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Abstract. The role of different continuum components in the weakly bound nucleus 6He is studied by
coupling unbound spd-waves of 5He by means of simple pairing contact-delta interaction. The results of
our previous investigations in a model space containing only p-waves showed the collective nature of the
ground state and allowed the calculation of the electric quadrupole transitions. We extend this simple
model by including also sd-continuum neutron states and we investigate the electric monopole, dipole and
octupole response of the system for transitions to the continuum, discussing the contribution of different
configurations.

1 Introduction

Due to the recent developments in the radioactive beam
facilities around the world, it is possible to explore new
phenomena in unstable nuclei far from the line of stabil-
ity. In the vicinity of the neutron drip line, a neutron halo
is among the most interesting phenomena found in some
unstable nuclei [1]. Typical two-neutron halo nuclei are
6He [2] (system under study), 11Li [1], 14Be [3] and re-
cently observed 22C [4]. These two-neutron halo nuclei
are referred as Borromean nuclei [5], when there is no
bound state between a valence neutron and a core nu-
cleus. Borromean nuclei typically have small two-neutron
separation energy (S2n). Due to diminishing half-lives and
narrow production cross sections, the experimental anal-
ysis of these drip line systems is a challenging issue. In
these weakly bound nuclear systems, the properties of the
continuum states become progressively more and more
fundamental to the nuclear structure and reactions. On
the theoretical side the treatment of low breakup thresh-
olds, responsible for strong coupling of bound and con-
tinuum states is the challenging issue. A low breakup
threshold introduces many new features such as large spa-
tial density distribution [1, 2], evolution of new magic
numbers [6], a narrow momentum distribution [7] and
at lower excitation energies strong concentration of elec-
tric dipole strength [8–11] in these systems. In this pa-
per we study the electric multipole response of the well-
established halo nucleus 6He. Experimentally the higher
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excited states of 6He are still under discussion and the
features of resonance states are still not very clear. In
the eighties, the Jπ = 0+ ground state and first excited
Jπ = 2+ state at energy 1.797MeV have been confirmed
in numerous reactions [12, 13]. In the late nineties, the
6Li(7Li, 7Be)6He charge-exchange reaction has been stud-
ied at E(7Li) = 350MeV and transitions to the known
Jπ = 0+ ground state and the Jπ = 2+ state at Ex = 0.0
and 1.8MeV (weak) and three strong and broad reso-
nances at Ex ≈ 5.6, 14.6 and 23.3MeV have been ob-
served [14]. The strong resonances at ∼ 5.6MeV and
∼ 14.6MeV are interpreted as 2+ and (1, 2)− resonances,
respectively. Proton-neutron exchange reactions between
two fast colliding nuclei produced resonant-like structures
around 4MeV [15] of width Γ ∼ 4MeV, as well as asym-
metric bump at ∼ 5MeV [16], and these structures are ex-
plained as dipole excitations compatible with oscillations
of positively charged 4He core against halo neutrons. Dif-
ferent mechanisms have also been proposed to explain this
mode and this phenomenon is still under debate. More re-
cently, the two-neutron transfer reaction p(8He, t) at the
SPIRAL facility at 15.4AMeV (GANIL, Caen), populated
a much narrower 2+ (Γ = 1.6MeV) state and a J = 1 res-
onance (Γ ∼ 2MeV) of unassigned parity at energies 2.6
and 5.3MeV, respectively [17]. It is worthwhile to men-
tion that a very new reaction 3H(α, pα)2n with a four-
body exit channel, induced by the interaction of alpha-
particles at energy of Eα = 67.2MeV, apparently shows
the existence of ten resonant states [18]. The most part
of these states are narrow resonances, as their total width
is less than the energy of a resonance. Figure 1 presents
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Fig. 1. (Color online) Experimental spectroscopy of 6He. Notes: a Reference [12], (n, p) at 60MeV/nucleon. b Reference [13].
c Reference [14], (7Li, 7Be) at 50 MeV/nucleon. d,e References [15, 19], (7Li, 7Be) at 65 MeV/nucleon. g,h References [16, 20],
(t, 3He) at 112MeV/nucleon. i Reference [21], (7Li, 7Be t) at 65 MeV/nucleon. j Reference [17], (8He, t) at 15.4 MeV/nucleon.
k Reference [18], (α, pα) at 67.2 MeV/nucleon. f Fixed in fits.

the chronological order of experimental data on 6He. As
it appears from this picture, there is no general consensus
on the spectrum and the role of the continuum is far from
being understood.

