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Abstract. Bulk properties of cold and hot neutron stars are studied on the basis of the hadron-quark
crossover picture where a smooth transition from the hadronic phase to the quark phase takes place at
finite baryon density. By using a phenomenological equation of state (EOS) “CRover”, which interpolates
the two phases at around 3 times the nuclear matter density (ρ0), it is found that the cold NSs with
the gravitational mass larger than 2M� can be sustained. This is in sharp contrast to the case of the
first-order hadron-quark transition. The radii of the cold NSs with the CRover EOS are in the narrow
range (12.5 ± 0.5) km which is insensitive to the NS masses. Due to the stiffening of the EOS induced by
the hadron-quark crossover, the central density of the NSs is at most 4ρ0 and the hyperon-mixing barely
occurs inside the NS core. This constitutes a solution of the long-standing hyperon puzzle. The effect of
color superconductivity (CSC) on the NS structures is also examined with the hadron-quark crossover.
For the typical strength of the diquark attraction, a slight softening of the EOS due to two-flavor CSC
(2SC) takes place and the maximum mass is reduced by about 0.2M�. The CRover EOS is generalized to
the supernova matter at finite temperature to describe the hot NSs at birth. The hadron-quark crossover
is found to decrease the central temperature of the hot NSs under isentropic condition. The gravitational
energy release and the spin-up rate during the contraction from the hot NS to the cold NS are also
estimated.

1 Introduction

Strongly interacting matter described by quantum chro-
modynamics (QCD) is believed to have a rich phase struc-
ture under the change of external parameters such as the
temperature (T ) and the baryon chemical potential (μ) [1].
At low T and μ, the system is in the hadronic phase where
the dynamical breaking of chiral symmetry and confine-
ment of quarks and gluons take place. At high T and low
μ, the quark-gluon plasma with deconfined quarks and
gluons was predicted theoretically and is under active ex-
perimental studies by the relativistic heavy-ion collisions
at RHIC and LHC [2]. At low T and high μ, the supercon-
ducting quark matter with deconfined quarks is expected
to appear, which is relevant to the central core of neutron
stars [3].

The transition from the hadronic matter to the quark-
gluon plasma at high T has been studied quantitatively
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by using the lattice QCD simulations [4]. On the other
hand, the transition from the hadronic matter to the quark
matter at high μ is not well understood partly due to
the lack of reliable first-principle theoretical methods; the
Monte Carlo simulations in lattice QCD are not suitable
for μ/T � 1 because of the fermion sign problem [1].

Under such circumstance, any information from neu-
tron stars (NSs), whose central cores may reach the baryon
density relevant to the hadron-quark transition, is quite
useful to understand the structure of high density matter.
Among various observables for NSs [5], the surface temper-
ature (Ts) the mass (M), the radius (R) and the magnetic
field (B) are particularly informative. Indeed, a massive
NS (PSR J1614-2230) with M = (1.97±0.04)M� observed
through the Shapiro delay technique [6] and another mas-
sive NS (PSR J0348+0432) with M = (2.01±0.04)M� [7]
may give stringent constraints on the equation of state
(EOS) of dense matter.

Historically, Gibbs phase equilibrium conditions have
been adopted to describe the transition between the
hadronic matter composed of point-like hadrons and the
quark matter composed of weakly interacting quarks.
However, in the transition region, neither the assumption
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Fig. 1. Schematic pictures of the QCD phases as a function of the baryon density (ρ) under the assumption of (a) the first-order
transition and (b) the hadron-quark crossover. The mixed-phase region in (a) and the crossover region in (b) are indicated by
the shaded area.

of point-like hadrons nor that of weakly interacting quarks
are justified. Indeed, there may arise a smooth crossover
between the hadronic matter and the quark matter: Fur-
thermore, the system in the crossover region would be
strongly interacting [8].

Figure 1 illustrates the difference between (a) the
first-order transition where the phase separation between
hadrons and quarks takes place, and (b) the crossover
where the percolation of finite size hadrons takes place.
Such a percolation picture of hadrons has been first dis-
cussed in refs. [9,10], and later elaborated in the contexts
of the hadron-quark continuity [11,12] and the hadron-
quark crossover [13,14].

Recently, the present authors have shown that the
hadron-quark crossover at around three times the nor-
mal nuclear matter density (ρ0 = 0.17 fm−3) can lead to
a stiffening of EOS and sustain the 2M� NSs [15–17] in
contrast to the case of hadron-quark first-order transition.
Also, it was shown that such a stiffening due to hadron-
quark crossover can avoid the so-called “Hyperon Puzzle”
as discussed in sect. 2. (See also the related works [18–20].)

In this article, we discuss bulk properties of cold and
hot NSs on the basis of the new EOS with the hadron-
quark crossover (the “CRover” EOS) introduced in [15–
17]. In sect. 2, we summarize the conventional hadronic
EOS with and without hyperons. In sect. 3, we sum-
marize detailed properties of hadronic EOS to be used
throughout the present study. In sect. 4, we summarize
the quark EOS based on the (2+1)-flavor Nambu–Jona-
Lasinio (NJL) model at high density. In sect. 5, We in-
troduce a phenomenological approach to interpolate the
hadronic matter and the quark matter. In sect. 6, we show
the bulk properties of cold neutron stars using the CRover
EOS at T = 0 (abbreviated as cold CRover EOS) with and
without color superconductivity. In sect. 7, we show the
bulk properties of hot neutron stars at birth using CRover
EOS at T �= 0 (abbreviated as hot CRover EOS). Section 8
is devoted to summary and concluding remarks.

