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Abstract. We explore the relevance of the color-flavor locking phase in the equation of state (EoS) built
with the Field Correlator Method (FCM) for the description of the quark matter core of hybrid stars.
For the hadronic phase, we use the microscopic Brueckner-Hartree-Fock (BHF) many-body theory, and
its relativistic counterpart, i.e. the Dirac-Brueckner (DBHF). We find that the main features of the phase
transition are directly related to the values of the quark-antiquark potential V1, the gluon condensate G2

and the color-flavor superconducting gap Δ. We confirm that the mapping between the FCM and the
CSS (constant speed of sound) parameterization holds true even in the case of paired quark matter. The
inclusion of hyperons in the hadronic phase and its effect on the mass-radius relation of hybrid stars is also
investigated.

1 Introduction

The possible appearance of quark matter (QM) in the in-
terior of massive neutron stars (NS) is currently one of the
main theoretical issues in the physics of compact stars [1].
The existence of two NS of about two solar masses has
been confirmed by recent observations [2, 3]. Based on a
microscopic nucleonic equation of state (EoS), one expects
that in such heavy NS the central particle density reaches
values larger than 1/fm3, where in fact quark degrees of
freedom are expected to appear at a macroscopic level.
Unfortunately, while the microscopic theory of the nucle-
onic EoS has reached a high degree of sophistication [4–8],
the QM EoS is still poorly known at zero temperature and
at the high baryonic density appropriate for NS. In fact
the essential theoretical tool, i.e. lattice formulation of the
quantum chromodynamics (QCD) is inapplicable at large
baryon densities and small temperature due to the so-
called Sign Problem [9], and this is due to its complicated
nonlinear and nonperturbative nature. On the other hand,
in the large temperature and small density region lattice
QCD simulations have provided controlled results for the
EoS as well as for the nature of the transition [10, 11].

The mass of a NS can be calculated by solving the
Tolman-Oppenheimer-Volkoff (TOV) equations with the
relevant EoS as input. The hybrid EoS including both
hadronic matter and QM is usually obtained by combin-
ing EoSs of hadronic matter and QM within individual
theories/models.
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Continuing a set of investigations using different quark
models [12–16], recently we have explored the nature of
the phase transition with the Field Correlator Method
(FCM) model of quark matter [17–19], which in prin-
ciple is able to cover the full temperature-chemical po-
tential plane. In our previous papers [20, 21], we tested
the FCM model by comparing the results for the neutron
star masses with the existing phenomenology, which puts
strong constraints on the parameters of the model, i.e.
the quark-antiquark potential V1 and the gluon conden-
sate G2.

Recently, we found that the FCM model can be ex-
pressed in the language of the “Constant Speed of Sound”
(CSS) parameterization [22, 23], and we showed how its
parameters can be mapped on to the CSS parameter
space. We remind that the CSS scheme is a general pa-
rameterization suitable for expressing experimental con-
straints in a model-independent way, and for classifying
different models of quark matter and establishing connec-
tions among them. It is applicable to high-density equa-
tions of state for which: a) there is a sharp interface be-
tween nuclear matter and quark matter, b) the speed of
sound in the high-density matter is pressure-independent
in the range between the first-order transition pressure up
to the maximum central pressure of neutron stars. Given
the nuclear matter EoS εNM(p), the high-density EoS can
be expressed as

ε(p) =

{
εNM(p), p < ptrans,

εNM(ptrans) + Δε + c−2
QM(p − ptrans), p > ptrans,

(1)
where the three parameters: the pressure ptrans at the
transition, the discontinuity in energy density Δε at the
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transition, and the speed of sound cQM characterize com-
pletely the high-density phase.

In this work we elaborate more on that point by ex-
tending the FCM model in order to include the color
superconductivity through the color-flavor locking (CFL)
mechanism, which mimics an explicit dependence of the
gluon condensate G2 on the quark chemical potential, as
initially studied in ref. [21]. We find that the value of the
hybrid star maximum mass depends strongly on the FCM
model parameters, i.e. V1, G2 and the gap Δ. We also
find that the mapping on to the CSS parameterization
still holds true when including the CFL phase, though
the parameter region explored depends on the value of
the gap Δ. We also pay special attention to the analysis
of the hadron-quark phase transition when hyperons are
included in the hadronic phase. In fact, given the strong
softening of the EoS due to hyperons, it has been often
found that no quark matter phase transition can take
place [13, 16].

This paper is organized as follows. In the next section
we briefly review the EoS of the hadronic sector, partic-
ularly the BHF and DBHF microscopic approaches. In
sect. 3 we discuss the quark matter EoS, and in sect. 3.1
we illustrate the FCM at finite density, with the inclusion
of the color-flavor locking effect in sect. 3.2. Section 4 con-
tains numerical results, with some details of the EoS for
neutron star matter and the hadron-quark phase transi-
tion in sect. 4.1. In sect. 4.2 we discuss the mass-radius-
central density relation for hybrid stars, and the FCM
mapping onto the CSS parameterization. Effects due to
the inclusion of hyperons are explored in sect. 4.3. Finally
we draw our conclusions in sect. 5.

2 The BHF and DBHF EoS of nuclear matter

Empirical properties of infinite nuclear matter can be cal-
culated using many different theoretical approaches. The
amount of experimental and observational data obtained
in the last few years, and the intense theoretical efforts
aimed at their interpretation, call for a firm microscopic
approach to the modeling of the Equation of State (EoS).
In a microscopic approach, the only input required is a re-
alistic free nucleon-nucleon (NN) interaction with param-
eters fitted to NN scattering phase shifts in different par-
tial wave channels, and to properties of the deuteron. In
this paper we adopt the nonrelativistic Brueckner-Bethe-
Goldstone (BBG) method [24] and its relativistic counter-
part, the Dirac-Brueckner-Hartree-Fock (DBHF) approx-
imation [25].

The Brueckner-Bethe-Goldstone (BBG) theory is
based on a linked cluster expansion of the energy per nu-
cleon of nuclear matter (see ref. [24], chapter 1 and ref-
erences therein). The basic ingredient in this many-body
approach is the Brueckner reaction matrix G, which is the
solution of the Bethe-Goldstone equation

G[ρ;ω] = v +
∑
kakb

v
|kakb〉Q〈kakb|

ω − e(ka) − e(kb)
G[ρ;ω], (2)

where v is the bare NN interaction, ρ is the nucleon num-
ber density, and ω the starting energy. The single-particle
energy e(k) (assuming � = 1),

e(k) = e(k; ρ) =
k2

2m
+ U(k; ρ), (3)

and the Pauli operator Q determine the propagation of
intermediate baryon pairs. The Brueckner-Hartree-Fock
(BHF) approximation for the single-particle potential U
using the continuous choice is

U(k; ρ) =
∑

k′≤kF

〈kk′|G[ρ; e(k) + e(k′)]|kk′〉a, (4)

where the subscript “a” indicates antisymmetrization of
the matrix element. Due to the occurrence of U(k) in
eq. (3), the above equations constitute a coupled system
that has to be solved in a self-consistent manner for sev-
eral momenta of the particles involved, at the considered
densities. In the BHF approximation the energy per nu-
cleon is

E

A
=

3
5

k2
F

2m
+

1
2ρ

∑
k,k′≤kF

〈kk′|G[ρ; e(k) + e(k′)]|kk′〉a. (5)

In this scheme, the only input quantity we need is the bare
NN interaction v in the Bethe-Goldstone equation (1). It
has been shown that the nuclear EoS can be calculated
with good accuracy in the Brueckner two hole-line approx-
imation with the continuous choice for the single-particle
potential, since the results in this scheme are quite close
to the calculations which include also the three hole-line
contribution [26–28]. The dependence on the NN interac-
tion, also within other many-body approaches, has been
systematically investigated in ref. [7].

