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Abstract. Generalised parton distributions (GPDs) and transverse-momentum–dependent parton distri-
butions (TMDs) describe complementary aspects of the three-dimensional structure of hadrons. We discuss
their relation to each other and recall important theory results concerning their properties and their con-
nection with physical observables.

1 Aspects of nucleon structure

Among the most intriguing aspects of quantum chromo-
dynamics is the stark contrast between the simplicity of
its Lagrangian, formulated in terms of quark and gluon
fields, and the complexity of its bound states, hadrons. To
understand hadron structure —in particular the structure
of the nucleon— in terms of quarks and gluons remains
among the most challenging tasks in particle physics. It
is also of acute practical importance for the quantitative
interpretation of high energy experiments, first and fore-
most at the Large Hadron Collider.

The parton model describes a fast-moving nucleon as
a collection of quasi-free quarks, antiquarks and gluons,
whose longitudinal-momentum distribution is described
by parton densities. The formalism of collinear factori-
sation implements these ideas in QCD and provides the
backbone of phenomenology in hadron-hadron and lepton-
hadron collisions. In several situations it does however not
adequately capture all relevant physics, and the conven-
tional parton densities quantify nucleon structure only in
a single space dimension.

The distribution of a parton in the plane transverse to
the direction of motion of its parent nucleon involves two
complementary aspects:

1. The transverse momentum of a parton in the nu-
cleon, quantified by TMDs (transverse-momentum–
dependent distributions), leaves its imprint on the
transverse momenta of particles in the final state and
can thus be accessed by suitable experimental observ-
ables.
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2. The transverse position of a parton in the nucleon can
be accessed in suitable exclusive processes where the
proton is deflected at small angles. The transverse spa-
tial distribution of the parton can be reconstructed by
a Fourier transform from the transverse momentum
transferred to the proton, in close analogy with the
principle of X-ray crystallography. Generalised parton
distribution (GPDs) quantify this type of information.

In both cases, the relevant length or momentum scales are
typical of non-perturbative dynamics, in contrast to the
dimensionless longitudinal-momentum fractions on which
all types of parton distributions depend. In this sense,
TMDs and GPDs carry in a more direct way the imprint
of non-perturbative phenomena such as confinement.

Due to the uncertainty principle, transverse momen-
tum and position (along the same direction) cannot be
specified simultaneously. However, a unifying description
of both aspects can be given using Wigner distributions.
These different degrees of freedom and their interplay are
discussed in sect. 2.

The discussion of “nucleon structure” at the level of
quarks and gluons is closely related to the dynamics of the
physical processes in which this structure is “probed”. To
connect nucleon structure with experimental observables
in a controlled way, we rely on factorisation formulae —
proven or conjectured. These formulae express an observ-
able in terms of parton distributions or similar quantities
involving non-perturbative dynamics on the one hand and
parton-level cross sections or similar quantities involving
only dynamics at short distances on the other hand. The
latter can be computed in QCD perturbation theory.

In particular the discussion of TMDs shows that the
separation of “structure” and “probe” can be surpris-
ingly intricate, to the point of challenging a naive picture
of “nucleon structure” itself. Theoretical work aimed at
showing exactly when and how information on nucleon
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structure can be extracted from experimental observables
has significantly brought (and continues to push) forward
our understanding of QCD in several areas, such as the
scale evolution of operator matrix elements, the control of
power suppressed (higher twist) contributions, the physi-
cal relevance of “unphysical” gluon polarisation, the tran-
sition between perturbative and non-perturbative regimes,
and the limits of applicability of factorisation. We give a
brief overview of such aspects for GPDs in sect. 3 and for
TMDs in sect. 4.

As GPDs and TMDs contain information about the
longitudinal and at least one of the two transverse di-
rections, they have a much richer spin dependence than
the conventional parton densities (the spin dependence
of which is strongly restricted by rotational invariance).
Several GPDs and TMDs describe specific spin-orbit cor-
relations at the parton level and are sensitive to parton
orbital angular momentum, which is a crucial ingredient
in describing how the overall spin of the nucleon arises
from its constituents. In sect. 5 we make some comments
on this topic, which is reviewed in detail in a dedicated
contribution to this Topical Issue [1].

For definiteness, we will mostly consider distributions
for quarks and antiquarks in the following. Gluon distribu-
tions can be discussed in close analogy, with appropriate
adaptions.

2 Space-time and momentum structure

In this section we review the variables on which differ-
ent kinds of parton distributions depend. This will allow
us to see how the different distributions are related to
each other. Any process that probes partons inside a nu-
cleon singles out a particular direction, providing a phys-
ical distinction between “longitudinal” and “transverse”.
This is naturally implemented in the parton model, where
one chooses a reference frame in which the hadron un-
der consideration moves fast. One is however not limited
to this choice: parton distributions are defined in a co-
variant way, and one can also discuss them in the hadron
rest frame. Of course, the process probing the parton still
singles out a particular direction in that frame, so that
transverse and longitudinal directions play different roles.
Thus, the information one can gain about partons in the
proton inevitably breaks manifest three-dimensional rota-
tion invariance. For definiteness, we will in the following
consider a reference frame in which the hadron moves fast
in the positive z-direction (exactly or approximately). A
suitable set of coordinates is then given by the light-cone
coordinates v± = (v0 ± v3)/

√
2 and the transverse com-

ponents v = (v1, v2) of a given four-vector v.
A two-parton correlation function for quarks is defined

as the matrix element of a bilinear quark field operator
between proton states:

H(k, P,Δ) = (2π)−4
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Fig. 1. Momentum assignments in the general quark correla-
tion function (1).

The Dirac matrix Γ selects the twist1 and the parton spin
degrees of freedom, and we have omitted labels for the
proton spin state. For the moment we put aside field the-
oretical issues such as the regularisation and renormali-
sation of the operator and the insertion of a Wilson line
between the two quark fields. The parton and proton mo-
menta are shown in fig. 1. Notice that the on-shell condi-
tion for the proton states results in the conditions PΔ = 0
and 4P 2 + Δ2 = 4m2, where here and in the following m
denotes the proton mass.

