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Abstract. The relativistic interacting quark-diquark model of baryons, recently developed, is here extended
introducing in the mass operator a spin-isospin transition interaction. This refined version of the model is
used to calculate the non-strange baryon spectrum. The results are compared to the present experimental
data. A preliminary calculation of the magnetic moments of the proton and neutron is also presented.

1 Introduction

According to standard quark models (QMs) [1–16], bary-
ons are described as bound states of three constituent
quarks. These are effective degrees of freedom that mimic
the three valence quarks inside baryons, with virtual glu-
ons and qq̄ sea pairs. The light baryons can then be or-
dered according to the approximate SUf (3) symmetry into
the multiplets [1]A⊕[8]M⊕[8]M⊕[10]S . QMs explain quite
well several properties of baryons, such as the strong de-
cays, the magnetic moments and the electromagnetic elas-
tic form factors. Nevertheless, they predict a larger num-
ber of states than the experimentally observed ones, that
is known as the missing resonance problem. Furthermore,
some states with certain quantum numbers appear in
the spectrum at excitation energies much lower than pre-
dicted [17]. The problem of the missing resonances [17–19]
has motivated the realization of several experiments, such
as CB-ELSA [20], CBELSA/TAPS [21], TAPS [22–24],
GRAAL [25, 26], SAPHIR [27, 28] and CLAS [29–31],
which only provided a few weak indications about some
states. Indeed, even if several experiments have been ded-
icated to the search of missing states, just a small number
of new resonances has been included into the PDG [17].

There are two possible explanations to the puzzle of
the missing resonances:

1) There may be resonances very weakly coupled to the
single pion, but with higher probabilities of decaying
into two or more pions or into other mesons [17–19].
The detection of such states is further complicated by
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the problem of the separation of the experimental data
from the background and by the expansion of the dif-
ferential cross sections into many partial waves.

2) Alternately, it is possible to consider models that are
characterized by a smaller number of effective degrees
of freedom with respect to the three quarks QMs and to
assume that the majority of the missing states, not yet
experimentally observed, simply may not exist. This
is the case of quark-diquark models (QDMs) [32–45]
where two quarks are strongly correlated and thus the
state space is heavily reduced.

In QDMs, the effective degrees of freedom of diquarks
are introduced to describe baryons as bound states of a
constituent diquark and quark [32, 33]. The notion of di-
quark dates back to 1964, when its possibility was men-
tioned by Gell-Mann [46] in his original paper on quarks.
Since then, many papers have been written on this topic
(for a review see ref. [34]) and, more recently, the di-
quark concept has been applied to various calculations
[35–45,47–56].

Important phenomenological indications for diquark-
like correlations have been collected [35, 37, 57–59] and
indications for diquark confinement have also been pro-
vided [60].

Theoretically, a fully Poincaré covariant three-quark
solution of the nucleon’s Faddeev equation [61] has been
shown to agree with a consistently obtained quark-diquark
calculation. These results have been also developed in a
more recent work [62] concerning the quark-quark inter-
actions in baryons.



Page 2 of 8 Eur. Phys. J. A (2016) 52: 121

All these investigations make it plausible enough to
use diquarks as a part of the baryon’s wave function.

In ref. [38], one of us developed a non-relativistic inter-
acting quark-diquark model, i.e. a potential model based
on the effective degrees of freedom of a constituent quark
and diquark. In refs. [42, 43], it was “relativized” and re-
formulated within the point form formalism [63–67]. In
ref. [44], we used the wave functions of refs. [42, 43] to
compute the nucleon electromagnetic form factors.

The aim of the present work is to improve the “rel-
ativized” quark-diquark constituent model [42–44] and
compute the non-strange baryon spectrum within point
form dynamics.

Even if our previous results for the non-strange baryon
spectrum [42, 43] were in general quite good, here we in-
tend to show that the introduction of a spin-isospin transi-
tion interaction, inducing the mixing between quark-scalar
diquark and quark-axial-vector diquark states can further
improve the spectrum, as already suggested in ref. [38]. We
recall that scalar and axial-vector diquarks can be consid-
ered as two correlated quarks in S wave with spin 0 or 1,
respectively [35, 36]. As our previous studies [42, 43], the
present model is essentially phenomenological and no at-
tempt is made to investigate the fundamental structure of
the diquark.