However, it is commonly known that nonrelativistic
calculations, based on purely two-body interactions, do
not reproduce correctly the saturation point of symmet-
ric nuclear matter, and that three-body forces (TBF) are
needed to correct this deficiency. For that, TBF are re-
duced to a density dependent two-body force by averag-
ing over the generalized coordinates (position, spin and
isospin) of the third particle, assuming that the probabil-
ity of having two particles at a given distance is reduced
according to the two-body correlation function [4, 6, 29].

In this work we will illustrate results obtained using
a phenomenological approach to the TBF, which is based
on the so-called Urbana model, and consists of an attrac-
tive term due to two-pion exchange with excitation of an
intermediate Δ resonance, and a repulsive phenomeno-
logical central term [30, 31]. Within the BHF approach,
those TBF produce a shift of about +1MeV in energy
and −0.1 fm−3 in density. This adjustment is obtained by
tuning the two parameters contained in the TBF, and is
performed to get an optimal saturation point [4, 6].

Besides a purely phenomenological model, microscopic
TBF have also been derived and a tentative approach pro-
posed using the same meson-exchange parameters as the
underlying NN potential. Results have been obtained with
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the Argonne v18, the Bonn B, and the Nijmegen 93 poten-
tials [8, 32]. However, at present the theoretical status of
microscopically derived TBF is still quite rudimentary, Al-
ternatively, latest nuclear matter calculations [33, 34] used
a new class of chiral inspired TBF [35–37], showing that
the considered TBF models are not able to reproduce si-
multaneously the correct saturation point and the prop-
erties of three- and four-nucleon systems.

Recently, it has been shown that the role of TBF is
greatly reduced if the NN potential is based on a realis-
tic constituent quark model [38, 39] which can explain at
the same time few-nucleon systems and nuclear matter,
including the observational data on Neutron Stars and
the experimental data on heavy-ions collisions. Moreover
it has been found that at the highest densities the three-
hole-line diagrams can give a contribution larger than the
two-hole-line diagrams, and this can be related to the char-
acteristic nonlocality of the repulsive core [40] as produced
by the quark-exchange processes.

In the past years, the BHF approach has been extended
in order to include the hyperon degrees of freedom [41, 42],
which play an important role in the study of neutron star
matter. In fact, hyperons are expected to appear in beta-
stable matter already at relatively low densities of about
twice nuclear saturation density, thus producing a soften-
ing of the EoS with a strong decrease of the maximum
mass. If this is the case, the existence of heavy NS would
question the presence of hyperons in their interior, thus
requiring alternative scenarios. It is therefore of great im-
portance to carry out accurate theoretical calculations of
hypernuclear matter starting from the available informa-
tion on both nucleon and hyperon interactions. There exist
several hyperon-nucleon (NY) potentials fitted to scatter-
ing data, i.e. NSC89 [43], NSC97 [44], and ESC08 [45],
while the hyperon-hyperon (YY) potentials have presently
to be considered rather uncertain or unknown, which is ba-
sically due to the lack of appropriate experimental data.
An alternative description of the hyperon-nucleon system
has been recently achieved at next-to-leading order in chi-
ral effective field theory [46, 47].

In the Brueckner scheme, we have used the phenome-
nological NY potentials [43–45] as fundamental input, and
found very low maximum masses of hyperon stars, below
1.4M� (M� = 2 × 1033 g). A proposed solution of this
so-called hyperon puzzle focuses on the role played by hy-
peronic three-body forces, and several attempts have been
made in this direction [48–51]. However, many inconsisten-
cies still remain, and the solution to this problem is still
far from being understood.

The relativistic framework is the one on which the
nuclear EoS should be ultimately based. The best rela-
tivistic treatment developed so far is the Dirac-Brueckner
(DBHF) approach [25]. The DBHF method can be de-
veloped in analogy with the nonrelativistic case, i.e. the
nucleon inside the nuclear medium is viewed as a dressed
particle in consequence of its two-body interaction with
the surrounding nucleons. The two-body correlations are
described by introducing the in-medium relativistic G-
matrix. The DBHF scheme can be formulated as a self-
consistent problem between the single particle self-energy

Σ and the G-matrix. It has been shown that the DBHF
treatment is equivalent [52] to introducing in the nonrel-
ativistic BHF the three-body force corresponding to the
excitation of a nucleon-antinucleon pair, the so-called Z-
diagram [53], which is repulsive at all densities, and con-
sequently produces a saturating effect. Actually, includ-
ing in BHF only these particular TBF, one gets results
close to DBHF calculations, see ref. [54]. Generally speak-
ing, the DBHF gives in general a better saturation point
than BHF, and the corresponding EoS turns out to be
stiffer above saturation than the one calculated from the
BHF + TBF method. In the relativistic context the only
NN potentials which have been developed are the ones of
one-boson exchange type. In the calculations shown here
the Bonn A potential is used [25]. Recently, the proper-
ties of neutron-star matter including hyperons have been
investigated within the DBHF approach [55]. In the cal-
culation, the effect of negative-energy states of baryons
was partly taken into account, as well as both time and
space components of the vector self-energies of baryons
and the scalar ones. A value of 2.08M� was obtained for
the maximum neutron-star mass, consistent with the re-
cently observed, massive neutron stars [2, 3].