While H(k, P,Δ) is a smooth function of Δ, the cases
where this momentum transfer is zero or not correspond
to distinct physical situations:

1. In the forward limit Δ = 0 the function appears in
the cross section of inclusive processes. Glossing over
complications from confinement, one may insert a com-
plete set |X〉〈X| of states between the fields q̄ and q
in the matrix element (1). This gives essentially the
amplitude A for emitting a quark or antiquark from
the proton, with a system of spectator partons X left
behind, multiplied by the conjugate A∗ of that ampli-
tude as required for the computation of a cross sec-
tion. The representation as a squared amplitude A∗A
opens the possibility to interpret certain forward dis-
tributions as probability densities in the sense of quan-
tum mechanics. Taken literally, this interpretation no
longer holds after the regularisation and renormalisa-
tion already mentioned, but if taken with due caution
it remains a valuable guide for physical intuition.
We note that in the forward limit, it is convenient to
take a frame where P = 0, so that the proton moves
exactly along the z-axis.

2. In non-forward kinematics Δ �= 0 the function appears
in the amplitude of exclusive reactions, with an incom-
ing proton of momentum P −Δ/2 and an outgoing one
of momentum P + Δ/2. The functions in this case are
often called “generalised”.

In physical observables, the correlation function (1) typ-
ically is integrated over one or more components of the
four-momentum k. Let us review this step by step.

1. After an integral over k−, the quark and antiquark
fields are evaluated at z+ = 0. This admits a very
elegant interpretation in the framework of light-cone
quantisation: quark fields are quantised at light-cone
time z+ = 0, where they obey the anticommutation

1 There are several —slightly different— definitions of the
term “twist”. We will not expand on this topic here and refer
to [2] for a detailed discussion.
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relations for free fields and have a Fourier decomposi-
tion in terms of creation and annihilation operators for
quarks and antiquarks. This may be seen as the field
theory implementation of the parton model, where par-
tons are regarded as quasi-free just before they are
probed in a physical process. The parton states cre-
ated or annihilated by the fields have positive plus-
momentum, so that depending on the respective signs
of k+ − Δ+/2 and k+ + Δ+/2, the matrix element
in fig. 1 describes the emission and reabsorption of a
quark, the emission and reabsorption of an antiquark,
or (for Δ+ �= 0 only) the emission or absorption of
a quark-antiquark pair (see fig. 3 below). At z+ = 0,
the representation of the parton correlation function
as product A∗A of an amplitude and its conjugate
turns into a product ψ∗ψ of a light-cone wave function
and its conjugate. More detail is given in the contri-
bution [3] to this Topical Issue.
Note that after integration over k− the partons no
longer have a definite virtuality, in particular they are
not on their mass shell. When computing the hard
parton-level subprocess for a factorisation formula, one
may indeed neglect the parton virtuality (which is
much smaller than the hard scale of the process, given
e.g. by the photon virtuality in deep inelastic scatter-
ing or Drell-Yan production). From the point of view
of proton structure, however, the virtuality of partons
is essential. In fact, the notion of on-shell partons is at
odds with the phenomenon of confinement.
In a field-theoretic setting, the integration over k− can
induce so called rapidity divergences in the matrix ele-
ment (1), which come from regions where gluons inside
a right-moving proton have infinite negative rapidity.
Such regions are naturally cut off in a physical process,
but in the matrix element they must be excluded by
a suitable regulation procedure. The distributions are
then dependent on a parameter acting like a rapidity
cutoff, and the dependence on this parameter is de-
scribed by the Collins-Soper equation. We will come
back to this in sect. 4.

2. The distributions obtained after an additional integral
over k are often called “collinear”. This does of course
not imply that the partons in the proton have no trans-
verse momentum, but rather that one is not sensitive
to their transverse momentum in observables that in-
volve collinear distributions.
The combined integral

∫
dk− d2k puts the separation

between the fields in (1) on the light-cone, z2 = 0,
which leads to important simplifications in the field
theoretic context. The rapidity divergences mentioned
in the previous point disappear after integrating over
k, so that a rapidity cutoff parameter is no longer
needed. In turn, the k integration leads to ultraviolet
divergences in the matrix element, which need to be
renormalised. They come from regions where partons
have infinitely large transverse momentum and virtu-
ality. The dependence of the collinear distribution on
the ultraviolet renormalisation scale μ is described by
the familiar DGLAP evolution equations, or by gener-
alised versions of these in the case Δ+ �= 0.

3. If one also integrates over k+, then the parton mo-
mentum is fully unspecified and the product of fields
in the matrix element (1) becomes a local current. The
matrix element is then described by one or more form
factors, which depend only on the invariant momen-
tum transfer Δ2 due to Lorentz invariance.
If the current is conserved, the dependence on the
renormalisation scale disappears; otherwise it is de-
scribed by a simple renormalisation group equation
with an anomalous dimension depending on the cur-
rent.

So far our discussion was purely in momentum space. Let
us now see how different momentum components in (1)
can be traded for position space arguments by a Fourier
transform. Again, the transverse and longitudinal direc-
tions play very different roles, and for now we focus on
the transverse ones. Starting with momentum eigenstates
|p(P+,P )〉 of the proton, one can form wave packets

|p(P+, b)〉 ∝
∫

d2P e−iP b |p(P+,P )〉 , (2)

which are localised at position b in the transverse plane.
They are indeed eigenstates of a transverse position oper-
ator [4], which means that a relativistic particle of mass
m can be localised exactly in two dimensions. (In all three
dimensions, this is only possible up to ambiguities of the
order of its Compton wave length 1/m.)

To understand what this localisation means for a spa-
tially extended object like the proton, we consider so-
called transverse boosts, which form a subgroup of the
Lorentz group and transform a vector k as

k+ → k+ , k → k − k+v , (3)

where v is a fixed vector characterising the transfor-
mation. Notice the analogy between these transverse
boosts and the familiar Galilean transformations in non-
relativistic mechanics, which are obtained from (3) by re-
placing k+ with the mass m of the particle. The relativistic
analogue of the centre-of-mass for a composite system is
thus the centre of plus-momentum, b =

∑
i k+

i bi/
∑

i k+
i .

This is the meaning of b in (2).
As already mentioned, a quark field operator q(z−,z)

at z+ = 0 can be decomposed on annihilation and cre-
ation operators for parton states. From matrix elements
of bilinear field operators at z+ = 0 between the proton
states in (2) we can thus define so-called impact parameter
distributions, which describe the transverse spatial distri-
bution of partons inside a proton that is localised in the
transverse plane [5]. These distributions are obtained from
their momentum space counterparts by a two-dimensional
Fourier transformation w.r.t. the momentum transfer Δ.