The wave functions of the model are used here to cal-
culate, by means of a preliminary approach, the magnetic
moments of the proton and neutron. The quality of our
results for the baryon magnetic moments is comparable
to that obtained in QMs calculations, showing that the
present model has a wide range of applications, in partic-
ular for the electromagnetic observables of the baryons.

In a following study we will use the new wave func-
tions, obtained by solving the eigenvalue problem of the
mass operator of the present work, to calculate also the
nucleon electromagnetic form factors and the elicity tran-
sition amplitudes.

2 The mass operator

We represent the baryon as a quark-diquark system. In
the baryon rest frame, we introduce the operator r as the
relative distance between the two constituents and q as
the corresponding conjugate momentum. We propose a
relativistic quark-diquark model, based on the following
mass operator:

M = E0 +
√

q2 + m2
1 +

√
q2 + m2

2 + Mdir(r)

+Mc(q, r) + Mex(r) + Mtr(r), (1)

where E0 is a constant, m1 and m2 represent the diquark
and quark mass, respectively; Mdir(r), Mc(q, r), Mex(r)
and Mtr(r), respectively, represent the direct, contact, ex-
change and transition quark-diquark interaction terms.

We now discuss in more detail the various interac-
tion terms of the previous equation. The direct term is a
Coulomb-like interaction with a cut-off plus a linear con-
finement term:

Mdir(r) = −τ

r

(
1 − e−μr

)
+ βr. (2)

One also needs an exchange interaction [38, 68], that is a
crucial ingredient for an accurate quark-diquark descrip-
tion of baryons. We have

Mex(r) = (−1)L+1e−σr
[
ASs1 · s2 + AIt1 · t2

+ASI(s1 · s2)(t1 · t2)
]
, (3)

where si and ti (i = 1, 2) are the spin and the isospin
operators of the constituents.

Moreover, we consider a contact interaction similar to
that introduced by Godfrey and Isgur [69] for the study
of the mesonic spectroscopy:

Mc(q, r) =
(

m1m2

E1E2

)1/2
η3D

π3/2
e−η2r2

δL,0δs1,1

(
m1m2

E1E2

)1/2

; (4)

note that this interaction also depends on the constituent
energy operators Ei =

√
q2 + m2

i (i = 1, 2).
All the terms of the mass operator analyzed up to this

point (i.e., excluding Mtr(r)) have (almost) the same form
as the corresponding terms of the mass operator used
in the previous version of the relativistic quark-diquark
model [42, 43]. The only small difference is that the pa-
rameter ε of the contact interaction of refs. [42, 43] is set
as ε = 0 in the present model. This choice has been done
to keep the number of free parameters as small as possible.

As a specific aspect of the present model, we point out
that the diquark mass m1, that appears in the kinetic en-
ergy operators and in the contact operator Mc(q, r), takes
the values mS or mAV when the mass operator is act-
ing on a scalar (S) or an axial-vector (AV ) diquark state,
respectively [35,36,70–78].

Finally, in this model we have introduced a spin-isospin
transition interaction, Mtr(r), in order to mix quark-scalar
diquark and quark-axial-vector diquark states. Mtr(r) is
chosen in the form:

Mtr(r) = V0e
− 1

2 ν2r2
(s2 · S)(t2 · T ), (5)

where V0 and ν are free parameters.
The matrix elements of the spin transition operator,

S (of spherical components S1,μ) are easily obtained by
means of the Wigner-Eckart theorem from the following
reduced matrix elements:

〈1‖ S1 ‖1〉 = 〈0‖ S1 ‖0〉 = 0, (6a)

〈1‖ S1 ‖0〉 = 1 (6b)

and
〈0‖ S1 ‖1〉 = −1. (6c)

The same expressions hold for the matrix elements of the
isospin transition operator, T .

The mass operator given in eq. (1) has the following
good quantum numbers: the total spin S, being S = s1 +
s2, the total isospin quantum numbers T and T3, being
T = t1 + t2, the orbital angular momentum L, the parity
P = (−1)L and the total angular momentum J , being
J = L + S. Due to the spin-isospin transition operator
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Table 1. Resulting values for the model parameters.

