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Communicated by D. Blaschke

Abstract. Heavy-ion collisions performed in the beam energy range accessible by the NICA collider facility
are expected to produce systems of extreme net-baryon densities and can thus reach yet unexplored regions
of the QCD phase diagram. Here, one expects the phase transition between the plasma of deconfined quarks
and gluons and the hadronic matter to be of first order. A discovery of the first-order phase transition
would as well prove the existence of the QCD critical point, a landmark in the phase diagram. In order
to understand possible signals of the first-order phase transition in heavy-ion collision experiments it is
very important to develop dynamical models of the phase transition. Here, we discuss the opportunities
of studying dynamical effects at the QCD first-order phase transition within our model of nonequilibrium
chiral fluid dynamics.

1 Introduction

Heavy-ion collisions at highest beam energies as performed
at the LHC have created the quark-gluon plasma (QGP),
which consists of deconfined quarks and gluons, in the lab-
oratory. This liberation of color degrees of freedom at high
temperatures is indicated in the change of thermodynamic
quantities as calculated from lattice QCD [1,2]. At these
high energies the net-baryon density in the center region of
the collision is very close to zero. Here, lattice QCD calcu-
lations have shown that the transition between the QGP
and the confined hadronic matter at low temperatures is
an analytic crossover [3]. At finite baryo-chemical poten-
tials lattice QCD calculations become notoriously difficult
due to the fermionic sign problem [4]. In order to learn
about some aspects of QCD at low temperatures and fi-
nite densities one can study low-energy effective models.
It is a generic feature of effective models without vector
coupling in mean field [5–8] or beyond [9–14] to find a
phase transition of first order at high baryonic densities.
As a consequence the line of first-order phase transition
ends in a critical point, a singular point of a second-order
phase transition. If the vector coupling is increased, how-
ever, the critical point moves to lower temperatures and
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higher densities until it disappears completely [15–18]. It
would be an interesting task to constrain the value of the
vector coupling by comparison to either experimental data
or lattice QCD calculations [19–21].

The QCD critical point is of special interest, because
fluctuations of conserved quantities and order parameter
fields diverge at second-order phase transitions accord-
ing to their universal behavior. If the system created in a
heavy-ion collision can be described thermodynamically in
the vicinity of the critical point, large event-by-event fluc-
tuations should be seen in measured multiplicities, such as
net-charge or net-proton multiplicities [22–26]. It is well
known, however, that dynamical systems experience the
phenomenon of critical slowing down [27], which arises
due to the divergence of the relaxation time near a crit-
ical point. It is currently debated how the fast dynamics
of the expansion of the QGP will affect critical signatures
in fluctuation observables [28,29].

Another possibility of proving the existence of the crit-
ical point is to look for signals of the first-order phase
transition at large baryonic densities, as will be reached
by upcoming heavy-ion experiment facilities like NICA in
Dubna and FAIR at GSI. At a first-order phase transition
two thermodynamic phases coexist and are separated by a
potential barrier associated with the latent heat. In ther-
modynamic systems the equation of state for a first-order
phase transition is obtained by a Maxwell construction for
the pressure of the coexistence region which connects the
pressures of the high and the low temperature phases. By
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this construction the system is thermodynamically stable
and the speed of sound vanishes. The equation of state is
very soft and various observables have been proposed to
be sensitive to it [30,31]. If a system, however, goes dy-
namically through a first-order phase transition, it might
be trapped in the metastable state, a phenomenon called
supercooling. The metastable state can decay via nucle-
ation or for large nucleation times via spinodal decompo-
sition [32–35]. Large inhomogeneities, domain formation
and an enhancement of the low-momentum modes are ex-
pected in these systems [36–39].

In order to understand the impact of the dynamics on
the phase transition phenomena it is of crucial importance
to develop models which couple the phase transition to the
expansion of a heavy-ion collision. In the present work, we
will discuss the capabilities of nonequilibrium chiral fluid
dynamics to address these questions. We focus on the first-
order phase transition, which lies in the region of the phase
diagram expected to be covered by the NICA facility.

2 Nonequilibrium chiral fluid dynamics
(NχFD)

In the last couple of years the model of NχFD for the
explicit propagation of fluctuations coupled to a dynamic
expansion of a heavy-ion collision was developed [40] show-
ing that nonequilibrium effects can have an important
influence on the evolution of the fluctuations of the or-
der parameter of chiral symmetry [35,41–45]. This ap-
proach starts from a low-energy effective model, such as
the quark-meson (QM) or Polyakov-loop extended quark-
meson (PQM) model [5–8]. The equation of motion for
the sigma field are derived within the framework of the
two-particle irreducible effective action as

∂μ∂μσ + ησ(T )∂tσ +
∂(U + Ωq̄q)

∂σ
= ξσ. (1)

Here, U is the classical chiral potential including a term
for explicit chiral symmetry breaking and