Let us take a closer look at the relation between
transverse momentum and position variables. The Fourier
transform

q(z−,k) =
∫

d2z e−ikz q(z−,z)
∣∣
z+=0

(4)

contains the annihilation operator for a quark with trans-
verse momentum k, and for the bilinear operator needed
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Fig. 2. Selected quantities that can be derived from the fully differential two-quark correlation function H(k, P, Δ) defined in (1).
Double arrows marked by “FT” denote a Fourier transform between Δ and b or between k and z. Fractions of plus-momentum
(commonly called “longitudinal-momentum fractions”) are written as x = k+/P+ and 2ξ = −Δ+/P+. The invariant momentum
transfer can be expressed in terms of longitudinal and transverse variables as Δ2 = −(4ξ2m2 + Δ2)/(1 − ξ2). Only kinematic
arguments of the functions are given, while the scales introduced by ultraviolet renormalisation (μ) of by the regulation of
rapidity divergences (ζ) are suppressed. As discussed in the text, the integrals

R

dk− and
R

d2k cannot be taken literally but
must be supplemented with a regularisation procedure.

to form a quark density we have

q̄(z−2 ,k2)Γ q(z−1 ,k1) =∫
d2z2 d2z1 ei(k2z2−k1z1) q̄(z−2 ,z2)Γ q(z−1 ,z1) . (5)

Rewriting the Fourier exponent as

k2z2 − k1z1 =
1
2
(z2 + z1)(k2 − k1)

+
1
2
(k2 + k1)(z2 − z1) , (6)

we can read off the relation between Fourier conjugate
variables:

average position ↔ momentum difference ,

average momentum ↔ position difference ,

where “average” and “difference” refer to the right- and
left-hand sides of fig. 1, or equivalently to the light-cone
wave function ψ and its conjugate ψ∗.

After these general considerations, we can take a closer
look at the different distributions that can be obtained
from the general two-quark correlation function in (1). A
selection of them is shown in fig. 2. Let us start at the top
of the hierarchy.

1. In the forward limit Δ = 0, parton correlation func-
tions that are not integrated over any component of k
(called “doubly” or “fully unintegrated” distributions)
have been discussed in the context of evolution at small
x [6] and with the aim of having an exact description of
final-state kinematics [7,8]. Under the name of “beam
functions”, they have also been introduced in soft-
collinear effective theory (SCET) for the resummation
of large logarithms in observables sensitive to the pro-
ton remnants (called “beam jets”) [9–11]. In that case,
distributions differential in k− but integrated over k
are referred to as beam functions as well. The consid-
erations in [6] and [9–11] focus on the region of large
parton virtuality k2 and compute the unintegrated dis-
tributions in terms of conventional parton distribution
functions (PDFs), an aspect we will discuss in more
detail for TMDs in sect. 4.
A detailed analysis of factorisation with uninte-
grated distributions has been given for semi-inclusive
deep inelastic scattering (SIDIS) in [8]. For hadron-
hadron collisions there are strong arguments that
this type of factorisation generically fails, due to
soft gluon exchange between the spectator partons in
each hadron [12,13]. In kinematics referred to as the
Glauber region, these soft interactions “tie together”
the two hadrons in a way that prevents one from de-
scribing the non-perturbative dynamics by matrix el-
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ements that pertain to only one hadron and not to
both. To establish factorisation, one has to show that
(after appropriate approximations) gluon exchange in
the Glauber region cancels in the observable at hand.
Not being integrated over any momentum component,
parton correlation functions retain manifest Lorentz
invariance (provided that one is careful not to forget
auxiliary vectors required for their field theoretical def-
inition). They can therefore be used to classify and
relate different distributions that descend from them.
Examples are given in [14] for Δ = 0 and in [15] for
Δ �= 0.

2. Wigner distributions depend on the average momen-
tum and the average position of the quark. From the
uncertainty principle it is clear that they cannot rep-
resent joint probabilities in these two variables, but
integrating over any one of them, one obtains a prob-
ability in the other.
The most straightforward interpretation of these dis-
tributions is in the forward limit ξ = 0 of longi-
tudinal momentum. Integrating the Wigner distribu-
tion W (x,k, b) in fig. 2 over b one obtains the TMD
f(x,k), which specifies the probability density of find-
ing a parton with longitudinal-momentum fraction x
and transverse momentum k, whilst integration over k
yields the impact parameter distribution f(x, b), which
gives the probability density of finding a parton with
longitudinal-momentum fraction x at a transverse dis-
tance b from the centre of momentum of the proton.
There is no process known where the Wigner distribu-
tions just described would be directly accessible to ex-
periment. It is amusing to note that more complicated
Wigner distributions do appear in the cross section for
double parton scattering —a process where in a sin-
gle proton-proton collision two pairs of partons initi-
ate two separate hard scatters [16]. These double par-
ton distributions F (x1, x2,k1,k2, b1, b2) are defined in
analogy to W (x,k, b), but with two bilinear quark op-
erators instead of one. The cross section involves the
product

F (x1, x2,k1,k2, b1, b2)F (x̄1, x̄2, k̄1, k̄2, b̄1, b̄2) (7)

of two such distributions, one for each proton. It is in-
tegrated over the transverse variables with constraints
k1 + k̄1 = q1 and k2 + k̄2 = q2, where q1 and q2

are the momenta of the particles produced in one
and the other hard scatter. The additional constraint
b1 − b2 = b̄1 − b̄2 ensures that the two parton pairs
in each proton can initiate two separate short-distance
processes.
Because Wigner distributions do not represent prob-
abilities, they need not be positive, which makes an
intuitive interpretation somewhat difficult. Using an
appropriate smearing procedure, one can obtain so-
called Husimi distributions, which are positive definite
and can be interpreted as probabilities without con-
tradicting the uncertainty principle. They have been
discussed in the context of nucleon structure in [17].

3. The preceding discussion referred to Wigner distribu-
tions that depend on momenta and positions in the
transverse plane whilst in the longitudinal direction
the momentum representation is kept. This “mixed”
representation is useful in many contexts (for instance
in small-x physics), and it allows one to keep a close
connection to the parton model picture, where hadrons
and partons move fast in the longitudinal direction.
However, one may also Fourier transform longitudinal-
momentum variables. Three-dimensional Wigner func-
tions have been defined in [18] by a Fourier transform
of GTMDs (see fig. 2) w.r.t. the momentum trans-
fer (Δ1,Δ2,Δ3) in the brick-wall frame, where Δ0 =
0. The interpretation of these quantities is similar
to the familiar interpretation of Fourier-transformed
form factors as three-dimensional spatial densities [19],
and it is subject to the same limitations due to spe-
cial relativity (see our comment above). A different
three-dimensional representation has been proposed
in [20], considering the scattering amplitude A(Δ, ξ)
for deeply virtual Compton scattering (which is closely
related to GPDs) and performing a Fourier transform
w.r.t. Δ and ξ. The resulting spatial distribution in
the longitudinal direction is reminiscent of an optical
diffraction pattern.
The Fourier transform w.r.t. the average momentum
fraction x has been studied in particular for distribu-
tions integrated over k, that is for GPDs and PDFs. It
gives matrix elements of operators with all fields sepa-
rated along the light-cone, whose ultraviolet renormal-
isation can be discussed independently of the hadron
momenta. This provides deep insight into the appar-
ently different scale evolution of PDFs and of meson
distribution amplitudes, which are matrix elements of
the same operators between a meson state and the vac-
uum. The evolution equations relevant for GPDs turn
out to interpolate between these two cases [21,22].