E0 = 826 MeV mq = 140 MeV

mS = 150MeV mAV = 360MeV

τ = 1.23 μ = 125 fm−1

β = 1.57 fm−2 σ = 0.60 fm−1

AS = 125 MeV AI = 85 MeV

ASI = 350 MeV D = 2.00 fm−2

η = 10.0 fm−1 V0 = 1450 MeV

ν = 0.35 fm−1

Mtr(r), s1 and t1 are no more good quantum numbers: in
the eigenstates of the total mass operator, states having
s1 = t1 = 0 are mixed with states having s1 = t1 = 1.
The presence of the states with s1 = t1 = 0 implies that
the mixed eigenstates can only have S = T = 1

2 .
Considering all the properties of Mtr(r), its matrix el-

ements can be conveniently written as

〈Ψ ′|Mtr(r) |Ψ〉 =
1
4
V0δs′

1,s1±1δS, 1
2
δt′1,t1±1δT, 1

2

×〈Φ′| e− 1
2 ν2r2 |Φ〉, (7)

where Φ(r) = 〈r|Φ〉 represents the spatial part of the wave
function of a generic state |Ψ〉.

In this work Mtr(r) is introduced to improve the de-
scription of the non-strange baryon spectrum [42,43] (see
the results of fig. 1). Furthermore, it makes possible to
have a nucleon wave function with a quark-axial-vector di-
quark component in addition to the quark-scalar diquark
one of the standard QDMs. In this way one obtains a
description of the nucleon that is more similar to that
given by the QMs in which two quarks, (denoted, here
and in the following, by the indices a and b) are coupled
in a state with sab = tab = 0 and also in a state with
sab = tab = 1. In those models, the two states are nec-
essary to construct a completely symmetric spin-isospin
function for the three quarks. Furthermore, the two states
appear in the wave function with the same amplitude, that
is a0

ab = a1
ab = 1/

√
2. In this way, the magnetic proper-

ties of the nucleon can be described with good accuracy.
Here, the quark-axial-vector diquark component, carrying
an intrinsic angular momentum and electric charge, is also
expected to improve the reproduction of the magnetic re-
sponse of the nucleon with respect to the standard quark-
diquark model, in which only the S diquark is present.

The free parameters of the present model are: E0, mq,
mS , mAV , τ , μ, β, σ, AS , AI , ASI , D, η, V0 and ν. It
is worth noting that the number of model parameters in-
creases only by one with respect to our previous model
of refs. [42, 43], since there are two new parameters, V0

and ν, but, as anticipated, the parameter ε of the contact
interaction of refs. [42, 43] has been removed.

The numerical values of the parameters that are used
to fit the baryon spectrum are shown in table 1. One can
notice that the values of the model parameters are changed
with respect to those of refs. [42–44] due to the introduc-

tion of the transition interaction of eq. (5). In particu-
lar, the string tension goes from 2.15 fm−2 to 1.57 fm−2.
Furthermore, one can see that the masses of the two con-
stituents (the quark and the diquark) are now smaller than
before, which is consistent with a relativistic description of
the baryon system in terms of constituents. Also, the mass
difference between the scalar and the axial-vector diquark
is smaller too (it goes from 350MeV to 210MeV).

Finally, it has to be noted that in the present work all
the calculations are performed without any perturbative
approximation, with the same technique used in refs. [42,
43].

From a formal point of view, we notice that our model
satisfies the condition of relativistic covariance, exactly
as explained in refs. [42–44]. We recall that, the eigen-
functions of the mass operator of eq. (1) can be thought
as eigenstates of the mass operator with interaction in
a Bakamjian-Thomas construction [79]. The interaction is
introduced adding an interaction term to the free mass op-
erator M0 =

√
q2 + m2

1 +
√

q2 + m2
2, in such a way that

the interaction commutes with the non-interacting Lorenz
generators and with the non-interacting four-velocity [80].

The dynamics is given by a point form Bakamjian-
Thomas construction. Point form means that the Lorentz
group is kinematic. Furthermore, since we are doing a
point form Bakamjian-Thomas construction, here P =
Mv0, where v0 is the non-interacting four-velocity (whose
eigenvalue is v).