2 Hyperon Puzzle

Let us first consider what would be the neutron star struc-
ture under the hadronic EOS with and without hyperons

(Y =Λ, Σ−, Ξ−). Although there exist large uncertain-
ties for the two-body Y -N interactions1, various differ-
ent models suggest that hyperons may appear at densities
of several times ρ0. Those hyperons introduce significant
softening of EOS and even the well-established 1.4M� NSs
may not be reproduced (see the reviews, [25,26] and the
references therein). The three-body force in the hyperon
sector originally suggested in [27,28] may or may not de-
scribe the 2M� NSs depending on its strength [25,29–32].
This is called the “Hyperon Puzzle”.

To see the “Hyperon Puzzle” more explicitly, let us
take four hadronic EOS with hyperons, TNI2u, TNI2,
AV18+TBF+ΛΣ, and SCL3ΛΣ. Here TNI2u (TNI2) is
the EOS based on the non-relativistic G-matrix approach
with the incompressibility κ = 250MeV and with (with-
out) the hyperon three-body force. AV18+TBF+ΛΣ [33]
is also based on the non-relativistic G-matrix approach
with the AV18 nucleon-nucleon potential, the Urbana-
type three-body nucleon potential and the Nijmegen soft-
core nucleon-hyperon potential. SCL3ΛΣ [34] is a rel-
ativistic mean-field model with chiral SU(3) symmetry.
As a typical nuclear EOS without the hyperons, we take
APR [35].

In fig. 2(a), we plot the hadronic EOS with hyperons
(TNI2u, TNI2, AV18+TBF+ΛΣ and SCL3ΛΣ) together
with APR. Filled circles on each line denote the density
where the hyperon-mixing starts to occur. One can see
that i) the mixture of hyperons softens the equation of
state relative to APR, and ii) onset of the hyperon-mixing
is shifted to higher density if we consider the three-body
interaction in the hyperon sector. In fig. 2(b), the M -R
relations with these EOSs are plotted by the same color
lines. The gray band shows M = (1.97 ± 0.04)M� corre-
sponding to PSR J1614-2230 [6] and the solid horizontal
line shows M = 1.44M� corresponding to PSR 1913+16.
In table 1, we summarize the nuclear incompressibility
κ, the threshold density for Λ and Σ−, the maximum
mass Mmax, the radius and the central density ρc for these
hadronic EOSs with hyperons. EOSs become soft drasti-
cally due to the emergence of hyperons.

1 We note that it is important to have new data on hyperon
interactions from the Y -N scattering and hypernuclei experi-
ments at J-PARC [21–23] and also from the lattice QCD sim-
ulations at the physical quark masses [24].
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Fig. 2. (a) The hadronic equation of states with and without the hyperon mixing. The black line denotes the EOS without
hyperon, APR (AV18+δv+ UIX∗). The red lines correspond to the EOS with hyperons; TNI2 (only three-nucleon force with
κ = 250MeV) and TNI2u (universal three-baryon force with κ = 250 MeV). The blue line corresponds to AV18+TBF+ΛΣ
(G-matrix with AV18 + 3-nucleon force + hyperons), and the green line corresponds to SCL3ΛΣ (relativistic mean-field model
with chiral SU(3) symmetry). (b) M -R relations for five EOSs considered in (a). In both figures, filled circles on each line show
the density where the hyperons start to mix. Also, the gray band denotes M = (1.97±0.04)M� for PSR J1614-2230 [6] and the
solid horizontal line shows M = 1.44M� corresponding to PSR 1913+16. Those figures are adapted and modified from [15,16].

3 Hadronic EOS with Hyperons

Since we will take TNI2u and TNI2 in the following anal-
yses, we summarize here how these hadronic EOS with
hyperons are obtained2 [27,28,36]:

1) Effective two-baryon potentials ṼBB′ (B = n, p, Λ,
Σ−) are constructed on the basis of the G-matrix for-
malism to take into account their density dependence.

2) A phenomenological thee-nucleon interaction ex-
pressed in a form of two-body potential ŨNN ′ [37] is
introduced to reproduce the saturation of symmetric
nuclear matter (the saturation density ρ0 = 0.17 fm−3

and the binding energy E0 = −16MeV) and the in-
compressibility κ = 250MeV compatible with experi-
ments.

3) Universal three-body repulsion is assumed for the hy-
perons in TNI2u through the replacement, ŨNN ′ →
ŨBB′ , which is necessary to sustain 1.4M� even with
hyperons, while the three-body repulsion is introduced
only in the nucleon sector in TNI2.

4) By using ṼBB′ + ŨBB′ , we calculate the particle com-
position yi (i = n, p, Λ, Σ−, e− and μ−) under charge
neutrality and β-equilibrium to obtain the hadronic
EOS as a function of total baryon density ρ at T = 0.

2 “TNI” implies that the Three-Nucleon Interaction is taken
into account, “2” implies κ = 250 MeV, and “u” implies that
the three-body interaction is introduced universally in the
octet baryon sector.

Table 1. Properties of various hadronic EOSs with hyperons;
TNI2, TNI2u, AV18+TBF+ΛΣ and SCL3ΛΣ. κ is the nuclear
incompressibility and ρth is the threshold density of hyperon-
mixing with ρ0 being the normal nuclear density. R and ρc

denote the radius and central density of the maximum mass
(Mmax) NS, respectively. The numbers in the parentheses are
those without hyperons. “∗”s indicate that the numbers are
read from the figures in [33].

