse-
val’s theorem, the Fourier transform has the property of
norm conservation.

Suppose now that the function f(ρ, z) is known only on
the nodes of a discrete grid. Then, the Fourier transform
will be also a discrete function, approximation of the con-
tinuous transform. Let ρj = ρ0 + jΔρ, j = 0, 1, . . . ,M − 1
and zk = z0 +kΔz, k = 0, 1, . . . , N −1 be the points (uni-
formly spaced) defining the grid for which f(ρj , zk) are
given. The interval [ρ0, ρM−1] is a subinterval of [0,∞[,
while the interval [z0, zN−1] is a subinterval of ]−∞,+∞[.
The function f(ρ, z) is zero for ρ > ρM−1, z < z0 and
z > zN−1.

We shall treat separately the two implied integrals.

3.1 Hankel transform

Let us consider the integral

H(R, z) = 2π
∫ ∞

0

f(ρ, z)J0(2πρR)ρdρ. (7)

For a position z = zk, since f is zero beyond ρM−1,
one has

H(R, z) ≈ 2π

∫ ρM−1

ρ0

f(ρ, z)J0(2πρR)ρdρ.

Note that in principle ρ0 = 0. In the examples given be-
low (in sects. 4 and 5) ρ0 > 0, but the value at ρ = 0
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is obtained by extrapolation (see sect. 4.1). The integral
on the whole interval [ρ0, ρM−1] is represented as a sum
of integrals on intervals of the size 2Δρ. To approximate
these partial integrals (denoted by Ij) we have deduced a
quadrature formula of the form

Ij ≈ αf(ρj , z) + βf(ρj+1, z) + γf(ρj+2, z), (8)

which is exact when f (as a function of ρ) is a polynomial
of degree at most 2. Such a formula is similar to Filon’s
rule for integrals of the form

∫ b

a
f(x)w(ωx)dx (w = sin

or cos), but adapted for Bessel instead of trigonometric
functions.

In order to obtain the coefficients α, β, γ we replace
in (8) the function f(ρ, z) by 1, ρ, ρ2 successively and use
analytical expressions for integrals of the type

∫ ρj+2

ρj

ρpJ0(2πρR)dρ, p = 1, 2, 3.

The corresponding primitives are expressed in terms of
Bessel functions J0, J1 and of Struve functions H0, H1

(see [8]). In order to compute the Bessel functions we
have used the subroutine REALJN from the Computer
Physics Communications Program Library [9]. The Struve
functions are calculated by the subroutines STRVH0 and
STRVH1 from the package 757 of the TOMS library [10].

The Fourier transform will be also calculated on a dis-
crete grid defined by the points Rm and Zn (see sects. 3.2
and 4.1). If the transforms of several functions are to
be obtained, the Bessel and Struve functions should be
calculated once at the points corresponding to each pair
(ρj , Rm) and stored in the memory.

We note that many papers have been devoted to the
numerical evaluation of the Hankel transform. The oscil-
latory behaviour of the Bessel function and the infinity
in the integration range make the computation of this
transform difficult. Different techniques have been pro-
posed in the past. We cite some representative articles:
i.e. [11], [12], [13], [14]. Generally, these procedures as-
sume an analytical form of the initial function. Since our
functions are usually known only on a discrete grid, we de-
rived a computation method suited for such a case. Tested
on different exact examples, the method has proven to be
quite efficient in terms of rapidity and accuracy.

3.2 Discrete Fourier transform

For any Rm from the discrete grid, let us consider the
integral

F (Rm, Z) =
∫ ∞

−∞
H(Rm, z)e−2πizZdz. (9)

The variable Z takes a set of N values defined as

Zn =
n − N/2

NΔz
, n = 0, 1, . . . , N − 1.

Equation (9), evaluated at the point Zn is approximated
by

F (Rm, Zn) ≈ Δz

N−1∑
k=0

H(Rm, zk)e−2πizkZn

= Δz

N−1∑
k=0

H(Rm, zk)e−2πi(z0+kΔz)Zn

= Δze−2πiz0Zn

N−1∑
k=0

H(Rm, zk)e−2πi(kΔz)Zn .

