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Published online: 26 July 2016 – c© Società Italiana di Fisica / Springer-Verlag 2016
Communicated by N. Alamanos

Abstract. We present the Gogny-Hartree-Fock-Bogoliubov model which reproduces nuclear masses with an
accuracy comparable with the best mass formulas. In contrast to the Skyrme-HFB nuclear-mass models,
an explicit and self-consistent account of all the quadrupole correlation energies is included within the
5D collective Hamiltonian approach. The final rms deviation with respect to the 2353 measured masses
is 789 keV in the 2012 atomic mass evaluation. In addition, the D1M Gogny force is shown to predict
nuclear and neutron matter properties in agreement with microscopic calculations based on realistic two-
and three-body forces. The D1M properties and its predictions of various observables are compared with
those of D1S and D1N.

1 Introduction

Astrophysical considerations require to build nuclear-mass
models that have as rigorous a footing as possible (see [1]
for a review on the r-process nucleosynthesis and the im-
portance of nuclear masses). In this way one might hope to
be able to extrapolate from the mass data, which cluster
fairly closely to the stability line, out towards the neutron
drip line, and make reliable estimates of the properties
(including masses) of nuclei that are so neutron rich that
there is no hope of measuring them in the foreseeable fu-
ture. To this end, a series of nuclear-mass models have
been developed on the basis of mean-field models. So far,
only the non-relativistic Hartree-Fock-Bogoliubov (HFB)
method with Skyrme and contact-pairing forces [2, 3], in
which the force parameters are fitted to essentially all the
experimental mass data, has led to competitive mass for-
mulas with respect to the more traditional macroscopic-
microscopic mass formula based on the liquid drop ap-
proach [4] or other global approaches [5] (the use of the
term “mass formula” follows the usual designation of any
semi-empirical mass model that has been fitted to es-
sentially all mass data with a root mean square (rms)
deviation typically lower than 1MeV and for which a
complete mass table, running from one drip line to the
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other, has been constructed). In particular, the Skyrme-
HFB approach, together with phenomenological Wigner
terms and correction terms for the spurious collective
energy, has proven its capacity to reproduce all experi-
mental masses [6, 7] with an rms deviation similar to or
even better than the best droplet-like models [2, 3]. Al-
though the Skyrme-HFB method has opened a new era
in the construction of mass formulas, it remains to be
tested with respect to other microscopic approaches, like
the relativistic mean-field model or with respect to finite-
range interactions, such as the Gogny interaction. Fur-
thermore, effects beyond mean field are known to affect
predictions significantly [8] but have either been crudely
approximated or totally neglected in the previous mass
formulas.

In this paper, we present the D1M mass formula ob-
tained within the HFB framework with a Gogny inter-
action taking into account all the quadrupole correlations
self-consistently and microscopically [9]. Though the exist-
ing Gogny forces like D1S [10] or D1N [11] present global
properties in agreement with most observables, they are
not suited for an accurate estimate of nuclear masses [11],
as illustrated in fig. 1 (upper panels). In particular, D1S
masses [10] give rise to a clear isotopic drift which tends
to overbind neutron-deficient isotopes and underbind the
neutron-rich ones by up to 10MeV, leading to an over-
all rms deviation with respect to the bulk of experimen-
tal data of about 2.5–3MeV. An improvement has been
achieved with the D1N interaction [11], but systematic
patterns, including arches between neutron magic num-
bers, remain visible (fig. 1) and show deviations with re-
spect to measured masses significantly larger than the
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Fig. 1. (Color online) Differences between theoretical Gogny-HFB (plus 5DCH) and experimental binding energies. The upper
panel is obtained with the D1S interaction, the middle panel with D1N and the lower panel with D1M. Some isotopic chains
for Z = 28, 50, 74 and 92 are highlighted with colored circles.

Skyrme-HFB calculations which reach a 0.5–0.7MeV rms
deviation. For this reason, a new Gogny force, D1M, has
been developed and fitted to all measured masses, keep-
ing the additional constraint to provide reliable nuclear
matter and neutron matter properties, but also radii, gi-
ant resonance and fission properties. In addition, for the
first time the quadrupole collective corrections have been
included in the mass formula by solving the collective
Schrödinger equation with the 5-dimensional collective
Hamiltonian (5DCH) [12, 13]. In sect. 2, we present the
Gogny-HFB mass model, including the fitting strategy.
The D1M properties regarding various observables related
to nuclei of infinite nuclear matter are described in sect. 3
and compared with those obtained with D1S or D1N. Fi-
nally, conclusions are drawn in sect. 4.