On the theoretical side, the 2n-halo structure of 6He
was investigated in several different formalisms. Many pre-
dictions, most of which incomplete in one way or another,
suggest a sequence of levels 0+

gs, 2+
1 , 2+

2 , 1+, 0+
1 , but dis-

agree on the positions and widths of these states. Most of
the 6He structure predictions took only p-shell excitations
into account, but more complete picture must include the
promotion of neutrons to sd-shell. In particular sd-shell
plays a vital role, allowing the possibility of dipole excita-
tions to the continuum. The halo structure of 6He is quite
well understood by 4He + n + n model. The binding en-
ergy is underestimated by a small amount (∼ 0.2MeV less
than the observed value) and this suggests that 4He core
excitations might be important [22–26]. In order to under-
stand the weak binding characteristics of light nuclei close
to the drip line, the continuum coupling effects have been
investigated within various frameworks: the Gamow Shell
model [27–30], the Continuum Shell Model [31], the Com-
plex Scaled Cluster Orbital Shell Model [32] and the Hy-
perspherical Harmonics Expansion [5]. All these nuclear
models are successful in predicting the ground state and

first excited state structure to a reasonable degree, but
they disagree for predictions of other higher excited states.
The Quantum Monte Carlo p-shell calculations [33], along
with well established ground state and first excited state
structure, predict the energy of the excited 0+ state at
about 4.66MeV, depending on the interaction used. In
other calculations, the energy of the excited 0+ state might
be as low as 4.9MeV [32] or as high as 8MeV [29]. The en-
ergy of the 1+ state covers the range of 3.4 [29] to 8 [34,35]
MeV. On the other hand, in the few-body calculations
of refs. [36, 37], the two 0+ states were nearly pure jj-
coupled states. This calculation allowed excitations into
the sd-shell, but these turned out to be small for the g.s.
and even less for the excited 0+ state. The sd-shell occu-
pancy was larger for the 2+ states. In order to avoid the
uncertainties due to the treatment of α particle as point
particle, recently ref. [38] studied the 6He nucleus in a fully
microscopic six-nucleon calculation, claiming that the E1
strength function exhibits a two-peak structure at around
3 and 33MeV excitation energy. The lower peak is well
understood in the framework of the α + n + n structure
and its excitation mechanism is consistent with the clas-
sical interpretation of the soft dipole mode (SDM). The
higher peak is the typical giant dipole resonance that ex-
hibits out-of-phase proton-neutron collective oscillations.
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Just a few MeV above the SDM peak, some new modes are
found that can be regarded as a vibrational excitation of
the SDM. Most of the theoretical models explains ground-
state structure fairly well to study dynamics of nuclear
reactions, but they lack on incorporation of effects due
to the presence of the continuum. These effects plays vital
role to understand the major reason of their stable charac-
ter. Only very recently in ref. [39] the continuum has been
included, they found several resonances,including the well-
known narrow 2+

1 and the recently measured broader 2+
2 .

Additional resonant states emerged in the 2−and 1+ chan-
nels near the second 2+ resonance and in the 0− channel
at slightly higher energy. Motivated by the recent exper-
imental measurements at GANIL [17, 18], on continuum
resonances in 6He, we have developed a simple theoret-
ical model [40] to study the weakly bound ground state
and low-lying continuum states of 6He by coupling two
unbound p-waves of 5He. In our approach, rather than
simulating the resonance with a bound wave function, we
calculate the full continuum single-particle spectrum of
5He in a straightforward fashion and use two copies of
the oscillating continuum wave functions to construct two-
particle states. In the present study we have extended the
model space with inclusion of sd-continuum waves of 5He.
The large basis set of these spd-continuum wave functions
are used to construct the two-particle 6He ground state
0+ emerging from five different possible configurations,
i.e. (s1/2)2, (p1/2)2, (p3/2)2, (d3/2)2 and (d5/2)2. The sim-
ple pairing contact-delta interaction is used and pairing
strength is adjusted to reproduce the bound ground state
of 6He. The extension of model space is a computation-
ally challenging problem that required careful planning
and consideration before undertaking the numerical work.
The main aim is to show how an extension of theoretical
concepts related to residual interactions, namely a con-
tact delta pairing interaction, naturally explains the stable
character of the bound states of Borromean nuclei, such as
6He and simultaneously account for some of the resonant
structures seen in the low-lying energy continuum. The
extension of model space also allowed us to calculate the
monopole, dipole and octupole response of the system.

The paper is organized as follows: sect. 2 describes the
complete formulation of our simple structure model. In
sect. 3 we analyzed the subsystem 5He and sect. 4 presents
a comparison of our present calculations on ground-state
properties of 6He with previous calculations. Section 5 de-
scribes the procedure that we have adopted for setting
the pairing strengths for various multipolarities, followed
by mathematical set up for electric transitions to contin-
uum in sect. 6. Sections 7–9 presents the new results on
monopole, dipole and octupole response of the system.
Finally, sect. 10 presents our conclusions.

2 Model formulation

Each single-particle continuum wave function of 5He is
given by

φ�,j,m(r, EC) = φ�,j(r, EC)
[
Y�m�

(Ω) × χ1/2,ms

](j)
m

. (1)

We have used the midpoint method [41, 42] to discretize
the continuum, in present calculations, which consists of
taking the scattering state defined as

φ̃i(r) =
√

Δ φ(r, Ēi), Ei > 0, (2)

for a discrete set of scattering energies, where Ēi = (Ei +
Ei−1)/2, with Δ as common energy interval or width of
the bin. In the midpoint method, continuum channels are
represented by the channel at a midpoint of the bin. The
resulting set of wave functions φ̃ij(r) satisfies the following
orthogonality condition:

∫
φ̃i(r)φ̃j(r)dr = Δδijδ(Ēi − Ēj), (3)

that depends on the bin width (Δ). The combined tensor
product of these two continuum states is given by