4. TMDs can be measured in a variety of reactions in
lepton-proton and proton-proton collisions, where
a final-state particle is observed with a transverse
momentum much smaller than the hardest scale in
the process (such as the photon virtuality in SIDIS
or Drell-Yan production). The measured transverse
momentum typically results from the convolution of
two transverse-momentum–dependent quantities, such
as a parton distribution and a fragmentation function
in SIDIS or two parton distributions in the Drell-Yan
process.
This transverse-momentum convolution becomes an
ordinary product after a Fourier transform; the result-
ing distribution f(x,z) in fig. 2 is often called f(x, b) in
the literature (a notation reserved for impact param-
eter distributions here). This representation has also
the advantage that Collins-Soper evolution in rapidity
(see above) is at fixed z, whereas in transverse-
momentum space it involves again a convolution.
Notice that f(x,z) does not have a simple probability
interpretation, z being the difference between the
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Fig. 3. Impact parameter space representation of a GPD at nonzero skewness variable ξ in the regions ξ < x < 1 (left) and
|x| < ξ (right). ξ is taken to be positive, as appropriate for the processes in which GPDs are known to occur. The overall
centre of plus-momentum shifts because of the transfer of plus-momentum to the proton. The case −1 < x < −ξ (not shown)
is analogous to ξ < x < 1, with an antiquark carrying momentum fraction −x + ξ in the wave function and momentum fraction
−x − ξ in the conjugate wave function.

parton position in the light-cone wave function and
its conjugate according to our analysis above.

5. GPDs H(x, ξ,Δ2) are accessible in suitable exclusive
processes, in which the invariant momentum transfer
Δ2 to the proton is much smaller than the hard scale
Q2, which is often given by the virtuality of a pho-
ton. Example processes are deeply virtual Compton
scattering (DVCS), γ∗p → γp, and exclusive meson
production γ∗p → Mp, both measurable in lepton-
proton collisions. A close analogue of DVCS is timelike
Compton scattering (TCS), γp → γ∗p, where the
timelike photon decays into a lepton-antilepton pair.
Whereas Δ is directly measurable, the average parton
momentum fraction x always appears convoluted with
a function representing the hard-scattering process.
The corresponding deconvolution problem is perhaps
the most difficult aspect in extracting information
about GPDs from experimental data.
The analogous functions that are also differential in
the transverse momenta of the partons are called gen-
eralised TMDs (GTMDs). Whilst the appearance of
GPDs in exclusive scattering amplitudes can be estab-
lished with great theoretical rigour [23,24], GTMDs
have only been used in a phenomenological spirit, in or-
der to quantify subleading corrections in 1/Q to DVCS
and exclusive meson production [25]. It is not clear to
which extent this could be made more rigorous, and
even in the setting just mentioned, the average trans-
verse parton momentum k appears under an integral
and cannot be reconstructed in a direct manner.

6. A Fourier transform of GPDs (or GTMDs) w.r.t. the
transverse part Δ of the momentum transfer yields
distributions depending on the impact parameter b,
which quantifies the distance of a transversely localised
parton from the centre of momentum of the proton.
The exclusive processes in which GPDs (or GTMDs)
appear involve a finite longitudinal-momentum
transfer to the proton, so that the corresponding
distributions are probed at nonzero ξ. This compli-
cates somewhat the interpretation of H(x, ξ, b), which
has interference character as far as the longitudinal-
momentum fractions are concerned, as shown in fig. 3.
Only when one takes the limit ξ = 0 of this distribution
does one obtain the impact parameter distribution

f(x, b) with a density interpretation. Likewise, one
obtains the Wigner distribution W (x,k, b) as the
ξ = 0 limit of a Fourier-transformed GTMD.

7. Integrating TMDs over k or impact parameter dis-
tributions over b, one obtains the usual collinear
PDFs. Among all quantities discussed so far, the
range of processes where these distributions can be
studied experimentally is largest. Correspondingly,
our knowledge about them is very advanced and often
in the realm of precision physics. However, even for
PDFs some aspects remain poorly known, such as the
distributions of strange quarks and antiquarks or the
distribution of longitudinally polarised gluons.

8. Taking Mellin moments
∫

dxxn−1 of a GPD, one
obtains a sum over the form factors of a local cur-
rent, which are often called generalised form factors
(GFFs) in this context. As a consequence of Lorentz
invariance, they are weighted by powers of ξ in the
sum, which strongly constrains the interplay between
the x and ξ dependence of the original GPD. This
polynomiality property plays a prominent role in the
construction of consistent GPD parametrisations.
Hadron matrix elements of local currents in the
spacelike region can readily be continued to Euclidean
spacetime and thus be computed in lattice QCD. This
opens the way to obtain genuinely non-perturbative
information about GPDs from first principles and is
complementary to model building efforts. A detailed
review of this field is given in [26].
Evaluating the Mellin moments of GPDs in the
ξ = 0 limit and performing a two-dimensional Fourier
transform to impact parameter space, one obtains the
Mellin moments of the impact parameter distribution
f(x, b), as seen in fig. 2. One can thus interpret elastic
form factors as two-dimensional densities in the
impact parameter plane, with the information about
the longitudinal parton momentum being condensed
into an average with weight xn−1. This provides a
parton-based alternative to the representation of
form factors as Fourier-transformed three-dimensional
densities (see above) and has led to surprising insights
when applied to the electromagnetic proton and
neutron form factors, which are rather well known
experimentally [27].
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γ∗ γ
γ∗ γ

Fig. 4. Example graphs for DVCS (left and centre) and for exclusive vector meson production (right). The lower blob denotes
a GPD, and the upper blob in the right panel denotes the meson distribution amplitude.