EOS TNI2 TNI2u AV18+TBF SCL3ΛΣ

κ (MeV) 250 250 192 211

ρth(Λ)/ρ0 2.95 4.01 2.8∗ 2.24

ρth(Σ−)/ρ0 2.83 4.06 1.8∗ 2.24

Mmax/M� 1.08 1.52 1.22 1.36

(1.62) (2.00) (1.65)

R(km) 7.70 8.43 10.46 11.42

(8.64) (10.54) (10.79)

ρc/ρ0 16.10 11.06 7.35 6.09

(9.97) (6.53) (6.85)

As shown in fig. 2(a), TNI2u EOS is moderately stiff even
with hyperon-mixing, but the corresponding maximum
mass of NS is 1.5M�, so that it is not sufficient to re-
produce 2M� NSs as shown in fig. 2(b).
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4 (2+1)-flavor quark EOS with color
superconductivity

At high baryon density relevant to the central core of
the NSs, baryons are started to overlap with each other
and quark degrees of freedom may arise with μ ∼
400–500MeV. However, at such chemical potentials, the
QCD running coupling is still large and the quark matter
would be strongly interacting. Analogous strongly inter-
acting matter at finite T was originally discussed theoret-
ically in [38–40] and was later studied experimentally in
the relativistic heavy-ion collisions at RHIC and LHC [2].

Under the situation that the Monte Carlo simulations
in lattice QCD are not applicable to μ/T � 1 due to the
sign problem, we adopt the (2+1)-flavor Nambu–Jona-
Lasinio (NJL) model which captures the essential prop-
erties of QCD such as the dynamical breaking of chiral
symmetry and its restoration at finite T and μ [41,42].
The model Lagrangian we consider reads

LNJL = q(i∂/ − m)q +
1
2
G

S

8∑

a=0

[(qλaq)2 + (qiγ5λ
aq)2]

−G
D

[det q(1 + γ5)q + h.c.] − 1
2
g

V
(qγμq)2

+
H

2

∑

I,A=2,5,7

(q̄iγ5λ
IτACq̄T )(qT Ciγ5λ

IτAq)

+
G′

D

8

∑

i,j,k=1,2,3

[(qλ̃iτ̃k(1 + γ5)Cq̄T )

(q̄λ̃j τ̃k(1 + γ5)Cq)(q̄i(1 + γ5)qj) + h.c.],

where the quark field qα
i has three colors labeled by α and

three flavors labeled by i with the current quark masses
mi. The term proportional to G

S
is a U(3)L×U(3)R sym-

metric four-fermi interaction where λa are the Gell-Mann
matrices in flavor space with λ0 =

√
2/3 I. The term pro-

portional to G
D

is called as the Kobayashi-Maskawa-’t
Hooft (KMT) coupling which breaks U(1)A symmetry ex-
plicitly [43,44]. The term proportional to g

V
(≥ 0) gives a

universal repulsive force among different flavors. The term
proportional to H gives a diquark condensation with color
anti-triplet, flavor anti-triplet and JP = 0+ channel where
C = iγ2γ0 is the charge conjugation matrix and τa are
the Gell-Mann matrices in color space with τ0 =

√
2/3 I.

The term proportional to G′
D

is obtained by the Fierz
transformation of the KMT term and gives a coupling be-
tween the chiral condensate and the diquark condensate.
Here we have introduced a notation, λ̃1,2,3 ≡ λ7,5,2 and
τ̃1,2,3 ≡ τ7,5,2.

In the mean-field approximation, the constituent quark
masses Mi and the gap parameters Δi are generated dy-
namically through the NJL interactions,

Mi = mi − 2G
S
σi + 2G

D
σjσk +

G′
D

4
|si|2, (1)

Δi = −
(

H −
G′

D

2
σi

)
si, (2)

where σi = 〈q̄iqi〉 is the chiral condensate in each flavor,
si = 〈q̄T Cγ5λ̃iτ̃iq〉 is the diquark condensate in each color
and flavor with (i, j, k) corresponding to the cyclic per-
mutation of u, d and s. The thermodynamic potential Ω
is related to the pressure as Ω = −T log Z = −PV with
P given by

P (T, μu,d,s)=
T

2

∑

�

∫
d3p

(2π)3
Trln

(
S−1(iν�,p)

T

)

−G
S

∑

i

σ2
i − 4G

D
σuσdσs +

g
V

2

(
∑

i

ni

)2

−
∑

i=1,2,3

1
2
(H − G′

D
)|si|2. (3)

Here iν� = (2� + 1)πT is the Matsubara frequency, ni =
〈q†i qi〉 is the quark number density in each flavor, and S
is the quark propagator in the Nambu-Gor’kov represen-
tation,

[
S−1

]ij

αβ
=

(
[G+

0 ]−1
∑

i=1,2,3 Δiγ5λ̃iτ̃i

−
∑

i=1,2,3 Δ∗
i γ5λ̃iτ̃i [G−

0 ]−1

)
,

where
[G±

0 ]−1 = p/ − M̂ ± γ0μ̂
eff . (4)

Here, M̂ is a unit matrix in color space and a diagonal
matrix in flavor space, diag(Mu,Md,Ms). The effective
chemical potential matrix μ̂eff is defined from

μ̂eff ≡ μ̂ − g
V

∑

j

nj , (5)

where each component of μ̂ is given by

μij
αβ = (μδij + μQQij)δαβ + (μ3(τ3)αβ + μ8(τ8)αβ)δij .

There are nine independent parameters in the (2+1)-
flavor NJL model; the UV cutoff, Λ, the coupling con-
stants, G

S
, G

D
, g

V
,H and G′

D
and the current quark

masses, mu,d and ms. Five parameters except for g
V
,H

and G′
D

have been determined from hadron phenomenol-
ogy in the vacuum. In this article, we adopt the HK pa-
rameter set [41] (results for other parameter sets, see [16]):

Λ = 631.4MeV, GS
Λ2 = 3.67, G

D
Λ5 = 9.29,

mu,d = 5.5MeV, ms = 135.7MeV. (6)

For g
V
, we change its magnitude in the following range [45,

46]:

0 ≤ g
V

G
S

≤ 0.5. (7)

The parameters H and G′
D

are chosen to be H = G
S

and G′
D = G

D
as characteristic values. (Corresponding

values from the Fierz transformation are H = 3
4G

S
and

G′
D = G

D
. For extensive analyses with other choice of

parameters in the diquark channels, see [47–49].)
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Fig. 3. (a) The number fractions (nu,d,s,e/ntot with ntot = nu + nd + ns = 3ρ) as a function of the baryon density ρ. Red, blue
and green lines correspond to u, d and s quark, respectively. The black line corresponds to the electron number fraction × 100.
Muon does not appear due to the emergence of s quarks. (b) The constituent quark masses (Mi) as a function of ρ. Colors on
each line are the same with those in (a). These figures are adapted from [16].