(10)

Taking into account the definition of Zn, we have

e−2πi(kΔz)Zn = e−2πi(kΔz)( n
N − 1

2 )/Δz

= ekπie−2πi(kn)/N = (−1)ke−2πi(kn)/N .

Thus, the approximation (10) becomes

F (Rm, Zn) ≈

Δze−2πiz0Zn

N−1∑
k=0

(−1)kH(Rm, zk)e−2πi(kn)/N . (11)

For a given set gk, k = 0, 1, . . . , N − 1 the set of the N
following values

Gn =
N−1∑
k=0

gke−2πi(kn)/N , n = 0, 1, . . . , N − 1 (12)

is called the discrete Fourier transform.
Comparing eqs. (11) and (12), we can write the relation

F (Rm, Zn) ≈ Δze−2πiz0ZnGn, (13)

where gk = (−1)kH(Rm, zk).
An efficient way of calculating Gn values is to use a spe-

cial algorithm named the fast Fourier transform (FFT). It
requires N to be a power of 2. The literature on this sub-
ject is vast. We cite for example the comprehensive trea-
tise of Briggs and Henson [15]. In our calculation we have
used the subroutine FOURN from Numerical Recipes [16],
based on the FFT algorithm.

In conclusion, to obtain the values F (Rm, Zn) repre-
senting the discrete Fourier transform in cylindrical coor-
dinates, we first apply the discrete Hankel transform to
get H(Rm, zk) and then the discrete Fourier transform in
one dimension (the z-axis).

4 A simple case

We start with a test example that is expected to have a
simple momentum (kinetic energy) distribution: a spheri-
cal nucleus with sharp surface and no spin-orbit coupling
filled with independent neutrons that have zero orbital
angular momentum. The potential inside the nucleus is
uniformly constant, see fig. 1. The momentum of each neu-
tron state has, in classical mechanics, a unique value. In
quantum mechanics we expect, instead of a δ-function, a
distribution of momenta which, however, should still keep
a simple shape.
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Fig. 1. A spherical well with constant depth used as a test
example.

4.1 Eigenfunctions and their Fourier transforms

We therefore consider the following eigenvalue problem in
cylindrical coordinates

Hfi(ρ, z) = Eifi(ρ, z) (14)

of the following single-particle Hamiltonian:

H = − h̄2

2μ

[
1
ρ

∂

∂ρ
+

∂2

∂ρ2
+

∂2

∂z2
− Λ2

ρ2

]
+ V (ρ, z).

Λ is the projection of the orbital angular momentum on
the symmetry axis and V (ρ, z) is the potential. It has the
constant value −40.22MeV inside a semi-circular domain
and 0 outside. The radius of the domain is equal to the
nuclear radius r0A

1/3, with r0 = 1.347 fm. By the function
change gi =

√
ρfi, the first derivative from H is removed,

resulting in a simplified Hamiltonian Ĥ of the form

Ĥ = − h̄2

2μ

[
∂2

∂ρ2
+

∂2

∂z2
− Λ2 − 1/4

ρ2

]
+ V (ρ, z),

and the problem (14) becomes equivalent to

Ĥgi = Eigi. (15)

Note that the Hamiltonian Ĥ is self-adjoint for null
boundary conditions (corresponding to bound states), so
that its spectrum is real (see [17]). The corresponding
eigenfunctions are continuous, the singularity of the po-
tential introducing discontinuities only in the gi second-
order derivatives (at the edge of the potential well). After
obtaining gi, the original function fi is recovered from
fi = gi/

√
ρ.