The general quark-diquark state, defined on the prod-
uct space H1 ⊗ H2 of the one-particle spin s1 (0 or 1)
and spin s2 ( 1

2 ) positive energy representations H1 =
L2(R3)⊗S0

1 or H1 = L2(R3)⊗S1
1 and H2 = L2(R3)⊗S

1/2
2

of the Poincaré group, can be written as [42,43]:

|p1, p2, λ1, λ2〉 , (8)

where p1 and p2 are the four-momenta of the diquark and
the quark, respectively, while λ1 and λ2 are, respectively,
the z-projections of their spins.

We introduce the velocity states as [42,43,63–66]:

|v,k1, λ1,k2, λ2〉 = UB(v)|k1, s1, λ1, k2, s2, λ2〉0, (9)

where the suffix 0 means that the diquark and the quark
three-momenta k1 and k2, called internal momenta, sat-
isfy

k1 + k2 = 0. (10)

Following the standard rules of the point form approach,
the boost operator UB(v) is taken as a canonical one, ob-
taining that the transformed four-momenta are given by
p1,2 = B(v)k1,2 and satisfy the point form relation

pμ
1 + pμ

2 =
Pμ

N

MN

(√
q2 + m2

1 +
√

q2 + m2
2

)
, (11)

where Pμ
N is the observed baryon four-momentum and MN

is its mass. It is worthwhile noting that eq. (9) redefines
the single-particle spins. Having applied canonical boosts,
the conditions for a point form approach [63–66, 81] are
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Fig. 1. (Color online) Comparison between the calculated
masses (black lines) of the 3∗ and 4∗ non-strange baryon
resonances (up to 2GeV) and the experimental masses from
PDG [17] (boxes).

satisfied. Therefore, the spins on the left-hand state of
eq. (9) perform the same Wigner rotations as k1 and k2,
allowing to couple the spin and the orbital angular mo-
mentum as in the non-relativistic case [63–66], while the
spins in the ket on the right-hand side of eq. (9) undergo
the single-particle Wigner rotations.

In point form dynamics, eq. (1) corresponds to a good
mass operator since it commutes with the Lorentz gener-
ators and with the four-velocity. We diagonalize eq. (1) in
the Hilbert space spanned by the velocity states. Finally,
instead of the internal momenta k1 and k2 we use the rel-
ative momentum q, conjugate to the relative coordinate
r = r1 − r2, thus considering the following velocity basis
states:

|v, q, λ1, λ2〉 = UB(v)|k1, s1, λ1, k2, s2, λ2〉0. (12)

3 Results and discussion

Figure 1 and table 2 show the comparison between the
experimental data [17, 82] and the results of our quark-
diquark model calculation, obtained with the set of pa-
rameters of table 1. In addition to the experimental data
from PDG [17], we also consider the latest multi-channel
Bonn-Gatchina partial wave analysis results, including
data from Crystal Barrel/TAPS at ELSA and other labo-
ratories [82]. In particular, these data differ from those of
the PDG [17] in the case of the Δ(1940)D33.

As discussed in the previous sect. 2, the spin-isospin
transition interaction of eq. (5) mixes quark-scalar diquark
and quark-axial-vector diquark states whose total spin and
isospin are S = T = 1

2 . Thus, in this version of the model
the nucleon state, as well as states such as the D13(1520),
the S11(1535) and the P11(1440), all contain both a s1 = 0
and a s1 = 1 component. In particular, the nucleon state,
obtained by solving the eigenvalue problem of eq. (1), in
a schematic notation can be written as

|N〉 = aS |qDS , L = 0〉 + aAV |qDAV , L = 0〉 , (13)

where DS and DAV stand for the scalar and axial-vector
diquarks, respectively, and q for the quark. The coefficients

aS and aAV , obtained by solving the eigenvalue problem
of eq. (1), are

aS = 0.727, (14a)
aAV = 0.687. (14b)

As anticipated in the previous sect. 2, these two values
favourably compare with the corresponding amplitudes of
the QMs, that are aab

0 = aab
1 = 1/

√
2 = 0.7071.