3 The quark matter EoS

3.1 The Field Correlator Method

The approach we follow to describe the quark matter EoS
was introduced in [17–19]; see ref. [56] for a review. For
our purposes, we are specifically interested in the exten-
sion of this approach to finite baryon density and temper-
ature, and all we need is the expression of the pressure as
a function of the EoS thermodynamical parameters, i.e.
the baryon chemical potential μB and the temperature T .
This is derived in [57–59], and below we report its explicit
form. The full pressure, Pqg, is the sum of the gluon, Pg,
the quark, Pq, and the vacuum, Pv, contributions

Pqg = Pg +
∑

j=u,d,s

P j
q + Pv, (6)

where the sum is extended to the three light quark flavors.
The gluon pressure is

Pg =
8T 4

3π2

∫ ∞

0

dχχ3 1
exp(χ + 9V1

8T ) − 1
, (7)

while the quark pressure for each single flavor with mass
mq and chemical potential μq, is

Pq =
T 4

π2

[
φν

(
μq − V1/2

T

)
+ φν

(
−μq + V1/2

T

)]
,

(8)
where

φν(a) =
∫ ∞

0

du
u4

√
u2 + ν2

1
(exp[

√
u2 + ν2 − a] + 1)

,

(9)
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being ν = mq/T . Finally Pv, which represents the pres-
sure difference between the vacua in the deconfined and
confined phases, is given by

Pv = −
(11 − 2

3Nf )
32

G2

2
, (10)

where the number of light flavors in our case is Nf = 3.
Then, once the quark chemical potentials are related

to the baryon chemical potential μB , the full pressure Pqg

is defined in terms of the two parameters V1 and G2 ap-
pearing in eqs. (7)–(10), where V1 indicates the large dis-
tance static qq̄ potential and G2 is the gluon condensate.
The former is essentially of nonperturbative nature and
can be expressed in terms of an integral of a fundamental
QCD correlator [57–59]; however there is no direct mea-
surement of its value. The latter is known from QCD sum
rules [60, 61], G2 = 〈αs

π Ga
μνGa μν〉 = 0.012GeV4, although

an uncertainty of about 50% affects this estimate.
It is also interesting to notice that G2 appears only

in the vacuum contribution to the pressure, and Pv in
eq. (10) has the same role of the bag constant of the MIT
bag model. Moreover, if one turns off the potential V1, the
quark pressure Pq becomes the pressure of free quarks,
and in this case the FCM model reduces to the simplest
version of the bag model. Therefore V1 can be regarded
as the main correction to the free quarks dynamics inside
the bag.

In addition to the poor knowledge of the phenomeno-
logical values of V1 and G2, one has also to deal with the
dependence of these parameters on the thermodynami-
cal variables μB and T . In fact, for the T dependence
some indications can be obtained from the analysis of the
deconfinement phase transition at T = Tc and μB = 0,
which is supported by lattice calculations. For instance,
the fact that the gluon condensate G2 is substantially T
independent except at Tc, where it is sharply reduced by
one half [62, 63], was already accounted for in the vacuum
pressure difference of the two phases derived in [57] and
reported in eq. (10).

As far as V1 is concerning, the following expression re-
lating V1(Tc), G2 and Tc is derived within the FCM model,
in [57, 58],

Tc =
a0G

1/4
2

2

(
1 +

√
1 +

V1(Tc)

2a0G
1/4
2

)
, (11)

being a0 = (3π2/768)1/4. Then, in [64] it is shown that,
with G2 = 0.012GeV4 and with the lattice estimates
of the critical temperature, Tc = 147 ± 5MeV or Tc =
154 ± 9MeV, eq. (11) yields V1(Tc) � 0.15GeV. Another
analysis, [21], based on a fit to the lattice determination of
the interaction measure (ε−3p)/T 4 at several values of the
temperature around and above Tc, suggests a larger po-
tential, V1(Tc) ∼ 0.5–0.6GeV, which, according to eq. (11)
computed at these Tc, requires a smaller gluon condensate,
G2 � 0.003–0.004GeV4. In addition to these estimates,
an analytic expression for V1(T ), which allows to relate
V1(Tc) to the value of the potential at zero temperature,

V1(T = 0), was derived within the FCM in [64] and, in
particular, it turns out that V1(Tc) ∼ 0.5–0.6GeV corre-
sponds to V1(T = 0) � 0.8–0.9GeV.

At this point, it is essential to recall that all these re-
sults are obtained at zero baryon density while, in the core
of NS, densities as large as many times the nuclear mat-
ter saturation density and low temperatures are expected.
Unfortunately, no lattice simulation can be performed in
QCD at high μB , and therefore no numerical indication
on the density dependence of the two parameters of the
FCM is available. On the other hand, in the extension of
the FCM at finite chemical potential discussed in [58], the
authors claim that the potential V1 is expected to be in-
dependent of μB at least for small values of μB . However
this statement cannot be straightforwardly extended to
the region of very large density where the environment is
strongly modified: the number of antiparticles becomes
much smaller than the number of particles. Therefore,
even if the interaction strength of quark-antiquark pairs
is larger than that of quark-quark pairs, the latter plays a
more important role because of the dominance of quarks
over antiquarks. In addition, within this framework the
particle pairing can lead to the appearance of new phases
that will be discussed in sect. 3.2.

In view of all the above considerations, it is evident
that we have very few indications on V1 at large baryon
density and low temperature, and therefore the best strat-
egy is to treat it as a free parameter of the FCM, with no a
priori assumed dependence on T or μB , which effectively
measures the large distance interaction strength within a
finite quark density environment, and which has to be con-
strained by the observational data on heaviest NS, through
our analysis. Accordingly, we do not try to relate V1(μB)
to V1(μB = 0) and in particular to those values of V1

at deconfinement transition, quoted above. Therefore, the
widest acceptable range of V1 is explored: so, for instance,
even the case V1 < 0 is examined, although, as we shall
see below, it does not produce sufficiently heavy hybrid
NS. Finally, as explained more in detail in sect. 3.2, the
other parameter of the FCM, G2, is also treated a free pa-
rameter in our analysis, essentially for the same reasons
discussed in the case of V1.

3.2 The color-flavor locking effect

In ref. [21] the dependence of G2 on μB was explicitly stud-
ied by introducing a particular ansatz for G2(μB), which
was based on previous analysis of the expectation of the
gluon condensate in dense nuclear matter [65–67] and in
two-color, Nc = 2, quantum chromodynamics [68, 69]. In
particular, in [68, 69] it is shown that the explicit form
obtained for G2(μB) (it starts as a decreasing function at
small μB and turns into an increasing function at larger
μB , with a minimum between these two regions) is related
to the effect of diquark pairing and the appearance of a
mass gap. In fact, at a qualitative level this effect presents
strong similarities with the occurrence of the color-flavor
locking (CFL) superconductive mechanism in standard
Nc = 3 QCD [70, 71], which, as far as the total pressure
of the quark system is concerned, induces an additional
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pressure term parameterized by a gap Δ. Clearly, this
new pressure term has an essential role in shaping the μB

dependence of the gluon condensate G2, which eventu-
ally has the same qualitative features of the curve derived
in [69].