ψJM (r1, r2) = [φ�1,j1,m1(r1, EC1)×φ�2,j2,m2(r2, EC2)]
(J)
M .
(4)

In the following we will omit the explicit dependence on
the energies EC1 and EC2, although it is understood that
each two-particle wave function still depends upon two
energies. In LS-coupling the antisymmetric wave function
ψ(
1
2SLJM) is given by

ψ (
1
2SLJM) =
1

√
1 + δl1,l2

×
∑

MS ,ML

〈SMSLML|SLJM〉

×
[
φ12(
1
2LML)χ12(s1s2SMS)

−φ21(
2
1LML)χ21(s2s1SMS)
]
. (5)

By making use of symmetry relations eq. (5) can be writ-
ten as

ψ (
1
2SLJM) =
1

√
1 + δl1,l2

×
∑

MS ,ML

〈SMSLML|SLJM〉

×
[
φ(
1
2LML) + (−1)(�1+�2−L+S)

×φ(
2
1LML)
]
χ(s1s2SMS). (6)

The generic matrix elements (diagonal and non-diagonal)
due to mutual interaction V12 in LS-coupling of two par-
ticles are given by

〈
a
bSLJM |V12|
c
dS
′L′J ′M ′〉 =

∑
〈SMSLML|SLJM〉〈S′M ′

SL′M ′
L|S′L′J ′M ′〉

×〈s1ms1s2ms2 |s1s2SMS〉〈s′1m′
s1

s′2m
′
s2
|s′1s′2S′M ′

S〉

×〈
ama
bmb|
a
bLML〉〈
cmc
dmd|
c
dL
′M ′

L〉

×
∫ [

φ1(a)χ1(ms1)φ2(b)χ2(ms2)
]∗

V12

∗
[
φ1(c)χ1(m′

s1
)φ2(d)χ2(m′

s2
)
]
dr1dr2, (7)
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where quantum numbers 
a and 
c are associated with par-
ticle 1, 
b and 
d are associated with particle 2. 
a and 
b

are coupled to L and 
c and 
d are coupled to L′. We take
an attractive pairing contact delta interaction because we
can reach the goal of calculation of electromagnetic re-
sponse with only a few parameters (the pairing strengths).
For S = 0 the explicit expression for V12 is given by

V12 = −gδ (r1 − r2) ,

where

δ (r1 − r2) =
δ(r1 − r2)

r1r2
δ (cos(θ1) − cos(θ2)) δ (ϕ1 − ϕ2) ,

(8)
where g is the actual strength of the pairing interaction,
is obtained by correcting the coefficient of the δ-contact
matrix, G, with the energy spacing ΔE, i.e.

g =
G

(ΔE)2
. (9)

Using eq. (1) and eq. (8) and making use of the fact that
V12 is spin independent, the integral in eq. (7) can be
rewritten as

∫ [
φ1(a)χ1(ms1)φ2(b)χ2(ms2)

]∗
V12

∗
[
φ1(c)χ1(m′

s1
)φ2(d)χ2(m′

s2
)
]
dr1dr2 =

∫
R∗

na�a
(r)R∗

nb�b
(r)

1
r2

Rnc�c
(r)Rnd�d

(r)dr

×
∫

Y ∗
�ama

(Ω)Y ∗
�bmb

(Ω)Y�cmc
(Ω)Y�dmd

(Ω)dΩ, (10)

where R(r) are the radial parts of the scattering states
defined in eq. (1). Using the property of two spherical
harmonics of same angles, we have

[Y�ama
(Ω)Y�bmb

(Ω)]∗ =
∑

�,m

(−1)�−m

×
(


 
a 
b

−m ma mb

)
〈
‖Y�a

‖
b〉∗Y�m(Ω)∗,

[Y�cmc
(Ω)Y�dmd

(Ω)] =
∑

�′,m′

(−1)�′−m′

×
(


′ 
c 
d

−m′ mc md

)
〈
′‖Y�c

‖
d〉Y�′m′(Ω), (11)

where the Condon and Shortley phase convention has been
adopted. Using the orthonormality property of spherical
harmonics, we are left with

∫
Y ∗

�ama
(Ω)Y ∗

�bmb
(Ω)Y�cmc

(Ω)Y�dmd
(Ω)dΩ =

∑

�,m

(−1)2(�−m)

(

 
a 
b

−m ma mb

)(

 
c 
d

−m mc md

)

×〈
‖Y�a
‖
b〉∗〈
′‖Y�c

‖
d〉. (12)

Hence, using the above assumptions and properties, eq. (7)
is reduced to

〈
a
bSLJM |V12|
c
dS
′L′J ′M ′〉 =

∑
〈SMSLML|SLJM〉〈S′M ′

SL′M ′
L|S′L′J ′M ′〉

×〈s1ms1s2ms2 |s1s2SMS〉〈s′1m′
s1

s′2m
′
s2
|s′1s′2S′M ′

S〉

×〈
ama
bmb|
a
bLML〉〈
cmc
dmd|
c
dL
′M ′

L〉

×
∑

�m

(−1)2(�−m)

(

 
a 
b

−m ma mb

)(

 
c 
d

−m mc md

)

×〈
‖Y�a
‖
b〉∗〈
′‖Y�c

‖
d〉

×
∫

R∗
na�a

(r)R∗
nb�b

(r)
1
r2

Rnc�c
(r)Rnd�d

(r)dr. (13)

The major ingredients for the complete study of 6He are
the matrix elements of pairing interaction. These corre-
spond to the radial integrals and to the coefficients. The
coefficients of these matrix elements of eq. (13) for 0+,
1−, 2+ and 3− are summarized in tables of [43]. The full
computational procedure is described in details in [43,44].