The radial wave functions (in momentum space) of
the quark-scalar diquark [ΦS(q)] and quark-axial-vector
diquark [ΦAV (q)] systems of eq. (13) can be fitted by har-
monic oscillator wave functions

ΦS(q) =
2α

3/2
S

π1/4
e−

1
2 α2

Sq2
, (15a)

ΦAV (q) =
2α

3/2
AV

π1/4
e−

1
2 α2

AV q2
, (15b)

with αS = 3.29GeV−1 and αAV = 3.04GeV−1. The same
can be done for the Δ(1232) radial wave function

ΦΔ(q) =
2α

3/2
Δ

π1/4
e−

1
2 α2

Δq2
, (16)

where αΔ = 3.14GeV−1. This parametrization can then
be used to compute observables, such as the nucleon elec-
tromagnetic form factors.

The introduction of the interaction of eq. (5) deter-
mines an improvement in the overall quality of the re-
production of the experimental data (considering only 3∗
and 4∗ resonances), with respect to that obtained with the
previous version of this model [42, 43]. In particular, the
Roper resonance, N(1440) P11, is far better reproduced
than before and the same holds for N(1680) F15.

The present version of the relativistic quark-diquark
model predicts only one missing state below the energy
of 2GeV (see table 2), while three quarks QMs give
rise to several missing states [17]. For example, Capstick
and Isgur’s model [4] has 5 missing states up to 2GeV,
the hypercentral QM [83] has 8, Glozman and Riska’s
model [11, 84] has 4 and the U(7) model [5, 6] has 17.
The only missing resonance of our model, N 3

2

+(1990), lies
at the same energy of the three-star state N(2000) F15,
which was previously a two-star state of the PDG [17].
Indeed the two resonances, N 3

2

+(1990) and N(2000) F15,
have the same quantum numbers, except for the total an-
gular momentum, because their spin (S = 1

2 ) and orbital
angular momentum (L = 2) are coupled to JP = 3

2

+ or
5
2

+. Thus, to split the two resonances one should take a
spin-orbit interaction into account.

The whole mass operator of eq. (1) is diagonalized by
means of a numerical variational procedure, based on har-
monic oscillator trial wave functions. With a variational
basis made of N = 200 harmonic oscillator shells, the re-
sults converge very well.

While the absolute values of the diquark masses are
model dependent, their difference is not. Comparing our
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Table 2. Comparison between the experimental values [17] of non-strange baryon resonances masses (up to 2 GeV) and the
results of the model (all values are expressed in MeV). Tentative assignments of 2∗ and 1∗ resonances are shown in the second
part of the table. The quantum numbers L, S and JP have been introduced in sect. 2. The N states with S = 1

2
are always

given by a mixing of states with s1 = 0 and s1 = 1; the N states with S = 3
2

and all the Δ states have only s1 = 1; finally nr

is the number of nodes in the radial wave function.

Resonance Status Mexp. JP L S nr Mcalc.

(MeV) (MeV)