Therefore, due to the unavoidable arbitrariness asso-
ciated to the choice of the ansatz for G2(μB) encountered
in [21], rather than following that approach we prefer to
adopt here the same point of view taken for the other FCM
parameter V1, i.e. we take G2 as a free parameter indepen-
dent of T and μB , that sets the pressure and the energy
density of the vacuum. Then, the FCM described by the
two free parameters V1 and G2, is suitable to study the
high density region, and the possible additional contribu-
tion due to the new CFL phase, associated to quark-quark
pairing, has to be taken into account by adding the addi-
tional CFL pressure contribution to the full FCM pressure
Pqg.

The presence of color-flavor locked quark matter is ex-
pected at very high μB , and it is realized through quark-
quark pairing under the constraint that the densities of
the three flavors, up, down and strange, are equal [71–
74]. The global effect of this pairing on the pressure is the
presence of the additional term

Pcfl =
Δ2μ2

B

3π2
, (12)

only when the chemical potential is greater than μB =
3m2

s/(4Δ) and the gap Δ is expected to be in the range
10–100MeV in the region of interest of μB for the NS.
Finally the total pressure of the quark matter phase is
obtained by adding Pcfl to Pqg given in eq. (6), and is
treated as a function of the baryon chemical potential μB

with three free parameters, namely the potential V1 and
the gluon condensate G2, coming from the FCM model,
and the gap Δ, due to the CFL pairing.

4 Numerical results

4.1 EoS of dense matter in beta equilibrium

In order to study the structure of NS, we have to calcu-
late the composition and the EoS of cold, neutrino-free,
charge-neutral, and beta-stable matter, characterized by
two degrees of freedom μB and μe, the baryon and charge
chemical potentials. The corresponding equations are

μi = biμB − qiμe,
∑

i

ρiqi = 0, (13)

bi and qi denoting baryon number and charge of the
particle species i = n, p, e, μ in the hadron phase and
i = u, d, s, e, μ in the quark phase, respectively.

As far as the hadronic phase is concerning, the Brueck-
ner calculation yields the energy density of baryon/lepton
matter as a function of the different partial densities,

ε(ρn, ρp, ρe, ρμ) = (ρnmn + ρpmp) + (ρn + ρp)
E

A
(ρn, ρp)

+ εμ(ρμ) + εel(ρel), (14)

where we have used relativistic and ultrarelativistic ap-
proximations for the energy densities of muons and elec-
trons, respectively [75]. In practice, it is sufficient to com-
pute only the binding energy of symmetric nuclear matter
and pure neutron matter, since within the BHF approach
it has been verified [4, 76] that a parabolic approximation
for the binding energy of nuclear matter with arbitrary
proton fraction x = ρp/ρ, ρ = ρn + ρp, is well fulfilled,

E

A
(ρ, x) ≈ E

A
(ρ, x = 0.5) + (1 − 2x)2Esym(ρ), (15)

where the symmetry energy Esym can be expressed in
terms of the difference of the energy per particle between
pure neutron (x = 0) and symmetric (x = 0.5) matter:

Esym(ρ) =
1
8

∂2(E/A)
∂x2

∣∣∣∣
x=0.5

≈ E

A
(ρ, 0) − E

A
(ρ, 0.5).

(16)
Once the energy density is known (eq. (14)), the various
chemical potentials (of the species i = n, p, e, μ) can be
computed straightforwardly,

μi =
∂ε

∂ρi
, (17)

and the equations for beta-equilibrium (13) allow one
to determine the equilibrium composition {ρi} at given
baryon density ρ and finally the EoS,

P = ρ2 d
dρ

ε({ρi(ρ)})
ρ

= ρ
dε

dρ
− ε = ρμB − ε. (18)

As far as the quark phase is concerned, it is necessary
to define the relations among the various μq that appear
in eq. (8) and the variable μB . For this purpose we must
distinguish two cases, one with Δ = 0 and the other with
Δ �= 0. In the first case one has Pcfl = 0 and the corre-
sponding EoS for quark matter is determined by the con-
ditions of β-equilibrium and charge neutrality and baryon
number conservation, as expressed by eq. (13). It is then
sufficient to express each μq in terms of one single variable,
namely μB . In the second case, with Δ �= 0, the charge
neutrality condition is realized in a peculiar way [72]. In
fact, CFL pairing occurs if the number densities of the
three flavors are equal

ρu = ρd = ρs, (19)

which implies vanishing electron density, ρe = 0, in order
to maintain full charge neutrality. As explained in [72],
eqs. (19) with nonvanishing strange quark mass, ms �= 0,
are acceptable only if μe �= 0, but in any case they allow
us to determine each single μq in terms of μB . Therefore,
each time we consider the case with Δ �= 0, we use the
specific condition in eqs. (19) to express μq in eq. (8) in
terms of μB .

Let us now discuss the main features of the hadron-
quark phase transition, which we assume to be first-order,
thus performing the Maxwell construction. Figure 1 shows
numerical results for the pressure as a function of the



Page 6 of 14 Eur. Phys. J. A (2016) 52: 60

900 1200 1500 1800
μ

B
 (MeV)

0

200

400

600

800

1000

1200

1400
P 

(M
eV

 f
m

-3
)

V
1
 = -50

V
1
 = 0

V
1
 = 200

BHF
DBHF

900 1200 1500 1800
μ

B
 (MeV)

900 1200 1500 1800 2100
μ

B
 (MeV)

Δ = 0 Δ = 50 Δ = 100

Fig. 1. (Color online) The pressure is displayed as a function of the baryon chemical potential μB for the FCM quark matter
and the purely hadronic matter. All calculations for FCM have been performed for G2 = 0.006 GeV4, and several values of V1

have been chosen. The solid curves represent the BHF (green) and DBHF (red) EoS. Each panel shows results for different
values of the gap Δ, i.e. 0, 50, and 100MeV.

baryon chemical potential μB in the hadronic matter
and quark matter in beta equilibrium. In particular, the
green (red) solid curves represent the BHF (DBHF) EoS,
whereas the remaining curves are the results for the FCM
model with different choices of the quark-antiquark poten-
tial V1 (expressed in MeV). For completeness, a negative
value of the potential, V1 = −50MeV is also included in
this analysis. In the left, middle and right panels the value
assumed for the gap Δ is respectively equal to 0, 50 and
100MeV. All calculations shown in fig. 1 are performed
taking G2 = 0.006GeV4. We notice that with increasing
the value of V1 the transition point is shifted to larger val-
ues of the chemical potential, hence of the baryon density.
However, the exact value depends also on the stiffness of
the hadronic EoS at those densities. In this case, being
the DBHF EoS stiffer than the BHF, the transition takes
place at smaller values of the density. We notice that the
transition point is affected also by the value of the gap
Δ, and is shifted toward smaller μB for larger value of
the gap. We also see that no phase transition occurs for
negative values of V1.