3 Analysis of 4He + n subsystem

An analysis of the 4He + n subsystem (5He) is indispens-
able in studying 6He as a typical nucleus of a Borromean
system of 4He+n+n. In order to study the binding mech-
anism of 6He, the interaction between a core of 4He and
a valence neutron plays an important role. The unbound
nucleus 5He can be described as an inert 4He core with
an unbound neutron moving in p, d or s states in a sim-
ple independent-particle shell model picture. These p and
d states are split by spin-orbit interaction. Experimen-
tally only the p3/2 and p1/2 resonances are confirmed at
0.789 and 1.27MeV, respectively above the neutron sep-
aration threshold. Their widths are quoted as 0.648MeV
and 5.57MeV, respectively [45]. Theoretically in order to
extend the model space we have also included the sd-shell
in the picture. The continuum monopole (
 = 0), dipole
(
 = 1) and quadrupole (
 = 2) scattering single-particle
states (EC > 0, k > 0) of 5He are generated with Woods-
Saxon (WS) potential given by

VWS =
[
V0 + Vlsr

2
0(l · s )

1
r

d
dr

] [
1 + exp

(
r0 − R

a

)]−1

,

(14)
where R = r0A

1
3 . For 5He the parameter set used is WS

potential depth V0 = −42.6MeV, r0 = 1.2 fm, a = 0.9 fm
and spin-orbit coefficient Vls = 8.5MeV. The continuum
single-particle wave functions are calculated (see fig. 2
of [40], fig. 1 of [43] and fig. 2 of [46]), with energies from
0.0 to 10.0MeV, normalized to a Dirac delta in energy,
for the spd-states of 5He on a radial grid that goes from
0.1 fm to 100.0 fm with the potential given above.
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4 Ground-state properties of 6He

The simple model with two non-interacting particles in the
above single-particle levels of 5He produces different parity
states (see table 1 of [46]) when two neutrons are placed
in five different unbound orbits, s1/2, p1/2, p3/2, d3/2 and
d5/2. Namely five configurations (s1/2)2, (p1/2)2, (p3/2)2,
(d3/2)2 and (d5/2)2 couple to J = 0+, seven configurations
(s1/2d3/2), (s1/2d5/2), (p1/2p3/2), (p3/2p3/2), (d3/2d3/2),
(d3/2d5/2) and (d5/2d5/2) couple to J = 2+, five config-
urations (s1/2p1/2), (s1/2p3/2), (p1/2d3/2), (p3/2d3/2) and
(p3/2d5/2) couple to J = 1− and three configurations
(p1/2d5/2), (p3/2d3/2) and (p3/2d5/2) couple to J = 3−.
Other less important multipolarities can also be con-
structed as in table 1 of [46].

An attractive pairing contact delta interaction has
been used, −gδ(r1 − r2) for simplicity, because we can
reach the goal with only one parameter adjustment. With
continuum single-particle wave functions, using the mid-
point method with an energy spacing of 2.0, 1.0, 0.5, 0.2
and 0.1MeV, corresponding to block basis dimensions of
N = 5, 10, 20, 50 and 100, respectively, the two-particle
states are formed and the matrix elements of the pairing
interaction are calculated. The resulting matrix has been
diagonalized with standard routines and it has given the
eigenvalues shown in fig. 2 of [46] for the J = 0+ case.
It is clear from the eigenspectrum that, with increase in
basis dimensions the superfluous bound state moves into
the continuum. This was not present in our old work [40],
and it can be attributed to the new, more complete basis.
The coefficient of the δ-contact matrix, G, has been ad-
justed to reproduce the correct ground-state energy each
time. The actual pairing interaction g is obtained by cor-
recting with a factor that depends on the aforementioned
spacing between energy states and it is practically a con-
stant, except for the smallest basis. The biggest adopted
basis size gives a fairly dense continuum in the region of
interest. The radial part of the S = 0 g.s. wave func-
tion (see fig. 3 of [46]) obtained from the diagonalization
in the largest basis, shows a certain degree of collectiv-
ity, taking contributions of comparable magnitude from
several basis states, while in contrast the remaining un-
bound states usually are made up of a few major compo-
nents [44]. The detailed components for each configuration
are summarized in table 1, and compared with the previ-
ous calculations of Hagino [47] and Myo [48]. The present
calculations are well in agreement with the previous calcu-
lations of Hagino and Myo, where Hagino [47] employed a

Table 1. Components of the ground state (0+
1 ) of 6He.

Config. Present T. Myo [48] Hagino [47]

(2s1/2)
2 0.008 0.009 –

(1p1/2)
2 0.080 0.043 –

(1p3/2)
2 0.897 0.917 0.830

(1d3/2)
2 0.005 0.007 –

(1d5/2)
2 0.009 0.024 –

Table 2. Radial properties of the ground state of 6He in units
of fm.