The EOS of quark matter with strangeness is obtained
from the above model under three conditions: i) the charge
neutrality among quarks and leptons, 2

3nu − 1
3nd − 1

3ns −
ne − nμ = 0, ii) the color neutrality among quarks, nr =
ng = nb, and iii) the β-equilibrium among quarks and
leptons, μd = μs = μu + μe and μe = μμ. The ground
state of the system is obtained by searching the maximum
of the pressure in eq. (3), with the conditions

∂P

∂σu,d,s
=

∂P

∂Δ1,2,3
=

∂P

∂μ3,8
= 0. (8)

Let us first discuss a composition of the β-equilibrated
quark matter at T = 0 without color superconductiv-
ity (H = G′

D
= 0). In fig. 3(a), the number fractions

(nu,d,s,e/ntot with ntot = nu + nd + ns = 3ρ) as a func-
tion of the baryon density ρ are plotted. In fig. 3(b), the
constituent quark masses (Mi) as a function of ρ are plot-
ted. These figures do not depend on the magnitude of the
vector-type interaction gV

because the flavor-independent
g

V
-type interaction leads to a pressure in eq. (3) depend-

ing only on μeff
α,a.

At low densities, the s quark appears only above ρth �
4ρ0 due to its heaviness as can be seen from fig. 3(a): Here
ρth is determined by the condition, μs(ρth) = Ms(ρth).
The dynamical masses of u and d quarks decrease rapidly
below ρth due to partial restoration of chiral symmetry,
while the s quark is affected only a little through the KMT
interaction as seen from fig. 3(b). Once the s-quark whose
electric charge is negative starts to appear above ρth, the
number of electrons decreases to satisfy the charge neu-
trality. Since the electron chemical potential does not ex-
ceed the muon mass 106MeV, the muons do not appear
even at high density. In the high density limit, the system
approaches to the flavor symmetric u, d, s matter without
leptons.

Once the interactions in the diquark channels (H and
G′

D
) are switched on, the color superconductivity (CSC)

develops as shown in fig. 4(a), where the gap parame-
ters Δi as a function of the quark chemical potential μ
with g

V
/G

S
= 0.5 are plotted. The red line corresponds

to the ud pairing, and blue line corresponds to the ds or
su pairings. With H/G

S
= 1, two-color superconductivity

(2SC) appears as soon as the baryon density of the quark
matter becomes finite at μ = 335MeV. Then the first-
order transition from the 2SC to the color-flavor-locking
(CFL) phase takes place at around μ = 520MeV. The di-
quark condensates affect the behavior of the number frac-
tions (ni,e/ntot) and the constituent quark masses (Mi)
through the coupled equations, eq. (8): Those are taken
into account into the following calculations with CSC.

Figure 4(b) shows the thermodynamic quantities (P
and ε) as a function of ρ in the (2+1)-flavor NJL model.
The red (blue) lines correspond to the case with (without)
CSC. In terms of the baryon density, 2SC (CFL) appears
for 2ρ0 < ρ < 5ρ0 (ρ > 5ρ0) in the present parameter set.
The plateau of the red line (P with CSC) reflects the fact
that there is a first-order transition from 2SC to CFL. As
we will see later, baryon density relevant to neutron stars
with the hadron-quark crossover is below 5ρ0. Therefore,
the CFL phase barely appears in the central core of the
NSs in the present model.

5 CRover: New EOS with hadron-quark
crossover

We now introduce the following phenomenological inter-
polation of the energy per baryon Ê ≡ E/N

B
at T = 0 [15,

16]:
Ê(ρ) = ÊH(ρ)w−(ρ) + ÊQ(ρ)w+(ρ), (9)
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Fig. 4. (a) The gap parameters Δi (i = 1, 2, 3) as a function of the quark chemical potential μ. Solid red line: Δ3 corresponding
to the pairing between u quark and d quark. Solid blue line: Δ1 and Δ2 corresponding to the ds pairing and su pairing,
respectively. (b) The energy density (ε) and pressure (P ) as a function of baryon number density ρ. The red lines show the
quark EOSs with diquark condensate. The blue lines show the quark EOSs without diquark condensate.

where ÊH and ÊQ represent energy per baryon in the
hadronic matter with leptons and that in the quark mat-
ter with leptons, respectively. w− and w+ = 1 − w− are
the weight functions

w±(ρ) ≡ 1
2

(
1 ± tanh

(
ρ − ρ̄

Γ

))
, (10)

where ρ̄ and Γ are the phenomenological parameters
which characterize the averaged crossover density and
the width of the crossover window, respectively. Similar
weight function has been previously used to interpolate
the hadronic phase and the quark-gluon plasma at finite
temperature [50,51]. The window ρ̄ − Γ � ρ � ρ̄ + Γ
characterizes the crossover region in which both hadrons
and quarks are strongly interacting, so that neither pure
hadronic EOS nor pure quark EOS are reliable.

The other observables can be obtained by using the
thermodynamic relations from Ê(ρ) = ε/ρ,

P = ρ2 ∂Ê

∂ρ
, μ =

∂ε

∂ρ
, K = ρ

∂P

∂ρ
,

v2
s(ρ) =

∂P

∂ε
=

K

ε + P
. (11)

Here K is the bulk modulus which must be positive semi-
definite for thermodynamic stability. Also, vs is the sound
velocity which is a characteristic measure of the stiffness
of the EOS.