2 The Gogny-HFB mass model

2.1 The Gogny-HFB model

The Gogny-HFB model has been described in length in
various papers (see refs. [10–12, 14, 15] and references
therein). Both axially and triaxially deformed HFB codes
have been used to perform the calculations. These are
written in terms of an expansion of the single-particle
functions in a harmonic-oscillator basis. The triaxial code
is used to determine the quadrupole corrections to the
total binding energy and the charge radius. These are es-
timated within the 5DCH model [12,13] by

ΔEquad = EMF − EBMF, (1)

where EMF is the mean-field (MF) energy obtained in the
axial symmetry approximation and EBMF is the binding
energy obtained beyond the mean-field (BMF) approxi-
mation, i.e. including the quadrupole corrections treated
with the 5DCH model. Similarly, dynamical corrections
are known to affect significantly the nuclear radius. The
quadrupole correction to the charge radii is estimated by

Δrquad =
√

r2
BMF − r2

MF , (2)

the final charge radius being estimated by r2
th = r2

MF +
Δr2

quad. Note that the quadrupole corrections are calcu-
lated for even-even nuclei only and interpolated from those
for the others, while in the HFB calculation odd nuclei are
treated in the blocking plus equal filling approximation.
For closed-shell nuclei, the Gaussian overlap approxima-
tion used within the 5DCH approach gives erroneous neg-
ative corrections (see ref. [13] for more details). For those
nuclei, the correction is therefore set to zero.

The total binding energy reads Eth = Eaxial+ΔEquad+
ΔE∞ where in addition to the quadrupole correlations,
an infinite-basis correction ΔE∞ is introduced due to the
limitation of the number of major shells included in the
axially symmetric calculation. The same procedure as de-
scribed in ref. [14] is followed to estimate ΔE∞. If the en-
ergy Eaxial obtained with the axial code using N � 14 ma-
jor shells can be determined within a reasonable computa-
tion time, this is not the case for both ΔE∞ and ΔEquad

(see also ref. [16] for a detailed study of the convergence
of the calculations with respect to the basis dimension).
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Therefore, to avoid unfeasible calculations, the adjustment
of the Gogny force parameters to reproduce at best the
experimental masses is not performed by systematically
calculating these correction terms. Instead, the computa-
tional scheme described below is followed.

2.2 Fitting strategy

A mass fit entails that every nucleus that is included in
the fit has to be calculated many times over. Making a
direct fit with a deformed HF code to all of the more
than 2000 measured masses is extremely computer-time
consuming, so that in practice a specific strategy needs to
be followed, especially in view of the large number of free
parameters (typically 14) and the many observables that
need to be fitted. The Gogny effective nuclear interaction
(plus spin-orbit term) is expressed [10] as

V (1, 2)=
∑

j=1,2

e
− (r1−r2)2

μ2
j (Wj +BjPσ − HjPτ − MjPσPτ )

+ t0 (1 + x0Pσ) δ (r1 − r2)
[
ρ

(
r1 + r2

2

)]α

+ iWLS
←−∇12 δ (r1 − r2) ×

−→∇12 · (−→σ 1 + −→σ 2) ,

where Pσ (Pτ ) is the two-body spin- (isospin-) exchange
operator. From the 14 interaction parameters, it is pos-
sible to express [15] the parameters of symmetric infinite
nuclear matter (INM) at the equilibrium density ρ0 (or
equivalently the Fermi momentum kF = (3/2π2ρ0)1/3),
namely the energy per nucleon av, the symmetry coeffi-
cient J , the effective mass m∗ and the incompressibility
coefficient Kv. These five parameters are explicitly intro-
duced in the fits instead of 5 of the Gogny force parame-
ters. Starting from a trial force providing a first estimate
of ΔEquad and ΔE∞, the following 3-step iterative proce-
dure is adopted:
i) The 5 INM parameters as well as the spin-orbit pa-

rameter WLS are adjusted through an automatic op-
timization procedure to minimize the rms deviation
with respect to experimental masses [7]; the 5 INM
parameters are however kept within their correspond-
ing experimental ranges [2, 11].