To solve (15) the infinite physical domain is limited
to a finite one, which is discretized by a grid with the
mesh points ρj = ρ0 + jΔρ, j = 0, 1, . . . ,M − 1 and
zk = z0 + kΔz, k = 0, 1, . . . , N − 1. In the present cal-
culations we have used a step h = Δρ = Δz = 1/16 fm.
The numbers of the grid points are M = 256 and N = 512,
while ρ0 = Δρ and z0 = −16 fm. At each point the par-
tial derivatives in Ĥ are approximated by finite differ-
ence formulas. For the derivatives with respect to z we
use the standard 3-point formula, while for the deriva-
tives in ρ, we use a special formula, which takes into ac-
count the accomplished function transformation [18]. The

eigenvalue problem (15) is transformed into an algebraic
eigenvalue problem with a large sparse matrix, which is
solved by the package ARPACK, based on the implicitly
restarted Arnoldi method [19]. The resulting eigenfunc-
tions are ortho-normalized by the Gram-Schmidt proce-
dure. The values at ρ = 0 have been obtained by extrap-
olation, since fi(0, z) cannot be deduced from gi for these
points.

In order to compute the Hankel-Fourier transform, the
grid is first extended so that M = 1024, N = 2048, ρ0 = 0,
z0 = −64 fm, keeping the same steps Δρ and Δz. A better
FT resolution is thus allowed. The eigenfunction values are
placed in the corresponding points, the rest of the grid
being filled with zeros. The function values towards the
limits of the original grid are exponentially decreasing (up
to 10−5) and the discontinuity is not expected to influence
the results presented here. The grid of the transform is
defined by

Rm =R0 +mΔR, R0 = 0, m=0, 1, . . . ,M −1, ΔR=
1

256

and

Zn =
n − N/2

NΔz
= Z0 + nΔZ,

Z0 = −8, n = 0, 1, . . . , N − 1,

ΔZ =
1

NΔz
=

1
128

.

The units for Z0 and ΔZ are fm−1.
So, we have ensured a sufficiently large range of the

transform, as well as a power of 2 for the number of points
on Z-axis, allowing the use of the FFT algorithm.

As a test of accuracy, we have checked out the norm
conservation. An error estimate was formed by

εFHT =
1

Ne

Ne∑
i=1

|‖Fi‖ − ‖fi‖|,

where Ne is the number of eigenstates, fi is the initial
function (its norm is equal to 1) and Fi is the transformed
function. The norms are defined by

‖f‖ = 2π

∫ ∞

−∞

∫ ∞

0

ρ |f(ρ, z)|2dρdz

and
‖F‖ = 2π

∫ ∞

−∞

∫ ∞

0

R |F (R,Z)|2dRdZ

For the case of the nucleus 236U and Λ = 0 there are 15
eigenstates with negative energies.

After computing all 15 transforms, we have found the
following value for εFHT (the mean error):

εFHT = 4.32 × 10−7.

This shows that the transforms preserve the norm with
an accuracy of about 7 digits. All calculations have been
performed in double-precision arithmetic. The integrals
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Fig. 2. WFs 1 to 5 and the corresponding FTs.

giving the norms have been calculated by a Newton-Cotes
formula [20] extended to two dimensions.

The corresponding neutron wave functions fi(ρ, z) are
shown (as squared moduli) on the left of figs. 2, 3, 4. Their
Fourier transforms Fi(kρ, kz) are shown for comparison
(also as squared moduli) on the right of the same figures
(kρ = 2πR, kz = 2πZ, see the appendix). The appar-
ent similarity of the shapes of the original functions and
of their Fourier transforms immediately attracts the at-
tention. This result is unusual since among all elementary
functions only a Gaussian has a Gaussian as Fourier trans-
form. These shapes resemble only for Λ = 0 states (which
have no centrifugal potential) but even in this case they
are not identical. This can be seen in figs. 5 and 6 where a
detailed comparison of selected functions and their trans-
forms is shown for slices along the z- and ρ-axes, respec-
tively. Among the cases represented, only the wave func-
tion number 10 and its Fourier transform are very similar
along both axes. In general, the FTs show a more intense
last oscillation than the WFs. It is interesting to note that
the FT has the same number of nodes as the WF in both
directions; only their amplitudes vary.