In fig. 5(a), we show the interpolated EOS at T = 0
(cold CRover EOS) with the TNI2u as a hadronic EOS
and the NJL with gV

= 0 (g
V

= 0.5G
S
) as a quark EOS.

The diquark condensates are switched off here (H = G′
D =

0). The sound velocity squared as a function of ρ is shown
in fig. 5(b). In both figures, the onset of the strangeness is

indicated by the filled circles. From both figures, one finds
that the CRover EOS becomes stiffer than the quark phase
and the hadronic phase in the crossover region indicated
by the shaded band. Such stiffening is induced by the ex-
tra pressure originating from the derivative of ρ acting on
w±(ρ) in eq. (11):

P (ρ) = PH(ρ)w−(ρ) + PQ(ρ)w+(ρ) + ΔP (ρ). (12)

The extra pressure ΔP is required from thermodynamic
consistency and has a property, ΔP (ρ = 0) = ΔP (ρ =
∞) = 0 by definition, i.e. it is a function localized in the
crossover region.

By turning on CSC with H = GS and G′
D = GD, the

interpolated EOS becomes a little bit softer than the case
without CSC in the crossover region as shown by the red
lines in fig. 6(a) and (b). Associated with this, the onset
density of the strangeness is reduced from 4ρ to 3.6ρ0. As
we have discussed in sect. 4, there is little room for the
CFL phase to appear inside NSs in our CRover EOS, it is
not considered in this figure.

6 Neutron Stars with CRover EOS at T = 0

We study the structure of the spherically symmetric
neutron stars in hydrostatic equilibrium by solving the
Tolman-Oppenheimer-Volkov (TOV) equation;

dP

dr
=−G

r2

(
M(r)+4πPr3

)
(ε + P ) (1 − 2GM(r)/r)−1

,

M(r)=
∫ r

0

4πr′2ε(r′)dr′. (13)

Here r being the radial distance from the center and G is
the gravitational constant.
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Fig. 5. (a) The relation between the interpolated energy density and the resultant pressure for gV = 0 (green) and gV = 0.5GS

(blue) without CSC, H = G′
D = 0. The crossover window is (2–4)ρ0. The filled circle denotes the threshold density of the

strangeness. (b) Sound velocity squared v2
s as a function of baryon density ρ. Solid lines show vs − ρ obtained from the

interpolated EOS with gV /GS = 0, 0.5, while the dotted line corresponds to the TNI2u hadronic EOS. The filled circles denote
the points beyond which strangeness starts to appear. Those figures are adapted and modified from [16].

Fig. 6. (a,b) Comparison between the CRover EOS and the sound velocity squared without CSC (H = G′
D = 0) and those

with CSC (H = GS and G′
D = GD) for gV /GS = 0.5.

6.1 Case without color superconductivity

First, we consider the case without the diquark conden-
sate (H = G′

D
= 0) as a baseline. In fig. 7(a), we

plot the M -ρc relation from the CRover EOS (interpo-
lation between the TNI2u hadronic EOS and the NJL
quark EOS with g

V
/G

S
= 0, 0.5 in the crossover region

(ρ̄, Γ ) = (3ρ0, ρ0)). For comparison, the M -ρc relation
only with TNI2u hadronic EOS is plotted by the dotted
line. Figure 7(b) shows the corresponding M -R relation
for the same EOSs as fig. 7(a). Strong correlation between

the sudden stiffness of the sound velocity in fig. 5(b) and
the NS masses in fig. 7(a,b) can be seen. Also, as g

V
in-

creases from zero, the quark EOS and hence the CRover
EOS become stiffer, which increases the maximum mass
(indicated by the cross symbol) beyond 2M�. We empha-
size that these qualitative features do not depend on the
details of the interpolation method. Smooth and thermo-
dynamically consistent interpolations between the “soft”
EOS at low density and relatively “stiff” EOS at high den-
sity always lead to the sudden stiffening in the crossover
region as characterized by the sound velocity in fig. 5(b).
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Fig. 7. (a) The M -ρc relations with the CRover EOS (solid lines) and the TNI2u hadronic EOS (the dotted line). The crossover
window is fixed to be (ρ̄, Γ ) = (3ρ0, ρ0). The cross symbols denote the points of Mmax, while the filled circles denote the points
beyond which the strangeness appears. The gray band denotes M = (1.97 ± 0.04)M� for PSR J1614-2230. The solid black line
denotes M = 1.44M� for PSR 1913+16. (b) The M -R relations with the same EOSs as (a). These figures are adapted from [16].

This is in sharp contrast to the case of the first-order
phase transition where the EOS always becomes soft in
the mixed phase.

One important aspect of the present result is that the
radii of NSs are confined in a narrow range: For example,
in the case of g

V
/G

S
= 0(0.5), all the NSs with 0.5 <

M/M� < 2.0 (0.5 < M/M� < 2.5) have the radius in
the range R = (12.0 ± 0.2) km (R = (12.5 ± 0.5) km).
This universal feature of the radius is primarily caused by
the interpolation to the Q-EOS as seen by comparing the
dashed line and the solid lines in fig. 7(b). Also, the radius
tends to become larger as the Q-EOS becomes stiffer. The
narrow window of R almost independent of the values of
M will confront the present and future observations of the
neutron star radii [52,53].

Another important aspects of the present result is the
onset of the strangeness inside the NS core as indicated
by the filled circles in fig. 7(b): The strangeness appears
only in very massive NSs with nearly the maximum mass
if we have hadron-quark crossover. In fact, ρc = 2.4ρ0 for
2M� while ρc = 4.4ρ0 for 2.59M� under the CRover EOS
with g

V
= 0.5GS , so that even the observed 2M� NSs are

unlikely to have strangeness inside.