ii) The remaining parameters (only the α and x0 param-
eters are kept fixed) are manually adjusted to opti-
mize quantitatively the rms deviation with respect to
known charge radii [17] (in practice, this corresponds
essentially to a modification of kF) and qualitatively to
the energy density curves of the infinite neutron mat-
ter (to agree with the realistic calculation of [18]) and
symmetric matter in the four spin-isospin channels to
agree qualitatively with [19–21]. Any modification at
this stage is fed back into step (i) to ensure an opti-
mum mass prediction.

iii) As soon as an acceptable reproduction of all the above-
mentioned observables is achieved, the ΔEquad and
ΔE∞ correction energies are re-estimated and the new
force is fed back into step i). A new iteration cycle be-
gins until all the conditions are properly fulfilled with
one unique force.
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Fig. 2. Differences between measured [7] and D1M masses, as
function of the neutron number N .

Table 1. Rms (σ) and mean (ε̄) deviations between data and
D1M predictions (energies in MeV, radii in fm).

σ ε̄

2149 masses (vs AME03) [6] 0.798 0.126

2352 masses (vs AME12) [7] 0.789 0.103

2185 masses with |N − Z| > 2 [7] 0.766 0.132

2198 neutron binding energies [7] 0.523 0.012

2064 β-decay energies [7] 0.646 −0.004

792 charge radii [17] 0.032 −0.005

3 Results

3.1 Mass-related properties

The parameters of the D1M Gogny force can be found
in ref. [9]. The deviations between all the 2353 measured
masses [7] and the new D1M predictions are shown in
fig. 2. The rms values of these deviations are given in
table 1. In particular, the rms deviation on masses with
respect to the 2012 mass evaluation (AME12) [7] amounts
to 0.789MeV, about 10 keV less in comparison with the
rms deviation with respect to the 2003 mass evaluation
(AME03) [6] to which the D1M was initially fitted. The
predictions have consequently been relatively stable or
even improved when adding the 203 newly measured
nuclei. The same holds for the D1M neutron binding ener-
gies and β-decay Q-values which better describe the 2012
data in comparison with those used in 2003. The D1M
accuracy is also comparable to the best available nuclear
mass formulas and by far better than the one obtained
with previous Gogny forces, like D1S and D1N (see fig. 1).

It should be noted that in the Gogny-HFB calculation,
no Wigner correction for N � Z nuclei has been included,
in contrast to what is done in the Skyrme-HFB approach.
If we only consider the 2000 nuclei with |N − Z| > 2, the
rms deviation drops to 0.766MeV. As shown in fig. 2, no
deviation exceeds 3.2MeV. However, like in all Skyrme-
HFB mass formulas, the highest deviations occur around
magic numbers, in particular masses in the N � 126 re-
gion remain significantly overbound. The inclusion of the
particle-vibration coupling effects, known to modify the
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Fig. 3. (Color online) 5DCH quadrupole correction energies
with D1M as a function of the neutron number N for the even-
even nuclei with known masses. Also shown for comparison
are the GCM quadrupole energies with SLy4 Skyrme interac-
tion [24].

single-particle level density at the Fermi energy and con-
sequently the amplitude of the shell effect, could change
this trend [22,23].

The quadrupole correction energies obtained self-con-
sistently within the 5DCH approach with the D1M in-
teraction are shown in fig. 3. They amount to no more
than 5MeV, but remain sensitive to the interaction, in
particular to the pairing strength and the effective mass.
The quadrupole corrections obtained with different inter-
actions typically affect the rms deviation by a few hun-
dred keV. This remains relatively large with respect to the
mass model accuracy, so that it is mandatory to recalcu-
late self-consistently, i.e. with the same interaction as used
in the mean-field part, the corrections at the end of a fit-
ting iteration. The quadrupole correction energies are also
compared in fig. 3 with those obtained within the Gen-
eral Coordinate Method (GCM) with the SLy4 Skyrme
interaction [24]. The amplitude is rather similar in both
cases, though patterns are clearly different for open-shell
nuclei. The GCM approach also has the advantage of be-
ing applicable around closed shells. The GCM quadrupole
energies have been determined with the D1M interaction
in ref. [16] and are found to be about 2MeV larger than
the 5DCH predictions. The use of the GCM quadrupole
energies would therefore require a re-adjustment of the
Gogny interaction to fit the nuclear masses. The computer
time demanded by the GCM remains unfortunately rela-
tive high compared with the 5DCH approach, but in the
future it might become feasible to develop a mass model
based on the GCM quadrupole corrections. Similarly, oc-
tupole correction energies estimated within the GCM with
the D1M interaction have been shown to be non-negligible
and as large as 2.5MeV [25, 26] and could be included in
future mass models.