The resulting EoS, for the several cases discussed, is
displayed in fig. 2, where one can directly read off the
phase transition between hadron matter and quark matter
under the Maxwell construction. We notice that the phase
transition is allowed only for V1 ≥ 0, and that the width
of the plateau is directly related to Δ. In the case V1 = 0
(magenta curve) the phase transition takes place at very
low value of the density, the plateau is quite small and the
pure quark matter phase starts at density about 3 times
normal nuclear matter density. By increasing V1 the phase
transition is shifted to larger values of the energy density.

4.2 Hybrid star structure

Once the EoS of the hybrid star matter is known, one
can use the Tolman-Oppenheimer-Volkoff [75] equations

for spherically symmetric NS:

dp

dr
= −Gmε

r2

(1 + p/ε)(1 + 4πr3p/m)
1 − 2Gm/r

, (20)

dm

dr
= 4πr2ε, (21)

where G is the gravitational constant and m(r) is the en-
closed mass within a radius r. Given a starting energy
density εc, one integrates these equations until the sur-
face r = R, and the gravitational mass is obtained by
MG = m(R). The EoS needed to solve the TOV equa-
tions is taken from the neutron star matter calculations
discussed above, and matched with the crust EoS, which
has been taken from refs. [77].

As is well known, the mass of the NS has a maximum
value as a function of radius (or central density), above
which the star is unstable against collapse to a black hole.
The value of the maximum mass depends on the EoS, so
that the observation of a mass higher than the maximum
mass allowed by a given EoS simply rules out that EoS.
This is illustrated in fig. 3, where the relation between
mass and radius (left panel) and central density (right
panel) in units of the saturation density ρ0 = 0.17 fm−3

is displayed. Results are plotted for the case in which the
BHF EoS is used for hadronic matter. In fig. 3 we plot
several cases obtained for different values of V1, G2 and
Δ and in this example the largest value of the maximum
mass is observed for large values of V1 = 200MeV, Δ =
100 and G2 = 0.01, and it is compatible with the largest
mass observed up to now, i.e. (2.01 ± 0.04)M� in PSR
J0348+0432 [3].

Recently, it has been shown in ref. [23] that the FCM
equation of state can be accurately represented by the
so-called CSS parameterization. The basic ansatz is that
a sharp phase transition occurs to a high-density phase,
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Fig. 3. (Color online) The mass as a function of the radius (left panel) and the central density (right panel) is displayed for
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where the speed of sound is density-independent. As al-
ready discussed in ref. [22], in all models of nuclear/quark
matter one can find the four topologies of the mass-radius
curve for compact stars: the hybrid branch may be con-

nected to the nuclear branch (C), or disconnected (D), or
both may be present (B) or neither (A). We will discuss
in detail the FCM mapping onto the CSS parameteriza-
tion in the next subsection. Here we limit ourselves to use
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Fig. 4. Same as fig. 3, but for the DBHF EoS.

the same labels in figs. 3 and 4 in order to indicate the
topology of the mass-radius curve, which is strongly re-
lated to the values of the pressure and energy density at
the transition point, and to the energy density discontinu-
ity. In the framework of the FCM model, the topology is
related to the chosen values of V1, G2 and Δ. Using fig. 1
as a guide, we can obtain various topologies just chang-
ing V1, G2 and Δ. For example, when combining FCM
quark matter to the BHF nuclear matter we find that,
for unpaired quark matter and V1 = −50MeV, the lowest
transition point can be obtained when G2 > 0.006GeV4.
In fig. 3 the corresponding mass-radius relation, obtained
with G2 = 0.01GeV4 is displayed by the blue dashed
line, which exhibits a branch of stable hybrid stars dis-
connected (D) by the hadronic branch. With increasing
V1 the transition point moves to larger values of the pres-
sure and the energy density, and as a consequence we ex-
plore regions of the phase diagram where the topology
changes. For instance, for V1 = 0 we can get both (B)
connected and disconnected hybrid star branches, whereas
for V1 = 100MeV connected (C) hybrid star branches are
present and, for the largest value of V1 = 200MeV the
hybrid branch is absent (A). This is clearly shown by a
cusp in the mass-radius relation, and all configurations
with radii smaller than the one characterizing the cusp
are unstable. Therefore only purely nucleonic stars do ex-
ist in this case. However, the stability of those hybrid star
configurations is related to the modeling of the deconfine-
ment phase transition, as pointed out in ref. [78] where
the Gibbs construction was used instead of the Maxwell
method. The additional contribution of the CFL pressure
to the FCM EoS produces only a shift of the transition
point, and therefore the topology explored can be differ-
ent than the one of the unpaired case, leaving unchanged
the phase diagram.

In fig. 4 we display the mass-radius (left panel) and
the mass-central density relation (right panel) in the case

that the EoS used for the hadronic phase is the DBHF. We
observe a topology similar to the one displayed in fig. 3,
except the (B) configurations, which do not appear for the
chosen set of values used for V1, G2 and Δ.

Finally we comment on the values of the maximum
mass. In both cases, either BHF or DBHF EoS for the
hadronic matter, we see that the largest possible values
of the maximum mass are obtained only for values of
V1 > 100MeV, and that only in the DBHF case maximum
masses well above the observational limit are possible. In
fact, the heaviest BHF+FCM hybrid star has a mass of
2.03M�, and the heaviest DBHF+FCM hybrid star has a
mass of 2.31M�. Those values are indicated by an orange
cross in fig. 5, where we display the mapping between the
FCM and CSS parameters which are, in addition to the
particular constant value of the speed of sound cQM , the
ratio of the pressure and energy density in nuclear matter
at the transition point, ptrans/εtrans, and the ratio of the
energy density discontinuity and the energy density at the
transition, Δε/εtrans. In the upper (lower) panels we show
results for the BHF (DBHF) hadronic EoS, whereas in the
left, middle and right panels calculations are reported for
different values of the gap Δ = 0, 50, 100MeV, respec-
tively. The solid red line shows the threshold value Δεcrit
below which there is always a stable hybrid star branch
connected to the neutron star branch. This critical value
is given by [79–81]

Δεcrit
εtrans

=
1
2

+
3
2

ptrans

εtrans
, (22)

and is obtained by performing an expansion in powers of
the size of the core of the high-density phase. That result is
analytical and independent on both c2

QM and the hadronic
EoS. The solid (dashed) green lines represent the phase
boundaries for connected and disconnected branches, and
are obtained for c2

QM = 1/3(0.28). Those values span the
range of c2

QM relevant for the FCM, as discussed in [23].