Present T. Myo [48] Hagino [47]

Rm 2.37674 2.37 . . .

r2
NN 28.8404 23.2324 21.3

r2
c−2N 7.21011 9.9225 13.2

simple three-body model by using the density-dependent
contact interaction to calculate the ground state of 6He
and Myo [48] employed the complex scaled-cluster orbital
shell model (CS-COSM) with the Minnesota interaction to
fix the ground state of 6He. The calculated ground-state
properties are summarized in table 2 in comparison with
calculations [47,48], where Rm is the matter radius,

〈r2
NN 〉 = 〈ψgs(r1, r2)|(r1 − r2)2|ψgs(r1, r2)〉 (15)

is the mean square distance between the valence neutrons,
and

〈r2
c−NN 〉 = 〈ψgs(r1, r2)|(r1 + r2)2/4|ψgs(r1, r2)〉 (16)

is the mean square distance of their centre of mass with
respect to the core. In table 2, while the matter radius is
consistent with that of Myo, there are large differences for
the other two quantities that can be ascribed to the choice
of different pairing interactions. The two-particle density
of 6He as a function of two radial coordinates, r1 and r2,
for valence neutrons, and of the angle between them, θ12,
in the LS-coupling scheme, is given by

ρ(r1, r2, θ12) = ρS=0(r1, r2, θ12) + ρS=1(r1, r2, θ12). (17)

The explicit expression for S = 0 component is given
by [49]

ρS=0(r1, r2, θ12) =
1
8π

∑

L

∑

�,j

∑

�′,j′


̂
̂′L̂√
4π

(

 
′ L

0 0 0

)2

×ψ�j(r1, r2)ψ�′j′(r1, r2)YL0(θ12)

× (−1)�+�′
√

2j + 1
2
 + 1

√
2j′ + 1
2
′ + 1

, (18)

where 
̂ =
√

2l + 1 and ψ�j(r1, r2) is the radial part of the
two-particle wave function given by

ψ�j(r1, r2) =
∑

n2≤n1

αn1n2�j√
2(1 + δn1n2)

×(φn1�j(r1)φn2�j(r2) + φn1�j(r2)φn2�j(r1)),
(19)

where n1 and n2 are radial quantum numbers and αn1n2�j

is an expansion coefficient. Figure 2 shows the two-particle
density plotted as a function of the radius r1 = r2 ≡ r and
the angle θ12, and with a weight factor of 4πr2·2πr2 sin θ12.
As has been pointed out in [47], one observes two peaks in
the two-particle densities. The peaks at smaller and larger
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Fig. 2. (Color online) Two-particle density for 6He as a func-
tion of r1 = r2 = r and angle between the valence neutrons
θ12.
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Fig. 3. (Color online) Eigenspectrum of the interacting two-
particle case for Jπ = 0+, 1−, 2+ and 3− for different number
of states. The coefficient of the δ-contact matrix, G, has also
been shown for different J .

θ12 are referred to as “di-neutron” and “cigar-like” config-
urations, respectively. In this case the di-neutron compo-
nent has a slightly higher density and it has a longer radial
tail, which confirms the halo structure of 6He, while the
cigar-like component has a very compact structure com-
paratively. The percentage contribution of di-neutron con-
figuration is ∼ 64%, while the cigar component has ∼ 36%
contribution.

5 Pairing strength of different multipolarities

Theoretical investigation of very weakly bound nuclei sit-
ting right on top of the drip lines demands proper consid-
eration of nucleon-nucleon pairing interaction. For ground

Table 3. Effective charge for different multipolarities.

λ (e
(λ)
eff )2

0 (Monopole) 4

1 (Dipole) 4/25

2 (Quadrupole) 4/625

3 (Octupole) 4/15625

state it is pretty much clear that, the pairing strength,
G, is adjusted in order to get the correct ground-state en-
ergy. But for higher multipolarities, i.e. J = 1−, 2+ and
3−, we do not have a clear-cut strategy to determine the
exact value of pairing strength. This is the main reason
why we did not enter into the complications of a density-
dependent pairing interaction: there is no unique way to
adjust the parameters and geometry. For each value of
J we tried different sets of values of G. From fig. 3, the
upper limit of pairing strength can be found for several
values of J , along with the number of states (red). Notice
that different multipolarities give rise to different concen-
trations of strength as seen by comparing the densities of
the various columns. Notice also that the continua are,
at the eyes, quite dense, a condition that is necessary to
reproduce minute features with the necessary accuracy.