N(939) P11 **** 939 1
2

+
0 1

2
0 939

N(1440) P11 **** 1420–1470 1
2

+
0 1

2
1 1412

N(1520) D13 **** 1515–1525 3
2

−
1 1

2
0 1533

N(1535) S11 **** 1525–1545 1
2

−
1 1

2
0 1533

N(1650) S11 **** 1645–1670 1
2

−
1 3

2
0 1667

N(1675) D15 **** 1670–1680 5
2

−
1 3

2
0 1667

N(1680) F15 **** 1680–1690 5
2

+
2 1

2
0 1694

N(1700) D13 *** 1650–1750 3
2

−
1 3

2
0 1667

N(1710) P11 *** 1680–1740 1
2

+
0 1

2
2 1639

N(1720) P13 **** 1700–1750 3
2

+
2 1

2
0 1694

N(1875) D13 *** 1820–1920 3
2

−
1 1

2
1 1866

N(1880) P11 ** 1835–1905 1
2

+
0 1

2
3 1786

N(1895) S11 ** 1880–1910 1
2

−
1 1

2
1 1866

N(1900) P13 *** 1875–1935 3
2

+
0 3

2
0 1780

missing – – 3
2

+
2 1

2
1 1990

N(2000) F15 ** 1950–2150 5
2

+
2 1

2
1 1990

Δ(1232) P33 **** 1230–1234 3
2

+
0 3

2
0 1236

Δ(1600) P33 *** 1500–1700 3
2

+
0 3

2
1 1687

Δ(1620) S31 **** 1600–1660 1
2

−
1 1

2
0 1600

Δ(1700) D33 **** 1670–1750 3
2

−
1 1

2
0 1600

Δ(1750) P31 * 1708–1780 1
2

+
0 1

2
0 1857

Δ(1900) S31 ** 1840–1920 1
2

−
1 1

2
1 1963

Δ(1905) F35 **** 1855–1910 5
2

+
2 3

2
0 1958

Δ(1910) P31 **** 1860–1920 1
2

+
2 3

2
0 1958

Δ(1920) P33 *** 1900–1970 3
2

+
2 3

2
0 1958

Δ(1930) D35 *** 1900–2000 5
2

−
1 3

2
0 2064

Δ(1940) D33 ** 1940–2060 3
2

−
1 1

2
1 1963

Δ(1950) F37 **** 1915–1950 7
2

+
2 3

2
0 1958
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Table 3. Mass difference (in MeV) between scalar and axial-
vector diquarks, according to some previous studies.

mS (MeV) mAV − mS (MeV) Source

730 210 Bloch et al. [48]

750–860 10–170 Oettel et al. [51]

– 290 Wilczek [36]

– 210 Jaffe [35]

600 350 Ferretti et al. [43]

852 224 Galatà and Santopinto [45]

– 200–300 Lichtenberg et al. [70]

770 140 de Castro et al. [71]

420 520 Schäfer et al. [72]

692 330 Cahill et al. [73]

595 205 Lichtenberg et al. [74]

688 202 Maris [75]

– 360 Orginos [76]

750 100 Flambaum et al. [77]

– 162 Babich et al. [78]

– 135 Santopinto and Galatà [85]

710 199 Ebert et al. [86]

– 183 Chakrabarti et al. [87]

780 280 Roberts et al. [88]

150 210 This work

result for the mass difference mAV −mS between the axial-
vector and the scalar diquark to those reported in table 3,
it is interesting to note that our estimation is compara-
ble with all the others. Such evaluations come from phe-
nomenological observations [35, 36, 74], lattice QCD cal-
culations [76,78], instanton liquid model calculations [72],
applications of Dyson-Schwinger, Bethe-Salpeter and qua-
rk-diquark Faddeev equations [48, 73, 75, 77] and calcula-
tions of QDMs [43,70,71,85–88].

The main aim of the present work is to improve pre-
vious constituent QDMs [42–44] without changing com-
pletely their basic features. In particular, the mass opera-
tor has been modified only by introducing the spin-isospin
transition interaction Mtr(r) of eq. (5). For this reason the
character of the present model remains phenomenological,
and no attempt is made to study the role of the quark and
diquark masses at a fundamental level [54,75]. In principle,
other values (given by a more fundamental investigation)
of mq, mS and mAV could be used to fit the spectrum but
the interaction should be substantially modified. On the
other hand, the set of numerical values of the parameters
used in the present work is still consistent with the general
picture of our previous QDMs.

The phenomenological character of this model also re-
flects on the relatively high number of parameters; in this
context the possible contributions of diquarks with other
quantum numbers (pseudoscalar, vector, etc.) [75], have
been disregarded. However, these states, that should be
not very important for positive-parity baryons, could pre-

sumably play a relevant role for negative parity resonances
and should be studied in a comprehensive investigation
about the quark-quark interaction in hadronic systems.

The relativistic quark-diquark model can also be used
to compute other observables, in particular the electro-
magnetic ones. The main difficulty related to the present
model (not found in the standard approach of QDMs [42,
43]) is given by the non-vanishing matrix elements be-
tween S-AV diquark states that are also found when cal-
culating electromagnetic observables. Here we preliminary
study the baryon magnetic moments. To this aim, we re-
write the nucleon wave function of eq. (13) formally repre-
senting the diquark as composed by two quarks, obtaining