Eur. Phys. J. A (2016) 52: 60 Page 9 of 14

0 0.2 0.4 0.6
p

trans
/ε

trans

0

0.4

0.8

1.2

1.6
Δε

/ε
tr

an
s

1 2 3 4 5 6 7

Δ=0 Δ=50 Δ=100

Δ=0 Δ=50 Δ=100

7 76 65 543 32 21 1 4

1 1 12 2 23 3 34 4 45 5 5

V
1
 = -50

V
1
 = 0

V
1
 = 100

V
1
 = 200

ρ
trans

/ρ
0

0 0.2 0.4 0.6
p

trans
/ε

trans

0

0.4

0.8

1.2

1.6

Δε
/ε

tr
an

s

ρ
trans

/ρ
0

0 0.2 0.4 0.6
p

trans
/ε

trans

B
H

F +
 FC

M
D

B
H

F +
 FC

M

ρ
trans

/ρ
0

0 0.2 0.4 0.6
p

trans
/ε

trans

ρ
trans

/ρ
0

0 0.2 0.4 0.6
p

trans
/ε

trans

ρ
trans

/ρ
0

0 0.2 0.4 0.6
p

trans
/ε

trans

ρ
trans

/ρ
0

Fig. 5. The mapping of the FCM quark matter model onto the CSS parameterization. Results are obtained using the BHF
(upper panels) and DBHF (lower panels) nuclear matter EoS. The green curves are the phase boundaries for the occurrence
of connected and disconnected hybrid branches. The dashed black line delimit the region yielded by the FCM model. Within
that region, the symbols give CSS parameter values for FCM quark matter as G2 is varied at constant V1 (given in MeV). The
(orange) cross denotes the EoS with the highest ptrans, which gives the heaviest FCM hybrid star. The left, middle, and right
panels display results obtained with Δ = 0, 50, and 100 MeV, respectively.

1000 1100 1200 1300
μ

B
 (MeV)

0

50

100

150

200

250

P 
 (

M
eV

 f
m

-3
)

BHF (N,Y,l) - NSC89
BHF (N,Y,l) - ESC08
BHF (N, l) 
V

1
=-50, G

2
=.0083, Δ=0

V
1
=0, G

2
=.0057,  Δ=0

V
1
=120, G

2
=.00354, Δ=100

V
1
=120, G

2
=.00187, Δ=0

(a)

(b)

(c)

(d)

Fig. 6. Pressure vs. baryon chemical potential corresponding to the hadronic EoS’s, including hyperons (dashed and dotted
black lines) or without hyperons (BHF) (solid black line), and their crossing with the quark matter pressure evaluated with
four different parameterisations ((a), (b), (c), (d) lines).



Page 10 of 14 Eur. Phys. J. A (2016) 52: 60

Table 1. The minimum and maximum values of G2 (in units
of GeV4) are shown for different choices of Δ and V1.

Δ (MeV) V1 (MeV) Gmin
2 Gmax

2

0. −50. 0.007 0.014

0. 0.005 0.012

100. 0.003 0.01

200. 0.003 0.01

100. −50. 0.009 0.014

0. 0.007 0.012

100. 0.006 0.01

200. 0.003 0.01

Table 2. The total radius R, the radius of the quark core RQ,
the radius of the hadronic layer RH and the crust radius Rcrust

are given for a hybrid star mass M = 2M�, for different choices
of the hadronic EoS and Δ. All radii are given in km.

EoS Δ (MeV) R RQ RH Rcrust

BHF 0. 10.37 0.055 9.97 0.345

100. 10.44 0.215 9.87 0.355

DBHF 0. 12.78 1.27 10.87 0.640

100. 12.72 2.42 9.665 0.635

The dashed black contour delimit the region accessi-
ble by the FCM calculation. Above that region, the sym-
bols connected by solid lines show the CSS parameteriza-
tion of the FCM quark matter EoS. Along each line we
keep V1 constant and vary G2 over the range indicated
in table 1 for the two extreme cases Δ = 0, 100MeV
and different values of V1, for both BHF and DBHF. In
fig. 5 V1 varies from −50MeV up to the maximum value
at which hybrid star configurations occur, which is indi-
cated by an (orange) cross. For the BHF case that value
is V1 = 240MeV, G2 = 0.0024GeV4 and for the DBHF
case it is V1 = 255MeV, G2 = 0.0019GeV4. The vertical
black dashed lines indicate the parameter regions accessi-
ble by the FCM and consistent with the measurement of
a M = 2M�. Hybrid stars with mass heavier than 2M�
lie on a very small connected branch on the right side of
the vertical black dashed lines, and cover a small range
of central pressures, having a very tiny quark core, with
mass and radius similar to those of the heaviest purely
hadronic star, as was already discussed in ref. [23]. For
completeness, we display in table 2 the characteristic ra-
dius of a hybrid star with M = 2M� obtained with BHF
and DBHF EoS for the hadronic phase and two extreme
values for Δ = 0, 100MeV. We chose typical configura-
tions lying on the vertical black lines plotted in fig. 5. We
notice that the radius of the quark core RQ is bigger for
the stiffest hadronic EoS, being comprised between 1 and
3 km, whereas for the soft hadronic EoS the quark core ra-
dius RQ is not larger that a few hundreds meters. In both
cases the hadronic layer occupies the largest portion of the
star, and is characterized by a radius RH of about 10 km.
The crust radius Rcrust is always smaller than 1 km.

Moreover we notice in fig. 5 that along each line of
constant V1, ptrans/εtrans grows with G2, and this can be
explained by recalling the linear dependence of the quark
pressure on G2 in eq. (10), so that, at fixed chemical poten-
tial, an increase of G2 lowers the quark pressure, making
quark matter less favourable, and shifting the transition
point to higher chemical potential or pressure. This was
already discussed in ref. [20] for BHF nuclear matter, and
is equally applicable to DBHF nuclear matter. We also
see in fig. 5 that the combination of G2 and V1 moves the
curves inside the region accessible by FCM which is delim-
ited downward by the dashed black line. Figure 5 shows
that the introduction of a color-flavor locking effect char-
acterized by a gap Δ does not change qualitatively the
gross features of the phase transition, being the topology
of the hybrid star branch slightly affected.

4.3 Effects of hyperons on the phase transition

It is known that the effect of including hyperons in the
hadronic EoS is to soften the interior of the NS so that it
becomes difficult to get masses of the stars as heavy as 2
solar masses. In our analysis, this is confirmed by the pres-
sure obtained for the two parameterizations NSC89 and
ESC08, which are plotted in fig. 6 (respectively, dashed
and dotted black curves) together with the BHF EoS (solid
black curve) used in sect. 4.1. In fact, the steeper growth
with μB of the former two curves with respect to the latter
is an indication of the greater stiffness of the EoS when hy-
perons are neglected. At the same time we notice that the
NSC89 and ESC08 parameterizations quantitatively give
very close results. We stress that in this paper we discuss
hyperon effects obtained only in the BHF approach.

Then, it is easy to realise that the inclusion of hyper-
ons puts more stringent constraints on the parameters of
the quark matter EoS, in order to observe a crossing of
the pressures in the two phases. In fig. 6 we report four
examples of quark matter pressure for different choices of
the parameters (curves (a), (b), (c), (d)). These curves
explicitly show that the parameter V1 is mainly responsi-
ble for their slope, while Δ has a much smaller effect and
G2, being an additive constant to the pressure as shown
in eq. (10), produces a global upward or downward shift
of the quark matter pressure.