6 Electric transitions to continuum
—Mathematical set up

The electric transition probability amplitude between
ground state ψ(j′1, j

′
2, J

′,M ′) and continuum states ψ(j1,
j2, J,M) is given by

〈ψ(j′1, j
′
2, J

′,M ′)|Ôp|ψ(j1, j2, J,M)〉 =

∑

S′,L′

√
(2S′+1)(2L′+1)(2j′1+1)(2j′2+1)

⎧
⎨

⎩

1/2 
′1 j′1
1/2 
′2 j′2
S′ L′ J ′

⎫
⎬

⎭

×
∑

S,L

√
(2S + 1)(2L + 1)(2j1 + 1)(2j2 + 1)

⎧
⎨

⎩

1/2 
1 j1

1/2 
2 j2

S L J

⎫
⎬

⎭

×
(
[〈R+

�′1�′2
(r1r2)Υ+

L′M ′(Ω1Ω2)|Ôp|R+
�1�2

(r1r2)Υ+
LM (Ω1Ω2)〉]

+[〈R−
�′1�′2

(r1r2)Υ−
L′M ′(Ω1Ω2)|Ôp|

×R−
�1�2

(r1r2)Υ−
LM (Ω1Ω2)〉]

)
, (20)

where Ôp is a generic one-body operator given by

Ôp = e
(λ)
eff

(
rλ
1 Yλμ(r̂1) + rλ

2 Yλμ(r̂2)
)

(21)

with λ = 1 for dipole, λ = 2 for quadrupole and λ = 3 for
octupole, e

(λ)
eff is the effective charge, tabulated in table 3

for different multipolarities and is given by

e
(λ)
eff =

Aλ
1Z2 + (−1)λAλ

2Z1

Aλ
, (22)
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where we use the masses and charges of the α-particle
and of a neutron for 1, 2 because the one-body operator
acts only on one particle at any one time. Using eq. (21),
eq. (20) can be rewritten as

〈ψ(j′1, j
′
2, J

′,M ′)|Ôp|ψ(j1, j2, J,M)〉 =

∑

S′,L′

√
(2S′+1)(2L′+1)(2j′1+1)(2j′2+1)

⎧
⎨

⎩

1/2 
′1 j′1
1/2 
′2 j′2
S′ L′ J ′

⎫
⎬

⎭

×
∑

S,L

√
(2S + 1)(2L + 1)(2j1 + 1)(2j2 + 1)

⎧
⎨

⎩

1/2 
1 j1

1/2 
2 j2

S L J

⎫
⎬

⎭

× 2
( ∫∫

R+
�′1�′2

(r1r2)rλ
1 R+

�1�2
(r1r2)r2

1dr1r
2
2dr2

×〈Υ+
L′M ′(Ω1Ω2)|Yλμ(Ω1)|Υ+

LM (Ω1Ω2)〉

+
∫∫

R−
�′1�′2

(r1r2)rλ
1 R−

�1�2
(r1r2)r2

1dr1r
2
2dr2

×〈Υ−
L′M ′(Ω1Ω2)|Yλμ(Ω1)|Υ−

LM (Ω1Ω2)〉
)

. (23)

Also R±
�′1�′2

(r1r2) and Υ±
L′M ′ are given by

R±
�1�2

(r1r2) =
1

r1r2

√
2

× [Rn1�1(r1)Rn2�2(r2) ± Rn2�2(r1)Rn1�1(r2)] , (24)

Υ±
LM =

1√
2

∑
〈
1m1
2m2|
1
2LM〉

× [Y�1m1(Ω1)Y 
2m2(Ω2) ± Y�2m2(Ω1)Y�1m1(Ω2)] . (25)

Using eq. (24) and eq. (25), eq. (23) gives us the matrix el-
ements of different multipolarities. Equation (23) consists
of two parts, i.e. evaluation of radial parts and angular
parts. For the evaluation of radial integrals, we need the
corresponding two-particle wave function, whereas for the
angular part by making use of eq. (25), we will simplify
the angular part and for different multipolarities these can
be easily calculated.

Clearly our calculations give strength distributions at
discrete values of energy to which we apply a Gaussian
smoothing procedure that does not alter the total inte-
grated strength1.

7 Monopole strength distribution

Electric monopole transition strengths reflect the off diag-
onal matrix elements of the E0 operator. The E0 opera-
tor [50] can be expressed in terms of single-nucleon degrees
of freedom as

T̂ (E0) =
∑

k

ekr2
k. (26)

1 There is a minor loss of strength close to zero that could
be avoided by using for example Lorentzian functions instead
of Gaussians.

Fig. 4. (Color online) Total number of possible monopole tran-
sitions from the ground state 0+ to the final continuum 0+

states with different contributions from five different possible
configurations for 6He.

The E0 transition rate, 1/τ(E0) = ρ2
fi, is defined by

ρ2
fi =

∣
∣
∣
∣
〈f |

∑
k ekr2

k|i〉
eR2

∣
∣
∣
∣

2

, (27)

where, e is the unit of electrical charge, and R is the nu-
clear radius, R � 1.2A1/3 fm. These calculations also leads
us to study the role of various configurations in the to-
tal monopole strength. After constructing a basis of the
largest size (N = 100) made up of five parts, namely
[s2