|ΨS,Ms;T,T3〉 = aS

∣∣∣χab
0,0χ

2
1
2 ,Ms

〉

×
∣∣∣φab

0,0φ
2
1
2 ,T3

〉 ∣∣ψab
S

〉
|ΦS〉

+aAV

∣∣∣∣
[
χab

1 ⊗ χ2
1
2

]
1
2 ,Ms

〉∣∣∣∣
[
φab

1 ⊗ φ2
1
2

]
1
2 ,T3

〉

×
∣∣ψab

AV

〉
|ΦAV 〉 , (17)

where the symbols χ and φ denote the spin and isospin
wave functions, respectively; their lower indices give the
corresponding quantum numbers and the upper indices
represent the quarks to which they refer. In particular, the
special notation a, b is used for the quarks of the diquark,
while the standard upper index 2 refers to the quark not
belonging to the diquark; |ΦS〉 and |ΦAV 〉 represent the
spatial wave functions of the quark-diquark system with
the diquark in the S and AV state, respectively. The inter-
nal spatial wave functions of the diquark |ψab

S 〉 and |ψab
AV 〉

are unknown, because, in the present work, we do not de-
velop a detailed model for the internal structure of the
diquark. Finally, the amplitudes aS and aAV are given in
eq. (14).

The electromagnetic current operator of the two-state
diquark is in principle unknown. As a starting point, for
the magnetic dipole operator μ we take an expression of
non-relativistic kind, that will be transformed with the
aim of taking into account the main symmetries of the
model. This expression is obtained by summing the con-
tributions of all the quarks:

μ =
f

m
(easa + ebsb) +

f2

m2
e2s2, (18)

where the indices a, b have the same meaning explained
above; furthermore, ei and si (i = a, b and 2) respectively
represent the quark charge and spin operators; m is the
mass of the quarks belonging to the diquark; finally, the
constants f , f2 have been introduced to take into account
possible anomalous magnetic moments of the quarks (for
Dirac point-like quarks one would have f = f2 = 1).

In order to use the permutational symmetry of the
quarks a and b of the diquark, we re-write eq. (18) as

μ =
f

2m
eDsD +

f

2m
ΔeDΔsD +

f2

m2
e2s2, (19)

where
eD = ea + eb (20a)
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is the charge operator of the diquark in the isospin space,

sD = sa + sb (20b)

represents its spin,

ΔeD = ea − eb (20c)

is the difference between the charges of quarks a and b
and finally

ΔsD = sa − sb (20d)

is the difference between the spin operators of the two
quarks. The first two operators in eqs. (20) are symmetric
under the exchange of quarks a and b, while the opera-
tors ΔeD and ΔsD are antisymmetric. It is worthwhile
noting that: 1) the first term in eq. (19) has null matrix
elements for scalar diquarks, with SD = 0; 2) the first and
third terms have null matrix elements between diquark
states with different spins (namely, between S and AV
diquarks); 3) the second term has null matrix elements
between S-S and AV -AV diquarks and non-null between
S-AV diquarks.

In eq. (19), f and m are unknown quantities given
that the internal diquark structure is not determined. As
a consequence, taking into account that the first term of
eq. (19) only gives non-vanishing contributions for AV di-
quarks, we make, in this term, the following substitution:

f

2m
→ fAV

mAV
; (21)

taking the axial-vector diquark mass of the model mAV =
360MeV (see table 1), fAV is considered as a free param-
eter, used to fit to the experimental data.

As for the second term of eq. (19), we recall that this
term gives non-vanishing matrix elements only when it is
calculated between S and AV diquark states. As a conse-
quence, we make the substitution

f

2m
→ fΔ

〈m〉 , (22a)

where fΔ is a free parameter; furthermore we have for-
mally introduced

〈m〉 =
1
2
(mS + mAV ). (22b)

The third term in eq. (19) does not require changes; f2 is
the third free parameter for the calculation of the nucleon
magnetic moments.