One can conclude that the apparent similarities be-
tween the WFs and the FTs are mainly due to the con-
servation of the number of nodes but also to the bidimen-
sional representation chosen in figs. 2 to 4 which seems to
disguise the results.

Due to the Heisenberg uncertainty principle, the neu-
tron momentum cannot have a well-defined value. It has a
distribution instead. Examining the contour maps in fig. 2
(right) one perceives a circle on which the peaks of FT
lay but also large uncertainties around this most probable
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Fig. 3. WFs 6 to 10 and the corresponding FTs.
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Fig. 4. WFs 11 to 15 and the corresponding FTs.

value. One can anticipate that the neutron will not have
a precise kinetic energy as in a classical well of constant
depth.
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4.2 Momentum distributions

Points in the (kρ, kz)-plane having the same modulus

K =
√

k2
ρ + k2

z form a circle. The total probability that a
measurement of the neutron momentum gives the result
K is the sum of the contributions from all the points of
this circle.

The probability to find the neutron momentum in a
given element is

Pkρ,kz
= |F (kρ, kz)|2kρΔkρΔkz. (16)
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Fig. 7. The distribution of the modulus of the momentum K
for the states 1 to 10.

Hence an absolute value Kkρ,kz
and a probability

Pkρ,kz
are associated to each grid point. To represent the

K-distributions as histograms, we divide the domain of K-
values in equal intervals and group the points according to
the interval to which they belong. Summing the probabili-
ties of the points in each group one obtains the probability
that a neutron has its K-value in the respective interval.
The resulting histograms are shown in figs. 7, 8.

As expected, with increasing energy (i.e., the index
of the wave function) the K-distribution shifts to larger
momenta. The width is however almost the same reflecting
the confinement of the wave function inside the nucleus:
each state practically occupies the whole nucleus. Hence a
constant spread of the positions leads to a constant spread
of the momenta (Heisenberg).

What is not expected from the analogy with the clas-
sical mechanics or from the uncertainty principle is that,
for certain states, the K-distribution has more than one
peak. This can be understood from figs. 2, 3 and 4. The
maxima of the square modulus of the Fourier transform
lie on circles on the (kz, kρ)-plane. The number of nodes
in the radial direction determines the number of such cir-
cles which in turn gives the number of the peaks. There-
fore this unexpected feature is easy to explain using the
present results.

One should stress that the clear correlation between
the number of nodes of the WF and the number of peaks
of the corresponding momentum distribution holds only
for Λ = 0. The centrifugal term Λ2/ρ2 creates a turning
point at small ρ values that reduces the range of the K
values: more in the ρ-direction than in the z-direction.
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Fig. 8. The distribution of the modulus of the momentum K
for the states 11 to 15.

This flattens the |F (kρ, kz)|2 distribution, moves the lo-
cus of the maxima away from a circle and broadens the
peaks. As we will see in the next section a similar effect is
produced by the nuclear deformation.

Finally, a discussion of the K-distribution of the lowest
level (E1 = −37.44MeV) is instructive. Its kinetic energy,
approximately E1 − VN = 2.76MeV should represent the
minimum kinetic energy compatible with the uncertainty
relation (the so-called “zero-point motion”). The average
value 〈K〉 of the calculated distribution (see upper-left
frame of fig. 7) is 0.35 fm−1 corresponding to a kinetic en-
ergy Ekin = h̄2

2μ 〈K2〉 = 2.55MeV; hence in good agreement
with the value from above. It appears that this constraint
imposed by Heisenberg’s principle should be understood
only in terms of average values. Since the K-distribution
is quite large, a measurement of the momentum can lead
to smaller values.