3 More on GPDs

In this section we take a closer look at the theory that con-
nects GPDs with exclusive scattering processes. The fac-
torisation of dynamics into perturbative and non-pertur-
bative quantities happens at the level of the scattering am-
plitude. Schematically, a GPD factorisation formula reads

A(ξ,Δ2, Q2) =
∑

i

∫ 1

−1

dxCi

(
x, ξ; log(Q/μ)

)
Hi(x, ξ,Δ2;μ) , (8)

where Ci represents the hard-scattering process, Hi is a
GPD and the sum is over the relevant parton types i.
Example graphs are shown in fig. 4. The support region of
the integral over x includes the different regimes discussed
in the previous section (see fig. 3). In the present section,
we gloss over the fact that there are GPDs with different
dependence on the spin of the partons and the protons.

At lowest order in αs, the hard-scattering kernels for
DVCS, TCS and meson production are linear combina-
tions of 1/(ξ−x−iε) and 1/(ξ+x−iε). This gives a nontriv-
ial convolution for ReA while ImA involves H(x, ξ,Δ2)
at the special points where x = ±ξ. At higher orders,
logarithms of Q/μ appear in Ci, where Q is the physical
hard scale. The dependence on the factorisation scale μ
cancels between Ci and Hi to the order in αs considered,
just as in the case of inclusive processes with PDFs. As
already mentioned, the separate dependence of GPDs on
x and ξ cannot be directly inferred from the amplitude: it
is only through the interplay between x and μ in the scale
evolution of Hi (combined with the dependence of Ci on
Q/μ) that this aspect of GPDs can be constrained from
measurements. The evolution equation for GPDs has the
form

d
d log μ

Hi(x, ξ,Δ2;μ) =

∑
j

∫ 1

−1

dx̂ Vij

(
x, x̂, ξ;αs(μ)

)
Hj(x̂, ξ,Δ2;μ) . (9)

Notice that evolution changes the x dependence but is
local in the variables ξ and Δ2, which are fixed by the
hadron momenta in the matrix element defining the GPD.
In the region |x| > |ξ|, evolution acts in a similar way
as the familiar DGLAP evolution of PDFs, whereas for
|x| < |ξ| it is similar to the ERBL evolution of meson
distribution amplitudes. Correspondingly, one often calls
the respective x ranges the DGLAP or ERBL regions.

The evolution kernels Vij are known at two-loop or-
der, matching the available two-loop accuracy of the hard-
scattering coefficients Ci for light quarks and gluons in
DVCS. One loop corrections to Ci are available for me-
son production and for TCS, as well as for DVCS with
a heavy-quark loop. Detailed information and references
can be found in the review [22], apart for the more recent
result [28].

The hard-scattering mechanism selects certain polari-
sation combinations for the photons and/or mesons in the
process, so that a twist-two factorisation formula like (8)
only holds for selected helicity amplitudes. Other helicity
amplitudes are suppressed by one or two orders in Λ/Q,
where Λ represents the scale of non-perturbative dynam-
ics, as well as the proton mass m and the kinematical scale
|Δ|. In the case of DVCS and TCS, the leading amplitudes
are for transverse γ∗ polarisation, whereas those for longi-
tudinally polarised γ∗ are suppressed by |Δ|/Q. They can
be factorised into hard-scattering coefficients and gener-
alised parton distributions of twist three. We shall not
review these in more detail here, but mention that certain
twist-three distributions are obtained not from the two-
parton correlation function (1) but from its analogue with
an additional field operator for a transversely polarised
gluon.

The leading helicity amplitudes have themselves power
corrections, which in the case of Compton scattering are
known to be of order Λ2/Q2, corresponding to twist four.
An important milestone achieved only recently is the com-
putation of dynamical twist-four corrections (suppressed
by m2/Q2 or Δ2/Q2) for DVCS [29]. At moderate values
of Q2 these can be important in size.

The helicity of the photon and/or meson leaves an
imprint on angular distributions in the final state. This
provides an experimental handle to select combinations
of helicity amplitudes that appear at definite order in the
Λ/Q expansion. The angular structure of the cross section
is particularly rich in DVCS, because in the observable
process �p → �pγ with � = e, μ, Compton scattering inter-
feres with the Bethe-Heitler process (see fig. 5). The latter
can be computed in QED given the input of the electro-
magnetic nucleon form factors, providing a unique tool to
probe DVCS and thus GPDs at the amplitude level [30,
31]. An analogous statement holds for TCS, γp → �+�−p.

Combining the information from polarisation and an-
gular dependence, Compton scattering can provide the
most detailed access to exclusive amplitudes [32,33], and
the theory to connect these amplitudes with GPDs is most
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Fig. 5. Graph for the interference between Compton scattering
(left) and the Bethe-Heitler process (right) in the process �p →
�pγ. The dashed line denotes the final state.

precise. On the other hand, with Compton scattering alone
one cannot separate the distributions for different quark
flavors and has only indirect access to the gluon distribu-
tions via αs effects.

Meson production thus is an important source of com-
plementary information and offers a variety of experimen-
tally accessible production channels. Unfortunately, there
is no systematic theory for power corrections in this case,
whose evaluation thus requires some degree of model de-
pendence. It remains controversial in the literature how
large such corrections are in experimentally accessible
kinematics, see for instance the discussion in [22,34] and
the very different analyses in [35] and [36]. A detailed ac-
count of meson production is given later in this Topical
Issue [37].

Let us finally mention that there are several detailed
reviews on GPDs. The early development of the field and
its cross connections with other areas of QCD are dis-
cussed in [38,39] and [34], a wealth of technical material
is provided in [22], and [40] gives a detailed account of
modelling GPDs.