6.2 Case with color superconductivity

In fig. 8(a,b), M -ρc and M -R relations are plotted by using
the CRover EOS with and without CSC given in fig. 6(a).
For comparison, the results of the TNI2u hadronic EOS
are shown by the black dotted lines. As we discussed in the
last section, the CSC softens the EOS. Then, the Mmax

of the NS with CSC becomes smaller by 0.2M� than that

without CSC phase. Such a reduction of Mmax due to CSC
is consistent with other calculations (see, e.g., [54,55]).

Two remarks are in order here about the effect of CSC
on the M -R relations: i) The central density of the NSs
does not exceed 4.9ρ0 in CRover EOS with CSC, so that
the CFL phase barely appears inside the star. ii) The
effect of 2SC already becomes visible for low-mass stars
(M < 0.5M�) with the central density below 2ρ0. This
is because we have a smooth interpolation between the
hadronic EOS and quark EOS, so that the 2SC compo-
nent has small but non-negligible contribution even below
2ρ0. Physically, this could be interpreted as partial per-
colation of the nucleons into quarks with strong diquark
correlations.

Table 2 is a summary of the maximum mass Mmax and
the central density ρc normalized by ρ0 with the CRover
EOS. Two sets of hadronic EOS (TNI2u and TNI2) are
adopted, but the difference is small. The strength of the
repulsive vector interaction gV

and the crossover density
ρ̄ are changed to see the sensitivity of the results. As g

V

becomes larger and the ρ̄ becomes smaller, the maximum
mass Mmax increases due to the presence of the quark
matter. The effect of CSC generally decreases Mmax and
increases ρc. As long as ρ̄ is around 3ρ0, the CRover EOS
can easily accommodate the 2M� NSs.

7 Neutron star with CRover EOS at T �= 0

In this section, we describe the properties of hot neutron
stars created after the core-collapsed Type-II supernova
explosion by generalizing the idea of the hadron-quark
crossover discussed in the previous sections (for details,
see [17]).
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Fig. 8. (a) The M -ρc relations with the CRover EOS (solid lines) and TNI2u hadronic EOS (dotted line) with and without
the CSC phase for gV /GS = 0.5. (b) The M -R relations with the same EOSs as (a).

Table 2. Mmax/M� (ρc/ρ0) for different choices of hadronic EOS, quark EOS and the crossover window.

gV = 0

without CSC

gV = 0.5GS

without CSC

gV = 0.5GS

with CSC

(ρ̄, Γ ) (3ρ0, ρ0) (5ρ0, 2ρ0) (3ρ0, ρ0) (5ρ0, 2ρ0) (3ρ0, ρ0)

TNI2u 2.02 (4.5) 1.86 (8.7) 2.59 (4.4) 2.25 (6.1) 2.40 (4.9)

TNI2 2.02 (5.8) 1.84 (9.1) 2.59 (4.3) 2.23 (6.8) 2.40 (4.8)

During the first few seconds after the core bounce, the
proto-neutron star with the radius ∼ 200 km is formed. It
undergoes a rapid contraction and evolves into a “hot”
neutron star with the radius ∼ 20 km in about 1 sec-
ond (or to a black hole). The hot NS at birth in quasi-
hydrostatic equilibrium is characterized by the supernova
matter with the lepton fraction, Yl = Ye + Yν ∼ 0.3–0.4,
and the entropy per baryon, S/N = Ŝ ∼ 1–2. The neu-
trinos are trapped inside the hot NSs and contribute to
the β-equilibrium. With this as an initial condition, the
hot NS contracts gradually by the neutrino diffusion with
the time scale of 10-100 seconds and evolves to a nearly
“cold” NS with Yν � 0 and Ŝ � 0, unless another collapse
to a black hole does not take place [56–58].

Thermal properties of the hot NSs are intimately re-
lated to the physics of high density matter at finite tem-
perature. Indeed, the hot NSs with the hadron-quark
mixed phase (fig. 1(a)) have been studied previously,
e.g. [59–62]. It is then interesting to explore properties
of the hot NSs (such as the M -R relation and the profiles
of the temperature, density and sound velocity inside the
star etc.) with hadron-quark crossover (fig. 1(b)).

In fig. 9, we show a schematic picture which com-
pares the internal structure of the hot and cold NSs with
2M�. Above the normal nuclear matter density ρ0, we use
the EOS interpolated between TNI2 (hadron) and NJL

(quark). On the other hand, below ρ0, we use the ther-
mal EOS which consists of an ensemble of nuclei and in-
teracting nucleons in nuclear statistical equilibrium given
by Hempel and Schaffner-Bielich (HS EOS) [63]. (Use of
other EOSs below ρ0 does not show quantitative difference
as discussed in [64].) Once the baryon density becomes
smaller than the neutron drip density 10−3ρ0, the tem-
perature becomes smaller than 0.1MeV. Then we switch
to the standard BPS EOS [65].

7.1 Supernova matter at finite T

Major differences of the supernova matter from that of
the cold matter discussed in previous sections are i) the
diffused Fermi surface due to the effect of T , ii) the ex-
istence of degenerate neutrinos, and iii) the contributions
from anti-particles.

By neglecting the strangeness in hadronic matter and
the muon which are irrelevant for stiff EOS, we consider a
system composed of n, p, e−, e+, νe and ν̄e in the hadronic
EOS at finite T , and u, d, s, e−, e+, νe and ν̄e in the
quark EOS at finite T . The charge neutrality, chemical
equilibrium and baryon and lepton number conservations
are imposed. In practice, we find μe/T > 15 in the interior
of the hot NSs, so that the effects of e+ and ν̄e (as well
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Fig. 9. Comparison between the hot NS and cold NS with M = 2M� obtained by the CRover EOS with gV = 0.5GS . We take

(Yl, Ŝ) = (0.3, 1) to characterize the hot NS. As for the details of the EOSs adopted at different densities, BPS, HS, TNI2 and
NJL, see the text. This figure is adapted from [17].

as neutrinos in second and third generations) are negligi-
bly small. The color superconductivity is switched off for
simplicity.