Small differences between the present calculations and
the predictions of classical mechanics are also due to
the fact that the WF (contrary to the classical particle)
extends beyond the wall of the potential. The evanes-
cent parts of the WF tend, e.g., to slightly diminish
Ekin as in the comparison from above (2.55MeV instead
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Fig. 9. A spherical and a deformed Woods-Saxon potential
(used as realistic examples).

of 2.76MeV). It increases the average potential energy
〈fi|VN |fi〉 since the integration is performed also over a
small domain where VN = 0 instead of −40.22MeV.

5 A realistic potential

After this pedagogical example we study, in this section,
a more realistic neutron-nucleus potential. It is of Woods-
Saxon type (hence diffuse surface) and contains a spin-
orbit term [21, 22]. The nuclear shape is described by a
Cassinian oval with a given deformation parameter α [23].
Calculations are performed for a spherical (α = 0) and for
a deformed (α = 0.25) 236U nucleus. The corresponding
potentials are represented in fig. 9.

Due to the spin-orbit coupling the wave functions have
two components corresponding to spin “up” and spin
“down”. For a given projection Ω of the total angular
momentum on the symmetry axis they assume the form

|Ψj〉 = f
(1)
j (ρ, z)eiΛ1θ|↑〉 + f

(2)
j (ρ, z)eiΛ2θ|↓〉. (17)

The values Λ1, Λ2 are defined by

Λ1 = Ω − 1
2

, Λ2 = Ω +
1
2

,

Ω is a good quantum number. Because of the left-right
symmetry, the parity π is also conserved.

Be |Ψj↑|2 and |Ψj↓|2 the square moduli of the two
components after integration over θ. Their sum gives the
square modulus of the whole WF. The Fourier transform
of (17) is calculated for each component separately. Be
|FΨj↑|2 and |FΨj↓|2 the square moduli of the same quan-
tities but for their Fourier transform. Their sum gives the
square modulus of the whole FT.

These quantities are represented, for a spherical nu-
cleus, in fig. 10 for selected WFs with Ω = 1/2 and for
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Fig. 10. Square moduli of selected WFs (left) and of the cor-
responding FTs (right) for spherical (α = 0) Woods-Saxon
potential.
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Fig. 11. Square moduli of selected WFs and of the correspon-
dung FTs for deformed (α = 0.25) Woods-Saxon potential.
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Fig. 12. The distribution of the modulus of the momentum
K for selected states: α = 0 (left) and α = 0.25 (right).

the corresponding FTs. As compared with the results from
figs. 2 to 4 there is still some resemblance between the
WFs and their FTs. We stressed in sect. 4.1 that simi-
larity occurs only for Λ = 0 states. Since now the WFs
contain a mixture of Λ = 0 and 1 states, a certain loss
of resemblance is understandable. For states with higher
Ω values the resemblance is even expected to disappear.
For the same reason these bidimensional plots are more
complex than in the simple case and the circular ridges
in the FT plots are less pronounced. As expected, for a
deformed nucleus (fig. 11) the same reduction of the sim-
ilarity between the WFs and their FTs is observed with
this time an increase in complexity. There is however a
noticeable difference: the ridge of the square modulus of
FT is no more a circle but an ellipse. Hence the ridge
does not coincide anymore with the locus of a constant
K value. As compared with the spherical case, one can
foresee a single-peaked, somewhat wider K-distribution.

Using |F (kρ, kz)|2kρΔkρΔkz, one can construct, as be-
fore, a histogram with the moduli K. The results are pre-
sented in fig. 12 for a spherical (left) and for a deformed
(right) nucleus. Even if, as in the simple case, the location
of the maximum shifts towards larger values with increas-
ing the energy of the state, very low momenta (down to
zero) are always populated. The combined effect is an in-
crease in the width of the K-distribution. The analogy
with classical mechanics can provide an explanation: in a
diffuse potential a particle has a continuous distribution
of momenta from zero (at the turning point, on the po-
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tential edge) to a maximum value (at the bottom of the
potential well).