4 More on TMDs

Let us now take a closer look at the type of factorisa-
tion that connects observables to TMDs. Focusing on un-
polarised protons for the moment, the cross section for
Drell-Yan production, pp → �+�− + X can be written as

dσ

dQ2 dY d2q
=

1
s

∑
ij

σ̂ij(Q;μ)
∫

d2k1 d2k2

×δ(2)(q−k1−k2) fi(x1,k1; ζ1, μ) fj(x2,k2; ζ2, μ), (10)

if the transverse momentum q of the lepton pair (and
hence of the virtual photon) is much smaller than is invari-
ant mass Q. The sum runs over all relevant pairs (ij) of
quark and antiquark distributions. Notice that in this situ-
ation, the longitudinal-momentum fractions of the partons
are fixed by external kinematics, with x1x2 = Q2/s and
x1/x2 = exp(2Y ), where

√
s is the total collision energy

and Y the rapidity of the lepton pair in the pp centre of
mass. This is because the condition |q| 	 Q suppresses
any radiation of unobserved particles from the hard sub-
process. In the more familiar case where q is integrated
over, one has instead

dσ

dQ2 dY
=

1
s

∑
ij

∫ 1

x1

dx̂1

x̂1

∫ 1

x2

dx̂2

x̂2

×σ̃ij(x̂1, x̂2, Q;μ) fi(x1/x̂1;μ) fj(x2/x̂2;μ). (11)

At leading order in αs, the hard-subprocess cross section
is proportional to δ(1 − x̂1) δ(1 − x̂2), but at higher or-
ders hard partons are emitted into the final state. They
carry away longitudinal momentum, so that one probes
momentum fractions in the PDFs from x1 or x2 up to 1.

The specific form (10) of TMD factorisation has been
established in [41]. It differs in technical details from the
original version of Collins, Soper and Sterman in [42,43]
(a brief account of which is given in [44]). Let us highlight
the role of the rapidity regulator parameters ζ1 and ζ2

in the TMDs, which satisfy ζ1ζ2 = Q4. The evolution in
these parameters is simplest if we Fourier transform the
TMDs from k to z (see fig. 2) and then has the form

d
d log

√
ζ

f(x,z; ζ, μ) = K(z;μ) f(x,z; ζ, μ) . (12)

The μ dependence of f is given by a simple renormalisa-
tion group equation

d
d log μ

f(x,z; ζ, μ) =
[
γf

(
αs(μ)

)
− γK

(
αs(μ)

)
log

√
ζ

μ

]
f(x,z; ζ, μ) . (13)

More detail is given in the contribution [45] to this Top-
ical Issue. Let us emphasise that TMDs evolve with ζ
and μ at fixed momentum fraction x – unlike DGLAP
evolution with its interplay between the x and μ de-
pendence. This is directly related with the absence of
longitudinal-momentum integrals in the TMD factorisa-
tion formula (10), which we already explained. A convo-
lution integral over longitudinal momentum occurs only
when one computes the high k behaviour of TMDs, as we
will see now.

At low k (or equivalently at large transverse distances
z between the quark fields) the TMDs can be thought
of as describing the “intrinsic” transverse momentum of
partons in the proton, which arises from non-perturbative
dynamics. Starting from low transverse momentum and
emitting partons with large transverse momenta, one can
obtain values of k much larger than the scale Λ of non-
perturbative interactions. In this situation one can express
TMDs in terms of collinear PDFs and a hard-scattering
kernel describing the emission. In the transverse-momen-
tum representation, this reads

fi(x,k; ζ, μ) =
1
k2

×
∑

j

∫ 1

x

dx̂

x̂
Cij

(
x̂, log(ζ/k2), log(μ2/k2)

)
fj(x/x̂;μ) .

(14)

There is of course a smooth transition between the
non-perturbative regime at low k and the perturbative
behaviour in (14), so that there is no strict distinction
between the “intrinsic” transverse momentum of a
parton and the transverse momentum generated by hard
radiation.
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q

k1

k2

Fig. 6. A lowest-order graph for Drell-Yan production at in-
termediate transverse momentum of the lepton pair. The blobs
represent collinear PDFs, and the box around the lower blob
and gluon denotes the TMD (14) in the region of large k1. The
decay of the virtual photon into a lepton pair is not shown for
simplicity.

The form (14) can be used to compute cross sec-
tions in the regime of intermediate transverse momenta
Λ2 	 q2 	 Q2. Alternatively, one may describe the same
physics using collinear factorisation, with the hard subpro-
cess starting at order αs to allow radiation of at least one
parton with high transverse momentum. In fact, both de-
scriptions give the same result at given order in αs, as sug-
gested by fig. 6 and shown for instance in [44,46]. The for-
mulation using collinear factorisation has large logarithms
of Q2/q2 in the hard-scattering cross section. Their power
increases at each order in αs, which leads to a poor conver-
gence of the perturbative series. The formulation starting
from TMDs allows one to sum these so-called Sudakov
logarithms to all orders in αs, using the evolution equa-
tions in ζ and μ discussed above. With reference to the
original work [43], this is often called CSS resummation.

The result (14) clearly shows that the integral
∫

d2k
of a TMD requires a suitable regularisation in the ultra-
violet region. For heuristic purposes, one may think of a
simple cutoff in k2. Setting this cutoff to μ2 and taking
the derivative with respect to μ2, one readily sees that
the kernel Cij in (14) is closely related to the spitting ker-
nel in the DGLAP evolution equations for collinear PDFs.
For systematic calculations, however, one typically defines
the collinear PDFs using dimensional regularisation, sub-
tracting the ultraviolet divergence in 4 − 2ε dimensions
and then setting ε = 0. The simple integral relation be-
tween TMDs and PDFs defined in 4 dimensions is then of
course lost. In a modified form, it is however recovered in
the Fourier conjugate representation

fi(x,z; ζ, μ) =
∫

d2k eikz fi(x,k; ζ, μ) , (15)

where the analogue of (14) reads

fi(x,z; ζ, μ) = fi(x;μ)

+
∑

j

∫ 1

x

dx̂

x̂
C̃ij

(
x̂, log(ζz2), log(μ2z2)

)
fj(x/x̂;μ) (16)

at small z. The exponential in the Fourier transform in-
deed acts as an ultraviolet regulator for the integral, since

SH H

Fig. 7. Organisation of a graph for the Drell-Yan process into
subgraphs that contain either hard momenta (H) or soft mo-
menta (S) of momenta collinear to one of the protons (top and
bottom blobs).

at high k its oscillations are sufficient to give a finite result.
The integral of the TMD regulated in this way gives the
corresponding PDF plus corrections that can be computed
in an αs expansion. The divergence of the unregulated in-
tegral is reflected in the logarithms of z2 on the r.h.s.
of (16). It is amusing to note that for suitable functions
f(x,k), the exponential regulator in (15) is equivalent to
a momentum cutoff [44].