1/2]
(0), [p2

1/2]
(0), [p2

3/2]
(0), [d2

3/2]
(0) and [d2

5/2]
(0), we di-

agonalize the pairing matrix and obtain eigenvalues and
eigenvectors for J = 0. Only one state is bound and all
the remaining ones are unbound. In order to reduce the
computation time, we have performed a set of calcula-
tions for monopole transitions from the ground state 0+

for basis size N = 100 to the continuum 0+ for basis size
N = 50. From fig. 4, it is clear that there are only five
possible transitions from 0+ ground-state components to
continuum 0+ states components. With all these necessary
ingredients, i.e. ground state and continuum 0+ states,
the monopole strength distribution has been studied. The
upper panel of fig. 5, shows the total monopole transi-
tion strength of 6He and lower panel of fig. 5, shows the
contribution of various possible transitions on logarith-
mic scale. From the lower panel of fig. 5, it is clear that
the transition [(p3/2)2](0)(g.s.) → [(p3/2)2](0)(continuum),
is dominant in the monopole transition strength, whereas
the transition [(d3/2)2](0)(g.s.) → [(d3/2)2](0)(continuum)
is the least significant in the total monopole transition
strength. From this, one can also see that the transition
[(s1/2)2](0)(g.s.) → [(s1/2)2](0)(continuum) has a signifi-
cant contribution to the total strength, which justifies the
inclusion of the sd-shell in calculations. The total inte-
grated monopole strength amounts to about 2682.97 fm4.
This value can be compared with the non-energy–weighted
sum rule calculations for monopole strength, that gives
about 2800 fm4, using formulas of ref. [51], giving a very
good agreement.
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Fig. 5. (Color online) (Upper panel) Total monopole E0
transition strength distribution (on linear vertical scale) from
ground state 0+ to the final state 0+ for 6He. (Lower panel)
Component monopole E0 transition strength distribution (on
logarithmic vertical scale) from the ground state 0+ to the final
state 0+ for 6He.

Fig. 6. (Color online) Total number of possible dipole tran-
sitions from the ground state 0+ to the final state 1− with
different contributions from five different possible configura-
tions for 6He. The dominant transition is highlighted in red
color.

8 Dipole strength distribution

While most theoretical studies have been focused on dipole
strength [38,52,53], ours includes many more multipolar-
ities. In order to compare our approach with others, we
have also performed a set of calculations for the dipole
response from the ground state to all components of 1−
state. After constructing a basis of the dimensions N = 50,
made up of five parts, namely [s1/2 × p1/2](1), [s1/2 ×
p3/2](1), [p1/2×d3/2](1), [p3/2×d3/2](1) and [p3/2×d5/2](1),
we diagonalize the pairing matrix and obtain eigenvalues,
that are all unbound, and the corresponding eigenvectors.
We did calculations for three different values of the pairing
strength G, i.e. 0, 100 and 200 (upper limit to get all states
unbound). From fig. 6, it is clear that a total of 10 different
transitions are possible from the initial 0+ ground state to
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Fig. 7. (Color online) Dipole E1 transition strength distribu-
tion from the ground state 0+ to the final state 1− for 6He for
a few values of the pairing strength compared to experimental
data up to 6 MeV from ref. [9].

Table 4. Total B(E1) with varying pairing strength.

G Total B(E1) (e2fm2)

0 1.8747

100 1.8736

200 1.8378

the final 1− state of 6He. We have investigated the detailed
structure of the E1 (dipole) strength distribution from
two perspectives, the first is to fix the pairing strength
and the second is to study the role of different configura-
tions. Figure 7, shows the total dipole transition strength
of 6He with different values of G and table 4 tabulates the
total B(E1) strength in e2fm2 with pairing strength G.
As it should, it remains practically constant. The shape
and strength of our dipole response function are consistent
with the previous calculations [38, 52–54], although these
previous studies available in the literature for the calcula-
tion of B(E1) differ in the approach used. Reference [38]
studies the electric dipole (E1) response of 6He with a fully
microscopic six-body calculation, ref. [52] used the com-
plex scaling method (CSM), ref. [53] uses the R-matrix
approach, whereas ref. [54] uses the pseudostate method.
As a result of the smoothing procedure, the curves in fig. 7
show a few minor wiggles, that are not to be attributed
to resonances, but must be considered as an artifact. It is
clear, though, that there is an accumulation of strength
at energies of 2–10MeV and possibly a shallow maximum
around 3–5MeV. We find in these calculations that the
transition from [p3/2×p3/2](0) → [p3/2×d5/2](1) plays the
dominant role in total dipole transition strength, whereas
all the remaining nine transitions are less significant. How-
ever, our model does not include the recoil correction at
the moment. This has been discussed in ref. [55], where it
is concluded that the no-recoil approximation works quite
well for several observables. This correction would be im-
portant, when one includes the s-state continuum and cal-
culate the dipole strength [47] and the B(E1) strength dis-
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Fig. 8. (Color online) Schematic representation depicting all
of the possible octupole transitions from the ground state 0+

emerging from five different configurations to the final state
3− emerging from three different configurations for 6He. The
dominant transitions are highlighted in red color along with
their percentage contribution.

Table 5. Total B(E3) with varying pairing strength G.

G Total B(E3) (e2fm6)

0 91.2076

250 91.1592

500 91.0861

660 90.8239

tribution would be underestimated in the absence of this
correction [56]. We expect this correction to be important
for the dipole only. This is probably the reason why the
shape of the peak of the dipole resonance is slightly dif-
ferent from the experimental one.