We use the Helmholtz free-energy per baryon F̂ =
F/N

B
= Ê − T Ŝ as a basic quantity to interpolate the

hadronic matter and the quark matter at finite T [17].
This is a natural generalization of Ê at T = 0 in the pre-
vious sections. F̂ is a function of ρ, T and Yl, so that we
have

F̂ (ρ, T ;Yl) = F̂H(ρ, T ;Yl)w−(ρ, T )

+F̂Q(ρ, T ;Yl)w+(ρ, T ). (14)

Here F̂H and F̂Q are the hadron+lepton free-energy per
baryon and the quark+lepton free-energy per baryon, re-
spectively. The typical temperature of hot NSs is about
30MeV which is sufficiently smaller than the thermal
dissociation temperature of hadrons of about 200MeV.
Therefore, we ignore the T dependence of the weight func-
tions, w±(ρ, T ) → w±(ρ).

The entropy per baryon and the energy per baryon
are obtained by using the thermodynamic relations, Ŝ =
−∂F̂ /∂T and Ê = F̂ + T Ŝ. Under the assumption that
w± is T -independent, eq. (14) leads to

Ŝ(ρ, T ;Yl) = ŜH(ρ, T ;Yl)w−(ρ) + ŜQ(ρ, T ;Yl)w+(ρ),

Ê(ρ, T ;Yl) = ÊH(ρ, T ;Yl)w−(ρ) + ÊQ(ρ, T ;Yl)w+(ρ).

To obtain F̂H in eq. (14), we solve the thermal Hartree-
Fock equation for isothermal matter composed of n, p, e−,
e+, νe and ν̄e with the same effective nucleon interac-
tion as the TNI2 and TNI2u EOS at T = 0 (details are

shown in [66]). To obtain F̂Q in eq. (14), we start with the
Gibbs free energy calculated in the NJL model in sect. 4;
ΩQ(μ, V, T ;μl) = Ωquark(μ, V, T ;μl) + Ωlepton(μ, V, T ;μl)
with μ and μl being the baryon chemical potential and
the lepton chemical potential, respectively. Then we make
the Legendre transformation from the Gibbs free energy
ΩQ to the Helmholtz free-energy FQ [17].

In the following, we consider typical values of the lep-
ton fraction Yl = 0.3, 0, 4 and those of the entropy per
baryon Ŝ = 1, 2. The crossover window is fixed to be
(ρ̄, Γ ) = (3ρ0, ρ0), and g

V
= 0.5Gs is adopted.

The thermodynamic quantities for isothermal matter
with ρ, T and Yl as parameters can be converted into those
for isentropic matter with ρ, S and Yl as parameters by
using the relation T = T (ρ;S, Yl). In fig. 10(a), the tem-
perature T of the isentropic matter is shown as a function
of the baryon density ρ for Yl = 0.3 with Ŝ = 1 and Ŝ = 2.

The isentropic pressure is obtained through the ther-
modynamic relation

P (ρ, T (ρ;S, Yl);Yl, Ŝ) = ρ2 ∂Ê

∂ρ

∣∣∣∣∣
Ŝ,N,Yl

. (15)

The hot CRover EOS for supernova matter is shown in
fig. 10(b) for (Yl, Ŝ) = (0.3, 1), (0.3, 2) and (0.4, 1). For
comparison, the cold CRover EOS for cold neutron star
matter (T = 0 without neutrino degeneracy) is shown
by the black solid lines. The hot CRover EOS and cold
CRover EOS are similar except for the low density region
where the hot EOS becomes stiffer.
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Fig. 10. (a) The temperature T of the isentropic matter as a function of the baryon density ρ for Yl = 0.3 with Ŝ = 1 (red)

and Ŝ = 2 (blue) in hot CRover EOS. The dashed line corresponds to the hot TNI2 EOS only with hadrons and leptons. (b)

The isentropic pressure P of hot CRover EOS as a function of ε for (Yl, Ŝ) = (0.3, 1), (0.3, 2) and (0.4, 1). The black line
corresponds to the cold CRover EOS for cold neutron star matter. The crossover window is shown by the shaded area on the
horizontal axis. These figures are adapted from [17].

Fig. 11. (a) The neutron star mass M as a function of the total baryon number NB in CRover EOS. Red and blue curves
correspond to the hot and cold neutron stars, respectively. (b) The energy release (estimated under the conservation of NB) ΔE =

Mhot−Mcold as a function of the cold neutron star mass Mcold. (Yl, Ŝ) = (0.3, 1) is adopted. These figures are adapted from [17].

7.2 Properties of hot NSs

Figure 11(a) shows the gravitational mass M as a function
of the total baryon number NB for hot (red line) and
cold (blue line) neutron stars. The hot neutron stars have
larger mass than the cold ones for given NB . We note
that the maximum value of NB for hot NSs is smaller
than that for cold NSs. This implies that hot NSs do not
have a chance of delayed collapse into black holes after
the cooling. This is in contrast to the previous works with
the exotic phases such as the pion condensation [67] and

the hadron-quark mixed phase [59,61]; in those cases, the
softening of the EOS due to exotic phases is tamed by the
finite temperature effect, so that the maximum value of
NB for hot NS becomes larger than that of the cold NS
and there arises a chance of the delayed collapse.