Ωqq̄ = −2NfNcT

∫
d3p

(2π)3
{

ln
[
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]

+ ln
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]}
(2)

is the thermodynamic potential for the fermionic degrees
of freedom in mean-field approximation. The energy of the
constituent quarks is given by Eq =

√
p2 + g2〈σ〉2. The

damping coefficient ησ(T ) is calculated via the scatter-
ing processes of the sigma field with the quarks and anti-
quarks. Assuming that the relaxation time of the quarks
and antiquarks is much shorter than that for the order
parameter, they constitute a heat bath. By effectively in-
tegrating out these degrees of freedom the stochastic noise
term ξσ is generated from the information loss of this sec-
tor. It is approximated as Gaussian white noise and the
magnitude of the variance depends via the dissipation-
fluctuation theorem on the damping coefficient. It is cru-
cial for this approach to note that the dynamics of the
fluctuations of the order parameter is not deterministic.

Since the Polyakov-loop 	 is an effective field, the dy-
namics cannot be calculated directly and we use a phe-
nomenologically motivated stochastic relaxation equation
according to

η�∂t	T
2 +

∂(U + Ωq̄q)
∂	

= ξ�. (3)

For the same reasons the damping term η� cannot be de-
rived from the underlying model either. We use a value of
η� = 5/fm, and the results turn out to be rather indepen-
dent of the precise value. U is the polynomial form of the
temperature-dependent Polyakov-loop potential.

The equations of motion of the quark-antiquarks are
coarse-grained to yield the fluid dynamical equations of
energy-momentum conservation with the pressure p =
−Ωqq̄(σ;T, μ). Since, however, the fluid sector is coupled
to the propagation of the sigma field there will be an ex-
change of energy and momentum in a finite system con-
sidered here. Therefore, the fluid dynamical equations are
augmented with a source term

∂μTμν = Sν , (4)
∂μNμ

q = 0. (5)

Due to the stochastic evolution of the sigma field the
source term,

Sν = −∂μ Tμν
σ , (6)

is also of stochastic nature and fluctuations in the sigma
field couple to the conserved densities.

We test our model first in a static box set-up. The
sigma field is initialized at its equilibrium value for a tem-
perature well above the respective transition temperature
via the solution of the gap equation in mean-field approx-
imation

∂(U + Ωq̄q)
∂σ

∣∣∣∣
σ=σeq

= 0. (7)

The matter in the static box is itself initialized at a tem-
perature below the transition temperature. At the begin-
ning of the evolution, there is thus a large nonequilib-
rium situation. In this scenario, also known as a sudden
temperature quench, we can study the relaxational evo-
lution of the coupled system. As the system crosses the
phase transition dynamical fluctuations are generated. We
plot a measure for the intensity of the sigma field fluc-
tuations Nσ as a distribution for the different modes in
fig. 1. Two scenarios are shown, including the critical point
and the first-order phase transition. The upper plot shows
the results after t = 3 fm/c for the critical point scenario
and after t = 12 fm/c for the scenario with a first-order
phase transition. The lower plot shows both scenarios af-
ter t = 24 fm/c. First, one observes that the relaxation
of the scenario including the first-order phase transition
is significantly delayed compared to the critical point sce-
nario and the fluctuation intensity of the low modes is
enhanced only during the relaxation process. Second, the
critical point scenario shows an enhancement in the equi-
librated state which is similar to the enhancement during
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Fig. 1. The soft modes of the sigma field for times of t =
12 fm/c (upper panel) and for t = 24 fm/c after equilibration
of the system in a box calculation [42].

the expansion. Although the relaxation time near the crit-
ical point is larger than in the crossover regime the bar-
rier in a first-order scenario affects the dynamics of the
system more strongly when comparing equilibrium versus
nonequilibrium.

We like to point out that the current framework is
very flexible in incorporating different types of low-energy
effective models. We recently investigated a chiral model
with a dilaton field [46,44].

3 Domain formation

In NχFD fluctuations are generated dynamically which
means that even for smooth initial conditions spinodal
instabilities may arise during the evolution through the
phase transition, as was shown in [43]. The results in
this section are obtained in an expanding system with
spherical initial conditions of a smooth energy density and
net-baryon density profile exponentially decreasing at the
edges. The order parameter fields are initially in equilib-
rium at the local temperature and baryochemical poten-
tial.