Since, in a deformed nucleus, the K values along the
ridge of the square modulus of FT are no more constant,
the K-distribution has only one broad peak. The effect
of nuclear deformation on the momentum distributions is
therefore non-negligible and has to be taken into account
in the analyses of experimental data obtained in direct
reactions with deformed nuclei.

6 Summary and conclusions

In direct nuclear reaction theories, the removal of the nu-
cleon is treated in the sudden approximation, i.e., the
nucleon is supposed to retain the properties (i.e., quan-
tum numbers) of the bound state from which it was
ejected. The calculations of the momentum distribution
of the ejected nucleon (which is an observable) involves
the Fourier transform of the corresponding nucleonic wave
function. In the case of a deformed nucleus this wave func-
tion is usually expressed in cylindrical coordinates. The
Fourier transforms of such wave functions are therefore
necessary. To our knowledge, the present study contains
the first calculations of this type in nuclear structure. The
formalism and the computing approach used are described
in details. The FT of a nucleonic WF leads directly to the
distribution of the linear momenta of the respective nu-
cleon.

The first potential (a well with sharp walls and of a
constant depth) is chosen because a classical particle mov-
ing in it has the simplest possible momentum distribution
(a δ-function). Due to the uncertainty relation, the cor-
responding distribution of a quantum particle is expected
to be wide and single-peaked. We have found that the cal-
culated distribution, in addition of being wider, has from
one to three peaks, depending on the number of nodes
of the WF. The explanation is that the FT conserves the
number of nodes of the WF and therefore the square mod-
ulus of the FT can exhibit more than one spherical ridge
naturally leading to multiple-peaked K-distributions.

The second choice is a Woods-Saxon potential that is
known to describe realistically a spherical nucleus. Due
to its diffuseness, a classical particle has a continous mo-
mentum distribution that stretches from the origin up to
a maximum value. As a result, in addition to the above-
mentioned peaks, wider this time, the K-distribution of
a nucleon exhibits a tail towards K = 0 and a less pro-
nounced structure.

The third choice is a deformed Woods-Saxon poten-
tial. The ridges of the square modulus of the FT are no
more spherical but ellipsoidal. They no more coincide with
the geometrical locus of constant K values which is still a
circle. Along these ridges the K value varies and, conse-
quently, the structures are washed out. A measurable dif-
ference between the momentum distributions of nucleons
in spherical and deformed nuclei is therefore predicted.

We may conclude that the present study encourages
new experimental investigations of direct reactions involv-
ing both spherical and deformed heavy nuclei. From the

theoretical side the effect of a further increase of the nu-
clear deformation (i.e., along the fission path) on the mo-
mentum distribution should be estimated. New interesting
aspects are expected to be found.

Appendix A.

Let us consider the one-dimensional Fourier transform in
quantum mechanics:

F1(k) =
1√
2π

∫ ∞

−∞
f(x)e−ikxdx. (A.1)

The variable x belongs to the position space and the
variable k belongs to the momentum space.

In order to deduce the relation with the standard
transform:

F (ω) =
∫ ∞

−∞
f(t)e−i2πtωdt

let us make the notations k =
√

2πU , x =
√

2πu. We have

F1

(√
2πU

)
=

1√
2π

∫ ∞

−∞
f

(√
2πu

)
e−i2πuU

√
2πdu

=
∫ ∞

−∞
f

(√
2πu

)
e−i2πuUdu.

With the change of variable t =
√

2πu, the last integral
becomes:

1√
2π

∫ ∞

−∞
f(t)e−i2πtU/

√
2πdt

so that

F1(
√

2πU) =
1√
2π

F

(
U√
2π

)
.

Denoting U =
√

2πω we have

F1(2πω) =
1√
2π

F (ω)

or

F1(k) =
1√
2π

F (ω) (A.2)

if k = 2πω. Thus, to obtain the Fourier transform in vari-
able k one has to multiply the standard transform by 1√

2π
.

In two dimensions, the factor will be 1
2π . The variables of

the two transforms differ by a factor of 2π.
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