9 Octupole strength distribution

We have also investigated the detailed structure of the
E3 (octupole) strength distribution of the system. After
constructing a basis of dimensions N = 50, made up of
three parts, namely [p1/2 × d5/2](3), [p3/2 × d3/2](3) and
[p3/2 × d5/2](3), we diagonalize the pairing matrix and ob-
tain the eigenvalues, that are all unbound, and the corre-
sponding eigenvectors. We did calculations for four differ-
ent values of the pairing strength G3, i.e. 0, 250, 500 and
660 (upper limit to get all states unbound). From fig. 8, it
is clear that there is a total of 6 different transitions from
the initial 0+ ground state to the final continuum 3− state
of 6He. We cannot integrate to find the total strength,
because we cannot extend the calculations beyond the
present energy range due to computational limitations.
Therefore it is not clear, at present, if we have reached the
maximum value for the octupole distribution. Ideally, one
should use a larger energy cut and maybe a smaller density
of states. Table 5 tabulates the total B(E3) strength in
e2fm6 with pairing strength G up to the limit of 660. We
have estimated the total octupole strength to be approx-
imately 190 e2fm6 by following the procedure outlined in
ref. [57]. Therefore our results exhaust about 50% of the
total expected strength. Figure 9 shows the total octupole
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Fig. 9. (Color online) Octupole E3 transition strength distri-
bution from the ground state 0+ to the final state 3− for 6He.
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Fig. 10. (Color online) Schematic representation of the spec-
trum of 6He predicted by our simple model. The parenthesis in
the J = 1− response indicates the uncertainty on the position
of the peak (see text). The lines correspond to the widths.

transition strength of 6He with different values of G. The
shape of our octupole response function clearly shows two
large structures around 1MeV and 10MeV respectively,
but the precise value of G has, in this case, little influence
on the overall shape. This is due to the fact that with
increasing l the integral between different sets of single-
particle wave functions becomes progressively small and
pairing becomes a weak perturbation. We have found in
these calculations that both these peaks take contribution
from the transitions [p3/2 × p3/2](0) → [p3/2 × d3/2](3) and
[p3/2×p3/2](0) → [p3/2×d5/2](3). These dominate the total
octupole transition strength, amounting to approximately
∼ 59% and ∼ 41%. All the remaining four transitions de-
picted in fig. 8 are comparatively less significant.

10 Conclusions

In summary, the electric multipole response of 6He has
been investigated by using a simple structure model [40,
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43,44,46], and the role of different configurations has been
explored in each case. Figure 10 shows our predictions for
the response of 6He to electromagnetic excitations of dif-
ferent multipolarity by showing the centroid of each state
and the width on horizontal scale. We have computed the
B(E0) values (fig. 5) from the ground state to the contin-
uum eigenstates and we have adjusted the strength of the
pairing matrix to get the ground energy at the right place.
We have found two peaks at energies 1.25 and 10.66MeV.
Their widths are about 1.99 and 3.21MeV, respectively.
For the dipole strength distribution (fig. 7) we have indi-
cated in the figure the case with maximal pairing strength
that shows a maximum at 2.57MeV with an asymmetric
width of 5.27MeV. For the quadrupole strength distribu-
tion (fig. 9) we have already reported in our previous cal-
culation [40] about the details of two resonances. Finally,
for the octupole strength distribution we have found two
broad structures at 1.18 and 10.16MeV with asymmet-
ric widths of 1.89 and 4.25MeV, respectively. We expect
that our efforts might be of help to unravel the complex
patterns seen in the continuum spectrum of 6He.
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Phys. Rev. Lett. 113, 032503 (2014).

40. L. Fortunato, R. Chatterjee, Jagjit Singh, A. Vitturi, Phys.
Rev. 90, 064301 (2014).

41. N. Austern, Y. Iseri, M. Kamimura, M. Kawai, G.H. Raw-
itscher, M. Yahiro, Phys. Rep. 154, 125 (1987).

42. R.A.D. Piyadasa, M. Kawai, M. Kamimura, M. Yahiro,
Phys. Rev. C 60, 044611 (1999).

43. Jagjit Singh, L. Fortunato, Acta Phys. Pol. B 47, 833
(2016).

44. Jagjit Singh, PhD Thesis, University of Padova, Italy
(2016).

45. TUNL, Nuclear Data Evaluation, http://www.tunl.

duke.edu/NuclData/General Tables/5he.shtml.
46. Jagjit Singh, AIP Conf. Proc. 1681, 020009 (2015).
47. K. Hagino, H. Sagawa, Phys. Rev. C 72, 044321 (2005).
48. T. Myo et al., Prog. Part. Nucl. Phys. 79, 1 (2014).
49. G.F. Bertsch, H. Esbensen, Ann. Phys. (N.Y.) 209, 327

(1991).
50. J. Kantele, Nucl. Instrum. Methods A 271, 625 (1988).
51. J. Meyer, P. Quentin, M. Brack, Phys. Lett. B 133, 279

(1983).
52. S. Aoyama, S. Mukai, K. Kato, K. Ikeda, Prog. Theor.

Phys. 116, 1 (2006).
53. P. Descouvemont, E. Pinilla, D. Baye, Prog. Theor. Phys.

Suppl. 196, 1 (2012).
54. J.A. Lay, A.M. Moro, J.M. Arias, J. Gómez-Camacho,
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