3.2 INM properties

The corresponding INM parameters are compared in ta-
ble 2 with those characterizing the D1S and D1N interac-

Table 2. INM parameters for D1S, D1N, and D1M at equi-
librium density ρ0. G0 and G′

0 are the corresponding Landau
parameters [15].

D1S D1N D1M

ρ0 [fm−3] 0.163 0.161 0.165

kF [fm] 1.342 1.336 1.346

av [MeV] −16.011 −15.962 −16.026

J [MeV] 31.12 29.59 28.55

m∗/m 0.697 0.748 0.746

Kv [MeV] 202.9 225.6 225.0

G0 0.47 0.76 −0.01

G′
0 0.63 0.38 0.71
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Fig. 4. (Color online) Low-density zero-temperature EoS in
pure neutron matter and in symmetric nuclear matter of D1S,
D1N, and D1M interactions. The predictions are compared
with the calculations of refs. [18,19].
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Fig. 5. (Color online) High-density zero-temperature EoS in
pure neutron matter for D1S, D1N, and D1M. LS2 corresponds
to the realistic EoS referred to as V18 in ref. [20]; FP and APR
are the EoS of refs. [18] and [27], respectively.

tions. Although saturation is found at more or less the
same density, these interactions are characterized by a
quite different volume term av, symmetry energy J , in-
compressibility Kv and effective masses m∗. We compare
in fig. 4 the low-density equation of state (EoS) in pure
neutron matter and symmetric nuclear matter obtained
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Fig. 6. (Color online) Potential energy per particle Epot/A in each (S, T ) channel for the three interactions D1S, D1N, and D1M
as a function of density for charge-symmetric INM. The open symbols correspond to the “Catania 1” BHF calculations [20],
and the solid symbols to the “Catania 2” BHF calculations [21].

with the D1S, D1N and D1M interactions with the re-
alistic calculations of refs. [18, 19]. A rather satisfactory
description is found. In fig. 5, the EoS in pure neutron
matter is shown in the high-density region, up to 1 fm−3

and compared with the Brueckner-Hartree-Fock (BHF)
EoS of Friedman and Pandharipande [18] (FP), Akmal
et al. [27] labeled “A18 + δ v + UIX∗”, and we refer to as
APR, and the EoS labeled “V18” in ref. [20], which we
refer to as LS2. These three EoS illustrate the relatively
wide range of predicted EoS at high densities. The Gogny
EoS is seen to be relatively soft with respect to the real-
istic calculations. While D1M follows rather well the FP
density dependence, D1S leads to a collapse of neutron
star matter.

3.3 Distribution of potential energy among the (S, T)
channels

Figure 6 shows the potential energy per particle for sym-
metric nuclear matter in each of the four two-body spin-
isospin (S, T ) channels for the three interactions D1S,
D1N, and D1M and compares them with two different
BHF calculations with realistic two- and three-nucleon
forces: “Catania 1”, based on ref. [20] and “Catania 2”,
based on ref. [21]. Note that the BHF calculations are
still affected by non-negligible uncertainties (see for ex-
ample [28]), so that only qualitative conclusions from such
a global comparison of the interaction can be drawn. In
this respect, a fair agreement between D1M and the real-

istic calculations can be seen in all states, in particular the
repulsive nature of the (S = 0, T = 0) state that is usu-
ally not reproduced by effective Skyrme interactions [28].
Similarly, both D1N and D1M reproduce rather well the
density dependence of the (S = 1, T = 1) channel, in con-
trast to D1S. However, a different density dependence is
found at high density in the even-singlet (S = 0, T = 1)
channel which is constrained by the pairing.