In fig. 11(b), we show ΔE = Mhot −Mcold in the unit
of M� as a function of the mass of cold NS, Mcold. The
typical amount of energy released due to the contraction
is about 0.04M� � 7.2×1052erg for Mcold = 1.4M�. This
energy release from the hot NSs to cold NSs with crossover
is about 25% smaller than that without the crossover [67].
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Fig. 12. (a) Mass-radius (M -R) relationship for (Yl, Ŝ) = (0.3, 1). Red solid line: hot neutron stars with hot CRover EOS.
Blue solid line: cold neutron stars with cold CRover EOS. Red dashed line: hot neutron stars without crossover. (b) The sound
velocity squared v2

s as a function of the distance from the center r of 1.4M� neutron star. Colors on each line are the same as
in (a). (c) The density profiles of the hot neutron star with M = 1.4M� and (Yl, Ŝ) = (0.3, 1). Solid and dashed lines correspond
to the EOS with crossover and without crossover, respectively. (d) The temperature profiles of the same neutron star as plotted
in (c). These figures are adapted from [17].

In fig. 12(a), we plot the M -R relations for hot and cold
NSs with and without crossover. The maximum mass of
hot NSs is very similar with that of cold NSs. On the other
hand, a big difference of the radius can be seen between
hot and cold NSs. This comes from the stiffening of the
hot EOS at densities below ρ0. The maximum rotation
rate given by the spin-up rate from hot NSs can gives a
more stringent condition than the Keplerian angular fre-
quency [67]. The spin-up rate of NSs with the crossover
can be calculated as about 14% (assuming the conserva-
tion of angular momentum) for Mcold = 1.4M� of evolved
cold NSs. However, there are a small difference between
NSs with and without the crossover.

The local sound velocity squared v2
s(r) for isentropic

matter can be calculated as

v2
s(ρ;Yl, Ŝ) =

∂P

∂ε

∣∣∣∣
Yl,Ŝ

=
dP (ρ, T (ρ);Yl, Ŝ)/dρ

dε(ρ, T (ρ);Yl, Ŝ)/dρ

∣∣∣∣∣
Yl,Ŝ

, (16)

with ρ(r) obtained by the TOV equation. In fig. 12(b),
sound velocity squared is plotted as a function of the dis-
tance from the center r for M = 1.4M�. The sound veloc-
ity in cold NS is larger (smaller) at higher (lower) density
than that of the hot NS [17].
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Fig. 13. (a) The central temperature Tc and (b) the central density ρcent as a function of the neutron star mass M of hot

NS with (Yl, Ŝ) = (0.3, 1). The solid (dashed) lines correspond to the EOS with (without) crossover. These figures are adapted
from [17].

To see the thermal and lepton effects on the inter-
nal structure of the hot NSs, we plot the density profile
ρ(r) and the temperature profile T (r) of hot NSs with
canonical 1.4M� in figs. 12(c) and (d), respectively. Due
to the stiffness of the CRover EOS, the central density
becomes smaller and the profile becomes flatter as shown
in fig. 12(c). Moreover, as we have shown in fig. 10(a),
T becomes smaller for given ρ by the crossover to quark
degrees of freedom. Those are the reasons why the temper-
ature of the internal core of the hot NS becomes smaller
and flatter with crossover (fig. 12(d)). This decrease of the
temperature is a signal for the existence of quarks in the
core of NSs.

In fig. 13(a) and (b), the central temperature Tcent and
the central density ρcent of the hot neutron stars with and
without the crossover are plotted as a function of neu-
tron star mass M . The effects of crossover on the internal
structure of the NSs shown in fig. 12(c,d) for M = 1.4M�
can be seen for wide range of M .

8 Summary and concluding remarks

In this article, we have studied the bulk properties of
cold and hot neutron stars on the basis of hadron-quark
crossover picture. A new EOS, “CRover”, introduced
in [15–17] describes the smooth transition from hadronic
matter to quark matter in a phenomenological way. The
hadron-quark crossover which makes the EOS stiffer by
the effect of the quark matter is in contrast to the first-
order hadron-quark transition leading to the softening of
the EOS.

At zero temperature, a crossover at around 3ρ0 leads
to an EOS hard enough to sustain the 2M� NSs. The radii
of the NSs are located in a narrow region (12.5 ± 0.5) km

which is insensitive to their masses. Due to the stiffening
of the EOS induced by the crossover, the central density
of the NSs is at most 4ρ0. Therefore, hyperon mixing,
whose threshold density is about 4ρ0 in the CRover EOS,
takes place only for very massive NSs. This constitutes a
solution of the long-standing hyperon puzzle.

We have studied the effect of color superconductivity
(CSC) on the bulk properties of NSs under the hadron-
quark crossover. With the diquark coupling H/G

S
= 1, we

find that 2SC phase may appear inside the NSs while the
onset of the CFL phase is too high to be realized even in
massive NSs. As a result of a slight softening of the EOS
due to the color superconductivity, the maximum mass of
the NSs with CSC is reduced by about 0.2M� from that
without CSC.

To examine the properties of the hot NSs at birth at
finite temperature, we considered the supernova matter
with the CRover EOS generalized to isentropic environ-
ment. We found that the hadron-quark crossover plays an
important role to lower the central temperature of hot
neutron stars in comparison to the case of hadronic EOS.
This suppression of temperature comes from the presence
of the quark degrees of freedom in the crossover region.
The radius of the hot NS with crossover is much larger
that that without crossover due to the stiffness of the
EOS. For example, the radius of the 1.6M� hot NS with
(without) the crossover is about 15 (10) km as shown in
fig. 12(a). Such a difference could be in principle detected
through the gravitational wave signal from the NS-NS bi-
nary merger, where the merging neutron stars can be re-
heated even up to several tens of MeV [68–70].

The hadron-quark crossover turns out to have inter-
esting phenomenological implications to the key issues of
the neutron stars, such as the massive neutron stars and
hyperon puzzle, the universal radius of the neutron stars,
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temperature and density profiles inside the hot neutron
stars, and so on. One of the most important and yet chal-
lenging theoretical problems is to elucidate the QCD ba-
sis of the phenomenological hadron-quark crossover intro-
duced in this article.
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