Therefore, when going from V1 = −50MeV to V1 = 0
to V1 = 120MeV, the corresponding curves (a), (b) and
(c) become less and less steep, and one can observe three
representative behaviors: (a) shows a phase transition at
a crossing point below 1100MeV with any hadronic EoS;
(b) has the same crossing as in the case (a) and, when
compared to the BHF EoS, it remains the favoured phase
at any μB , but when compared to the NSC89 or ESC08
parameterizations, one observes a second crossing at larger
μB ; (c), after an interval in which the pressures for the
hadronic and quark phases are substantially the same, the
NSC89 or ESC08 curves stay above (c) which, in turn is
above the BHF curve.

Therefore, one learns that the quark pressure can ex-
ceed the pressure of hadronic EoS including hyperons only
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Fig. 7. Mass-radius (left panel) and mass-central density (right panel) plots of the hybrid stars corresponding to the quark
matter EoS (a), (b), (c), (d) together with the hyperon parameterization ESC08 of fig. 6.

at small V1, typically well below 100MeV, and one knows
from the analysis of sect. 4.2 that smaller V1 correspond to
NS with smaller masses. To verify this point, we consider
the cases (a) and (b) (retaining for (b) only the first cross-
ing of the quark and hadronic pressure) and then derive
the corresponding mass-radius or mass-central density re-
lation which are given in fig. 7 for the ESC08 EoS (the
NSC89 case produces almost indistinguishable results). It
is evident that in the cases (a) and (b), the masses re-
main below 1.5M�. In addition, for (b) we ignored the sec-
ond crossing point above which, in principle, the hadronic
phase becomes again favourable, but, in any case, this new
transition would make the NS even softer thus lowering its
maximum mass and ruling out the possibility of reaching
2M�.

Before concluding, we reconsider in the other cases the
procedure followed for (b), namely the derivation of the
mass-radius relation obtained by systematically consid-
ering only the transition from hadronic to quark matter
occurring at the lowest value of μB , while ignoring other
potential transitions occurring at higher μB .

By following this procedure, which is somehow justified
by our poor knowledge of the hyperon interactions, we
reconsider in detail the various examples of fig. 6 and,
for convenience, we report in fig. 8 an enlargement of the
region at small μB . In fact, from fig. 8 it is evident that
the double transition which is observed at a larger scale
in fig. 6 for the case (b), now occurs on a smaller scale
for the cases (c) and (d). These two examples are realized
with V1 = 120MeV and, respectively, Δ = 100MeV and
Δ = 0 and G2 is tuned to make the quark matter pressure
almost tangent to the NSC89 or ESC08. While the case (c)
crosses for the first time the hadronic EoS’s slightly above
μB ∼ 1000MeV, where the ESC08 and the BHF EoS’s

are distinguishable, the crossing of curve (d) occurs below
μB ∼ 980MeV, before the onset of hyperons.

In both cases (c) and (d), the second crossing is very
close, but according to the assumption made we retain
only the quark matter EoS at larger μB after the first
crossing. The interesting point is that, as V1 = 120MeV
is rather large for these two cases, one expects large max-
imum masses for the corresponding NS. This can be ver-
ified by looking at the right panel of fig. 7, where after a
very small plateau, related to the small difference between
the quark and hadronic pressure along a rather large inter-
val around the transition point, the mass of the NS grows
above 1.7M� for (c) and up to 1.95M� for (d) that is rea-
sonably close to the observational constraint of 2M�. It is
remarkable that very similar results are obtained for the
maximum NS masses in [82] where the NSC89 parameter-
ization is used for hyperons and a sort of QCD corrected
bag model for quark matter.

5 Conclusions

The FCM extension at finite T and μB provides us a
very simple description of the quark dynamics in terms
of two parameters, namely the gluon condensate G2, that
parametrizes the vacuum pressure and energy density, and
hence is strictly related to the bag constant of the MIT
bag model, and the potential V1, which summarizes the in-
teraction corrections to the free quark and gluon pressure.
It is then natural to explore the predictions of the FCM
on the maximum masses (and their associated radii) of NS
when these parameters are varied. In order to have a more
complete picture, we include the effect of color supercon-
ductivity through the CFL mechanism, which amounts to
the addition of a new free energy contribution written in
terms of the gap Δ.
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Fig. 8. Enlargement of the low μB region of fig. 6.

Clearly, any prediction of a quark matter model on
the structure of a hybrid NS strongly depends on the nu-
clear matter EoS employed and among the large variety
of nuclear EoS available in the literature, we focused on
the nonrelativistic BHF EoS and its relativistic counter-
part, the DBHF EoS. These are derived within a solid
microscopic approach, and give us different predictions on
the NS maximum mass. For completeness, we also an-
alyzed the inclusion of the hyperon degrees of freedom
that produces a softening of the nuclear matter EoS with
the consequent reduction of the maximum mass of the
NS.

With this new set of more refined calculations, we con-
firm the trend already observed in [20, 21, 23], i.e. the max-
imum mass of hybrid stars grows with the two parameters
V1 and G2 while it decreases when Δ is increased. More
interestingly, we extend the mapping developed in [23]
among the parameters of the FCM and those defining the
CSS parameterization, by displaying the effect of the gap
Δ. In fact, from the various panels of fig. 5, it is evident
that the border of the area of the diagram accessible by
the FCM (i.e. the dashed black curve) is not sensitive
to Δ and it is totally determined in terms of the CSS
parameters. In particular, even the region corresponding
to configurations associated to hybrid stars with maxi-
mum mass greater than 2M�, which is the triangle-like
area delimited above by the straight solid red line, be-
low by the dashed black curve and finally on the left by
the almost vertical dashed black segment, is only deter-
mined in terms of the two CSS parameters reported on
the x and y axes of the diagrams. Therefore one can con-
clude that a particular configuration with mass around
or above two solar masses can be realized in the FCM
by different pairs of G2 and V1, depending on the spe-

cific value assigned to Δ, i.e. the appearance of a color
superconducting gap can be mimicked by a shift of the
other two parameters. Therefore, even the mass of the
heaviest hybrid star predicted by the FCM (the orange
crosses in fig. 5) does not correspond to a unique set of
G2, V1 and Δ, while, as seen in [23], its value strongly de-
pends on the specific choice made for the nuclear matter
EoS.