Let us now take a step back to the derivation of the
TMD factorisation formula (10). This formula, and graphs
like the one in fig. 6, suggest that the two protons only in-
teract via the annihilation of a quark-antiquark pair into
a virtual photon. This is barely plausible and indeed not
the case. In the language of perturbation theory, the two
protons can exchange an arbitrary number of soft gluons,
and in addition, any number of gluons with longitudinal
polarisation from each can take part in the qq̄ annihilation
subprocess, as shown in fig. 7. To establish factorisation,
one needs to show that these gluon interactions can be cast
into a form consistent with the simple structure in (10).
The result of such arguments, presented in detail in [41]
(and sketched briefly in [47]), is that the physical effects of
these gluons are represented by Wilson line operators be-
tween the fields in the parton correlation function (1) (in-
tegrated over k−) and by so-called soft factors, which are
vacuum expectation values of further Wilson lines and can
be absorbed in the definition of the TMDs. The Wilson
lines also turn the operator product in (1) into a gauge-
invariant operator, as is appropriate for the definition of
a meaningful quantity.

All this may seem to be technicalities, but indeed there
is important physics behind it. The precise form of the
Wilson lines allows one to regulate the rapidity diver-
gences of TMDs, introducing a parameter ζ. The associ-
ated rapidity evolution equation allows one to resum large
logarithms in physical cross sections, without which one
would badly fail to describe experimentally measured dis-
tributions.

A far reaching result is that the path of the Wilson
lines depends on the space-time structure of the process in
which the TMDs are embedded. The Wilson lines required
for Drell-Yan production point to the past, whereas those
appearing in the parton distributions for SIDIS point to
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⇒ ⇐

Fig. 8. Gluon exchange graphs in Drell-Yan production (left) and semi-inclusive DIS (right), as well as the corresponding
Wilson line in the definition of the TMD (centre). The small blob in the SIDIS graph denotes a transverse-momentum–dependent
fragmentation function.

the future. This reflects the fact that the gluon interac-
tions shown in fig. 8 strike a parton before the hard scat-
tering in the Drell-Yan case and after the hard scattering
in SIDIS.

This difference has remarkable consequences when spin
dependence is taken into account. Consider the distribu-
tion of unpolarised quarks in a proton that is polarised
in the transverse direction s. For a proton moving in the
positive or negative z-direction, this can be parametrised
as

f [U ](x,k, s) =

f
[U ]
1 (x,k2) − εijkisj

m
sign(P 3) f

⊥[U ]
1T (x,k2) , (17)

where εij is the antisymmetric tensor in two dimensions.
The superscript [U ] indicates the Wilson line dependence;
for simplicity we have omitted the arguments ζ and μ in all
functions. Under time reversal the Wilson lines for Drell-
Yan production turn into the ones for SIDIS, so that the
unpolarised distribution f1 is the same for both processes.
By contrast, the factor multiplying the Sivers function f⊥

1T
in (17) changes sign under time reversal (which flips both
momentum and spin vectors). Time reversal symmetry
thus gives

f
⊥[DY]
1T (x,k2) = −f

⊥[SIDIS]
1T (x,k2) . (18)

The modulation of the transverse-momentum distribution
induced by transverse proton polarisation has opposite
sign in the two cases —were it not for the gluon exchange
effects represented by the Wilson line, this modulation
would be zero. The Sivers distribution (as well as other
spin-dependent distributions that are naively zero due to
time reversal invariance) shows in a pointed way that in
some situations the “structure” of the proton cannot be
discussed independently of the physical process in which
this structure manifests itself.

For intermediate transverse momenta, Λ2 	 q2 	 Q2,
one can also compute the graphs in the left and right pan-
els of fig. 8 using collinear factorisation. The hadronic in-
put for the proton at the bottom of the graphs is then
a twist-three distribution TF (x1, x2), called Qiu-Sterman
function. The large k limit of the Sivers distribution can
be expressed in terms of this function, as well. In Fourier

space, the result can be cast into the form2

∫
d2k eikz k2

m
f
⊥[SIDIS]
1T (x,k; ζ, μ) =

−TF (x, x;μ) + O(αs) , (19)

which relates a regulated k integral of the Sivers distri-
bution f⊥

1T (x,k2) with the Qiu-Sterman function, in anal-
ogy to the relation (16) for unpolarised distributions. Us-
ing (18) and (19) to calculate the Sivers asymmetries in
Drell-Yan production and in SIDIS, one obtains agreement
with the collinear twist-three calculation at intermediate
transverse momenta [46,49]. A general analysis of the re-
lation between the two formalisms for a large class of spin
asymmetries is given in [44].

It is not always possible to describe the effects of soft
gluon exchange by Wilson line operators and to obtain
a factorisation formula with TMDs. Processes for which
TMD factorisation has been established are SIDIS and
e+e− annihilation into back-to-back hadrons (both involv-
ing transverse-momentum–dependent fragmentation func-
tions), as well as hadron-hadron collisions in which only
colourless particles are produced by the hard scattering
(e.g. a virtual photon, a γγ pair, a Z or W , a Higgs boson,
etc.). For hadron-hadron collisions with observed hadrons
in the final state, soft gluon exchange between the two
hadrons generically breaks TMD factorisation [50,51]. Be-
cause soft gluon interactions cannot be reliably computed
in perturbation theory, it is difficult to predict how large
such factorisation breaking effects are.

5 Spin and orbital angular momentum

Both TMDs and GPDs have a rich structure in the par-
ton and proton spin. They can in particular express cor-
relations between transverse momentum or position and
transverse polarisation. An example is the Sivers function
we already encountered in the previous section. It is in-
structive to compare the transverse-momentum distribu-
tion (17) with the impact parameter distribution of un-
polarised quarks in a transversely polarised proton, given

2 The relation (19) can be obtained from eq. (47) in [48].
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by [52]

f(x, b, s) =

H(x, b2) +
εijbisj

m
sign(P 3)

∂

∂b2 E(x, b2) , (20)

where H(x, b2) and E(x, b2) are obtained by a two-dimen-
sional Fourier transform from the GPDs H(x, ξ,Δ2) and
E(x, ξ,Δ2) at ξ = 0. In contrast to the case of the Sivers
function, the factor multiplying E in (20) is not time re-
versal odd, because time reversal flips spins and momenta
but not spatial directions. The integral of E(x, b2) over x
is related to the electromagnetic Pauli form factor of the
nucleon and thus rather well known experimentally.

The decomposition (20) shows that transverse proton
polarisation induces a sideways shift in the impact pa-
rameter distribution of the struck quark, which implies a
shift of the spectator partons in the opposite direction (so
that the overall centre of momentum remains unchanged).
A fruitful idea is to relate this spatial anisotropy to an
anisotropy in the transverse-momentum distribution of
the struck quark: as we have already discussed, the Sivers
asymmetry owes its very existence to the interactions in-
volving the spectator partons in the proton (see fig. 8).
This mechanism has been called chromodynamic lens-
ing [53] and connects in particular the sign of the Sivers
distribution with the sign of the anomalous magnetic mo-
ment, in agreement with phenomenology. To quantify this
relation is difficult, given the non-perturbative nature of
spectator parton interactions. In specific models, using for
instance perturbative gluon exchange and representing the
spectator system by a diquark, one obtains however defi-
nite relations between TMDs and GPDs, as discussed for
instance in [54].