Thus, eq. (19) is finally re-written as

μ =
fAV

mAV
eDsD +

fΔ

〈m〉ΔeDΔsD +
f2

m2
eqsq (23)

that represents the effective magnetic dipole operator
of our model. The mean values of the effective dipole
opearator are easily calculated with the wave function
of eq. (17), so that the numerical values of free param-
eters fAV , fΔ and f2 can be fitted to reproduce exactly

the proton and neutron magnetic moments [17], that are
μp = 2.793 n.m.u. and μn = −1.913 n.m.u. Because the
number of free parameters is larger than that of the ex-
perimental informations, we take

f2 = 1; (24)

the resulting values for the other parameters are

fAV = 0.0462, fΔ = 0.146. (25)

This preliminary calculation shows that our model is
able to reproduce the nucleon magnetic moments. A more
detailed study of the electromagnetic current of the quark-
diquark system will be undertaken in a subsequent work
with the aim of calculating the nucleon electromagnetic
form factors and the helicity amplitudes of baryon reso-
nances [89]. We think that, in general, the present model
can be helpful to the experimentalists in their analysis of
the properties of the N - and Δ-type resonances.
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45. G. Galatà, E. Santopinto, Phys. Rev. C 86, 045202 (2012).
46. M. Gell-Mann, Phys. Lett. 8, 214 (1964).
47. R. Jakob, P.J. Mulders, J. Rodrigues, Nucl. Phys. A 626,

937 (1997).
48. J.C.R. Bloch, C.D. Roberts, S.M. Schmidt, A. Bender,

M.R. Frank, Phys. Rev. C 60, 062201 (1999).
49. S.J. Brodsky, D.S. Hwang, I. Schmidt, Phys. Lett. B 530,

99 (2002).
50. B.Q. Ma, D. Qing, I. Schmidt, Phys. Rev. C 65, 035205

(2002).
51. M. Oettel, R. Alkofer, Eur. Phys. J. A 16, 95 (2003).
52. L.P. Gamberg, G.R. Goldstein, K.A. Oganessyan, Phys.

Rev. D 67, 071504 (2003).
53. R.L. Jaffe, F. Wilczek, Phys. Rev. Lett. 91, 232003 (2003).

54. P. Maris, Few Body Syst. 35, 117 (2004).
55. T. DeGrand, Z. Liu, S. Schaefer, Phys. Rev. D 77, 034505

(2008).
56. A. Bacchetta, F. Conti, M. Radici, Phys. Rev. D 78,

074010 (2008).
57. F.E. Close, A.W. Thomas, Phys. Lett. B 212, 227 (1988).
58. M. Neubert, B. Stech, Phys. Lett. B 231, 477 (1989).
59. M. Neubert, B. Stech, Phys. Rev. D 44, 775 (1991).
60. A. Bender, C.D. Roberts, L. Von Smekal, Phys. Lett. B

380, 7 (1996).
61. G. Eichmann, R. Alkofer, A. Krassnigg,, D. Nicmorus,

Phys. Rev. Lett. 104, 201601 (2010).
62. H. Sanchis-Alepuz, C.S. Fischer, S. Kubrak, Phys. Lett. B

733, 151 (2014).
63. W.H. Klink, Phys. Rev. C 58, 3587 (1998).
64. W.H. Klink, Phys. Rev. C 58, 3617 (1998).
65. R.F. Wagenbrunn, S. Boffi, W. Klink, W. Plessas, M.

Radici, Phys. Lett. B 511, 33 (2001).
66. E.P. Biernat, W.H. Klink, W. Schweiger, Few Body Syst.

49, 149 (2011).
67. W.N. Polyzou et al., Few Body Syst. 49, 129 (2011).
68. D.B. Lichtenberg, Phys. Rev. 178, 2197 (1969).
69. S. Godfrey, N. Isgur, Phys. Rev. D 32, 189 (1985).
70. D.B. Lichtenberg, R.J. Johnson, Hadron. J. 2, 1 (1979).
71. A.S. de Castro, H.F. de Carvalho, A.C.B. Antunes, Z.

Phys. C 57, 315 (1993).
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85. E. Santopinto, G. Galatà, A quark-diquark baryon model,

hep-ph/1104.1518.
86. D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Rev. D 72,

034026 (2005).
87. B. Chakrabarti, A. Bhattacharya, S. Mani, A. Sagari, Acta

Phys. Pol. B 41, 95 (2010).
88. H.L.L. Roberts, L. Chang, I.C. Cloet, C.D. Roberts, Few

Body Syst. 51, 1 (2011).
89. M. De Sanctis, J. Ferretti, E. Santopinto, A. Vassallo, in

preparation.