3.4 Effective masses

In contrast to D1N predictions, we obtain with D1M the
correct sign for the isovector splitting of the effective mass
for neutron-rich matter, i.e. a higher neutron than proton
effective mass m∗

n > m∗
p at all positive asymmetries, as

shown in fig. 7. Such an isovector splitting of the effective
mass is consistent with measurements of isovector giant
resonances [28], and confirmed in several many-body cal-
culations with realistic forces [29].

3.5 Collective excitations

The D1M force has also been tested with respect to vari-
ous additional observables, such as the kinetic moment of
inertia in Er or Pu nuclei, the giant monopole, dipole and
quadrupole energy in 208Pb calculated within the random-
phase approximation (see table 3), and the 5DCH energy
of the lowest 2+ levels for the 519 even-even nuclei for
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which experimental data is available [30, 31] (see fig. 8).
Details about the formalism and numerical calculations
can be obtained in ref. [12, 13]. For all these observables,
D1M and D1S give very similar results.

It has also been shown in ref. [32] that D1M gives sys-
tematically GDR centroid energies that are a few hundred
keV lower than D1S, as illustrated in fig. 9.

Table 3. 208Pb giant monopole (GMR), dipole (GDR) and
quadrupole (GQR) resonance energies (in MeV) compared
with experimental data for D1S, D1N and D1M.

D1S D1N D1M Exp.

GMR 13.37 14.18 14.25 14.17 [33]

GDR 16.37 14.50 15.85 13.43 [34]

GQR 11.98 11.99 12.14 10.60 [35]
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Fig. 9. (Color online) Energies of the centroid of the QRPA
B(E1) distributions calculated with D1S and D1M Gogny in-
teractions for all the nuclei considered in this work. The full
line represents a general fit to the points.
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3.6 Mass extrapolations

In fig. 10, we compare the D1M predictions with those
of the latest Skyrme-HFB model (HFB-31) [3] and of the
finite-range droplet model (FRDM) [4]. In both cases we
see that despite the close similarity in the quality of the
fits to the data given by these different models, large dif-
ferences can emerge, especially for heavy nuclei (Z > 80)
and as the neutron-drip line is approached (N > 160). The
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mass difference between HFB-31 and D1M remains how-
ever within ±5MeV for all the ∼ 7000 Z,N ≥ 8, Z ≤ 110
nuclei between the proton and neutron drip lines included
in the comparison.

Finally, note that many D1M properties of the ground
and excited states of heavy nuclei with 92 ≤ Z ≤ 104
have been studied in ref. [36] and compared with experi-
ment, non-relativistic Skyrme HFB as well as relativistic
mean-field calculations. These include in particular single-
particle spectra, odd-even mass staggering and moments
of inertia.

4 Conclusions

We have described the Gogny-HFB nuclear-mass model
based on the D1M interaction and compared its proper-
ties to those obtained with the D1S and D1M interac-
tions. The rms deviation with respect to essentially all
the available mass data has been reduced from typically a
few MeV with previous interactions to less than 0.8MeV.
Furthermore, the mass formula takes an explicit and self-
consistent account of all the quadrupole correlations af-
fecting the binding energy. The quadrupole corrections are
estimated microscopically on the basis of a 5-dimensional
collective Hamiltonian with the same D1M interaction.
Given also the constraints imposed on the Gogny force
by microscopic calculations of neutron matter and sym-
metric nuclear matter, this new model is particularly well
adapted to astrophysical applications such as the r-process
of nucleosynthesis. Different improvements to the mass
model should still be brought, in particular including
GCM quadrupole [16] and octupole [26] correlations or
generalizing the Gogny force by introducing a finite range
to the density-dependent term [15]. Fission barriers also
correspond to some fundamental structure properties that
can shed light on the relevance of the interaction in the de-
formation space. Such complex calculations have already
been performed with the D1M interaction [37,38] and will
certainly be given more attention in the future.
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S. Péru, N. Pillet, G.F. Bertsch, Phys. Rev. C 81, 014303
(2010).

14. S. Hilaire, M. Girod, Eur. Phys. J. A 33, 237 (2007).
15. F. Chappert, PhD thesis (2007).
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