Another feature of the distribution E(x, ξ,Δ2) be-
comes evident if one changes basis from transversely po-
larised proton states to longitudinally polarised ones. One
then finds that (in contrast to its unpolarised counterpart
H), the distribution E contributes to transitions that re-
verse the helicity of the proton while preserving the helic-
ity of the quarks (see, e.g., [34]). Since the total angular
momentum Jz along z is conserved, orbital angular mo-
mentum must be transferred, which is possible because Δ
is nonzero. Specifically, one can show that E involves the
interference between light-cone wave functions ψ and ψ∗

that differ by one unit of orbital angular momentum Lz

along z [55].
A seemingly different connection between E and an-

gular momentum is given by Ji’s sum rule [38,56]

Jq(μ) =
1
2

∫ 1

−1

dxx
[
Hq(x, ξ,Δ2;μ)

+Eq(x, ξ,Δ2;μ)
]
Δ2=0

. (21)

Here Jq(μ) is the total angular momentum along z carried
by quarks and antiquarks of flavour q in a proton polarised
along z. It is defined via the matrix element of an appro-
priate angular momentum operator between proton states
and includes both helicity and orbital contributions. We

note that the prefactor of E in (20) can be rewritten in
terms of the cross product between b and the proton mo-
mentum, which is indicative of orbital angular momentum.
The relation between this and the sum rule (21) is rather
subtle and has been discussed in [57].

To determine from experimental information on GPDs
is extremely demanding, not only because the sum rule re-
quires extrapolation to Δ2 = 0 but also due to the problem
of reconstructing the x dependence of GPDs (see sect. 3).
By contrast, it is comparatively straightforward to evalu-
ate Jq(μ) in lattice QCD, and there is indeed considerable
activity in this direction [26,1].

It is important to note that there are several distinct
ways to decompose the total angular momentum of the
proton into contributions Jq and Jg from quarks and glu-
ons, and to further separate these into contributions from
orbital angular momentum and from intrinsic spin. Apart
from the decomposition in [56], which is used in the sum
rule (21), there is in particular the operator definition by
Jaffe and Manohar [58]. Several other operator definitions
have been proposed, and the contribution [1] to this vol-
ume gives a detailed discussion of this issue.

Various decompositions of angular momentum differ
by terms involving the gluon field. This points to the sub-
tle nature of gauge interactions —a theme we encountered
already when discussing the role played by Wilson lines in
the definition of TMDs. In a broader context, one should
also remember that there may not always be a unique
way to promote quantities from classical mechanics to
quantum mechanics, let alone to quantum field theory.
Indeed, even the definition of the quark helicity contribu-
tion the proton spin is subject to ambiguities due to the
axial anomaly (see for instance [59]). The existence of such
quantum effects may complicate a physical interpretation,
but one should keep in mind that when calculating phys-
ical observables, a correct answer can be obtained using
different schemes.

It is a pleasure to thank Andreas Schäfer and Frank Tackmann
for valuable input.
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26. Ph. Hägler, Phys. Rep. 490, 49 (2010) (arXiv:0912.5483
[hep-lat]).

27. G.A. Miller, Phys. Rev. Lett. 99, 112001 (2007)
(arXiv:0705.2409 [nucl-th]).

28. D. Müller, B. Pire, L. Szymanowski, J. Wagner, Phys. Rev.
D 86, 031502 (2012) (arXiv:1203.4392 [hep-ph]).

29. V.M. Braun, A.N. Manashov, D. Müller, B.M. Pirnay,
Phys. Rev. D 89, 074022 (2014) (arXiv:1401.7621 [hep-
ph]).

30. X.D. Ji, Phys. Rev. D 55, 7114 (1997) (hep-ph/9609381).
31. M. Diehl, T. Gousset, B. Pire, J.P. Ralston, Phys. Lett. B

411, 193 (1997) (hep-ph/9706344).
32. A.V. Belitsky, D. Müller, A. Kirchner, Nucl. Phys. B 629,

323 (2002) (hep-ph/0112108).
33. M. Diehl, S. Sapeta, Eur. Phys. J. C 41, 515 (2005) (hep-

ph/0503023).
34. M. Diehl, Phys. Rep. 388, 41 (2003) (hep-ph/0307382).

35. S.V. Goloskokov, P. Kroll, Eur. Phys. J. C 53, 367 (2008)
(arXiv:0708.3569 [hep-ph]).

36. T. Lautenschlager, D. Müller, A. Schäfer, arXiv:1312.5493
[hep-ph].

37. L. Favart, M. Guidal, T. Horn, P. Kroll, Eur. Phys. J. A
52, 158 (2016) this Topical Issue, arXiv:1511.04535 [hep-
ph].

38. X.D. Ji, J. Phys. G 24, 1181 (1998) (hep-ph/9807358).
39. K. Goeke, M.V. Polyakov, M. Vanderhaeghen, Prog. Part.

Nucl. Phys. 47, 401 (2001) (hep-ph/0106012).
40. S. Boffi, B. Pasquini, Riv. Nuovo Cimento 30, 387 (2007)

(arXiv:0711.2625 [hep-ph]).
41. J.C. Collins, Foundations of Perturbative QCD (Cam-

bridge University Press, Cambridge, 2011).
42. J.C. Collins, D.E. Soper, Nucl. Phys. B 193, 381 (1981)

213, 545 (1983)(E).
43. J.C. Collins, D.E. Soper, G.F. Sterman, Nucl. Phys. B 250,

199 (1985).
44. A. Bacchetta, D. Boer, M. Diehl, P.J. Mulders, JHEP 08,

023 (2008) (arXiv:0803.0227 [hep-ph]).
45. T.C. Rogers, Eur. Phys. J. A 52, 153 (2016) this Topical

Issue, arXiv:1509.04766 [hep-ph].
46. X.D. Ji, J.W. Qiu, W. Vogelsang, F. Yuan, Phys. Rev.

Lett. 97, 082002 (2006) (hep-ph/0602239).
47. M. Diehl, J.R. Gaunt, D. Ostermeier, P. Plößl, A. Schäfer,
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