In fig. 2 we compare snapshots of the evolution of the
net-baryon number density at different instances of time
(t c/fm = 0.88, 6.48, 11.28, 14.32 from left to right) in the
x-y plane at z = 0. We normalize the local net-baryon
number density by the spatial average of the same quan-
tity. In the upper row the effective model is the PQM
model, while the lower row shows an evolution accord-
ing to an effective chiral quark-hadron (QH) model. This

model is similar to the SU(3) nonlinear sigma model with
quark degrees of freedom discussed in [47]. The hadronic
fields include the baryon octet, the vector-isoscalar ω and
φ and the scalar-isoscalar σ and ζ mesonic condensates.
We do not include the ρ- and the δ-meson, which are
important for isospin asymmetric matter as in neutron
stars. The model in [47] includes a phenomenological field
Φ, which suppresses the baryonic degrees of freedom for
high temperatures and densities and the quark degrees
of freedom at low temperatures and densities. The equa-
tion of state which is obtained within the (P)QM model
is that of a liquid-gas phase transition: the pseudocriti-
cal pressure increases with the temperature ∂pc/∂T > 0
and vanishes at zero temperature. Consequently, dense
quark matter can coexist with the vacuum at zero temper-
ature [48]. We know, however, that dense quark matter at
low temperatures coexists with compressed nuclear mat-
ter. At high baryonic densities the partonic phase dur-
ing a heavy-ion collision is expected to be shorter than
at zero net-baryon density [49,50], and the impact of the
hadronic interactions on the global observables is more
significant. It is, therefore, extremely important to prop-
erly treat the hadronic degrees of freedom at low temper-
atures within NχFD for a fully realistic dynamical model
of heavy-ion collisions near the phase transition. The QH
model improves this situation since the hadronic degrees
of freedom provide a nonzero pressure at low tempera-
tures and the pseudocritical pressure decreases with the
temperature ∂pc/∂T < 0 [51]. The QH phase transition is
thus phenomenologically very different from the liquid-gas
phase transition. This equation of state presented in [47]
and used in its equilibrium form for hybrid model simula-
tions of heavy-ion collisions in [52] reproduces well the
phenomenology of saturated nuclear matter, which the
PQM model does not. We can directly observe the differ-
ences between these two models by comparing the upper
and the lower row of fig. 2. Starting from smooth spherical
initial conditions the system dynamically develops spatial
inhomogeneities in the coexistence region. This is most
clearly observed in the second plot from the left, upper
and lower row, where regions of particularly high densi-
ties with respect to the average, these are droplets of quark
degrees of freedom, and regions of low densities, are found.
This pattern develops in both equations of state. The most
prominent difference between the PQM and the QH equa-
tion of state lies in the late stage evolution. Due to the
vanishing pressure at low temperatures quark droplets re-
main stable in the case of the PQM equation of state as
can be seen in the two right plots of the upper row in
fig. 2. For the QH equation of state the quark droplets
decay in the final stages of the evolution. This behavior
can be quantified by looking at the time evolution of the
normalized moments of the spatial net-baryon density dis-
tribution

〈nN 〉 =
∫

d3xn(x)NPn(x), (8)

with

Pn(x) =
n(x)∫

d3xn(x)
.
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Fig. 2. Snapshot of the evolution of the domain formation and decay through a first-order phase transition at different times.
Shown is the normalized local net-baryon density in the x-y plane at z = 0. The top row shows the dynamics of a PQM equation
of state and the lower row that of the QH equation of state.

This is shown in fig. 3 for the PQM equation of state in
the top panel and for the QH equation of state in the bot-
tom panel. One sees the continuous increase for the PQM
equation of state (with some oscillations) and the dynami-
cal formation and decay of the spatial inhomogeneities for
the QH equation of state.

4 Conclusions

The model of nonequilibrium chiral fluid dynamics offers
the unique possibility to study the dynamics of fluctua-
tions at the phase transition embedded in a realistic ex-
pansion of the matter created in a heavy-ion collision. Es-
pecially at a first-order phase transition it is important
to properly take into account the nonequilibrium effects
which arise due to the fast dynamics. While expanding
a background fluid of quarks and antiquarks we propa-
gated the order parameter fields, like the sigma field or
the Polyakov loop, explicitly. These two sectors are cou-
pled via the damping coefficient and the noise term, the
equation of state and the stochastic source in the fluid
dynamical equations ensuring energy and momentum con-
servation of the total system.

This model is able to reproduce the qualitative fea-
tures of the nonequilibrium effects at the first-order phase
transition such as the supercooling and subsequent decay
of the metastable state leading to domain formation at
the phase transition.

In order to make quantitative predictions for possible
signals of the first-order phase transition, like, for exam-
ple, enhanced flow coefficients due to the spatial irregu-
larities of domain formation or enhanced deuteron over
proton yields, the current model needs to be improved
such that the hadronic phase is treated correctly. Finally,
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Fig. 3. Time evolution of the moments of the net-baryon num-
ber density distribution over space normalized by the respec-
tive power of the mean. The top panel shows the results for
the PQM model, the bottom panel shows results for the QH
model.
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of course realistic initial conditions including the initial
baryon stopping and the late-stage hadronic interactions
need to be included to make reliable predictions for the
upcoming NICA facility.
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