The inclusion of the hyperons induces dramatic chan-
ges in this picture. In fact, a regular transition from nu-
clear to quark matter with a stable quark phase up to very
high chemical potential requires a particular tuning of the
FCM parameters that leads to very low maximum masses,
below 1.5M�. We have also observed that it is possible to
find specific sets of the parameters G2, V1 and Δ such that
the hadronic and quark matter pressure run very close for
a large range of μB and, when looking more in detail, one
observes multiple crossings of these lines, although at large
μB the phase that includes hyperons is favoured. For com-
pleteness we analyze these cases by retaining only the first
crossing from the hadronic to the quark matter phase, and
neglecting the other transitions at higher chemical poten-
tial. In this case it is possible to tune the FCM parameters
in such a way to raise the maximum mass up to 1.95M�,
although an explanation supporting the strong assump-
tion on the transition is required in order to accept this
result.
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viding us with the BHF EoS for hypernuclear matter with the
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37. P. Navrátil, Few-Body Syst. 41, 117 (2007) arXiv:0707.
4680.

38. M. Baldo, K. Fukukawa, Phys. Rev. Lett. 113, 242501
(2014) arXiv:1409.7206.

39. K. Fukukawa, M. Baldo, G.F. Burgio, L. Lo Monaco, H.-J.
Schulze, arXiv:1507.0728.

40. Y. Fujiwara, K. Fukukawa, Few-Body Syst. 54, 2357
(2013).

41. M. Baldo, G. Burgio, H. Schulze, Phys. Rev. C 58, 3688
(1998).

42. M. Baldo, G. Burgio, H. Schulze, Phys. Rev. C 61, 055801
(2000) nucl-th/9912066.

43. P.M.M. Maessen, T.A. Rijken, J.J. de Swart, Phys. Rev.
C 40, 2226 (1989).

44. V.G.J. Stoks, T.A. Rijken, Phys. Rev. C 59, 3009 (1999)
nucl-th/9901028.

45. H.-J. Schulze, T. Rijken, Phys. Rev. C 84, 035801 (2011).

46. J. Haidenbauer, Nucl. Phys. A 914, 220 (2013) Interna-
tional Conference on Hypernuclear and Strange Particle
Physics (HYP2012).

47. J. Haidenbauer, S. Petschauer, N. Kaiser, U.-G. Meißner,
A. Nogga, W. Weise, Nucl. Phys. A 915, 24 (2013).

48. D. Lonardoni, F. Pederiva, S. Gandolfi, Phys. Rev. C 89,
014314 (2014).

49. I. Vidaña, D. Logoteta, C. Providencia, A. Polls, I. Bom-
baci, EPL 94, 11002 (2011) arXiv:1006.5660.

50. D. Logoteta, I. Vidaña, C. Providencia, Nucl. Phys. A 914,
433 (2013) International Conference on Hypernuclear and
Strange Particle Physics (HYP2012).

51. Y. Yamamoto, T. Furumoto, N. Yasutake, T.A. Rijken,
arXiv:1510.0609.

52. G. Brown, W. Weise, G. Baym, J. Speth, Commun. Nucl.
Part. Phys. 17, 39 (1987).

53. M. Baldo, G. Giansiracusa, U. Lombardo, I. Bombaci, L.S.
Ferreira, Nucl. Phys. A 583, 599 (1995).

54. Z.H. Li, U. Lombardo, H.-J. Schulze, W. Zuo, L.W. Chen,
H.R. Ma, Phys. Rev. C 74, 047304 (2006).

55. T. Katayama, K. Saito, Phys. Lett. B 747, 43 (2015)
arXiv:1501.0541.

56. A. Di Giacomo, H.G. Dosch, V. Shevchenko, Y. Simonov,
Phys. Rep. 372, 319 (2002) hep-ph/0007223.

57. Y. Simonov, M. Trusov, JETP Lett. 85, 598 (2007) hep-
ph/0703228.

58. Y. Simonov, M. Trusov, Phys. Lett. B 650, 36 (2007) hep-
ph/0703277.

59. A. Nefediev, Y. Simonov, M. Trusov, Int. J. Mod. Phys. E
18, 549 (2009) arXiv:0902.0125.



Page 14 of 14 Eur. Phys. J. A (2016) 52: 60

60. M.A. Shifman, A. Vainshtein, V.I. Zakharov, Nucl. Phys.
B 147, 385 (1979).

61. M.A. Shifman, A. Vainshtein, V.I. Zakharov, Nucl. Phys.
B 147, 448 (1979).

62. M. D’Elia, A. Di Giacomo, E. Meggiolaro, Phys. Lett. B
408, 315 (1997) hep-lat/9705032.

63. M. D’Elia, A. Di Giacomo, E. Meggiolaro, Phys. Rev. D
67, 114504 (2003) hep-lat/0205018.

64. I. Bombaci, D. Logoteta, Mon. Not. R. Astron. Soc. Lett.
433, L79 (2013) arXiv:1212.5907.

65. T.D. Cohen, R. Furnstahl, D.K. Griegel, Phys. Rev. C 45,
1881 (1992).

66. E. Drukarev, M. Ryskin, V. Sadovnikova, Prog. Part. Nucl.
Phys. 47, 73 (2001) nucl-th/0106049.

67. M. Baldo, P. Castorina, D. Zappala, Nucl. Phys. A 743, 3
(2004) nucl-th/0311038.

68. M.A. Metlitski, A.R. Zhitnitsky, Nucl. Phys. B 731, 309
(2005) hep-ph/0508004.

69. A. Zhitnitsky, AIP Conf. Proc. 892, 518 (2007) hep-
ph/0701065.

70. M.G. Alford, K. Rajagopal, F. Wilczek, Nucl. Phys. B 537,
443 (1999) hep-ph/9804403.

71. M.G. Alford, A. Schmitt, K. Rajagopal, T. Schfer, Rev.
Mod. Phys. 80, 1455 (2008) arXiv:0709.4635.

72. K. Rajagopal, F. Wilczek, Phys. Rev. Lett. 86, 3492 (2001)
hep-ph/0012039.

73. M. Alford, K. Rajagopal, JHEP 06, 031 (2002) hep-
ph/0204001.

74. M. Alford, M. Braby, M. Paris, S. Reddy, Astrophys. J.
629, 969 (2005) nucl-th/0411016.

75. S.L. Shapiro, S.A. Teukolsky, Black Holes, White Dwarfs
and Neutron Stars: The Physics of Compact Objects
(Wiley-VCH, 1986).

76. I. Bombaci, U. Lombardo, Phys. Rev. C 44, 1892 (1991).
77. J.W. Negele, D. Vautherin, Nucl. Phys. A 207, 298 (1973).
78. D. Logoteta, I. Bombaci, Phys. Rev. D 88, 063001 (2013)

arXiv:1309.0096.
79. R. Schaeffer, L. Zdunik, P. Haensel, Astron. Astrophys.

126, 121 (1983).
80. Z.F. Seidov, Sov. Astron. 15, 347 (1971).
81. L. Lindblom, Phys. Rev. D 58, 024008 (1998) gr-qc/

9802072.
82. A. Kurkela, P. Romatschke, A. Vuorinen, Phys. Rev. D

81, 105021 (2010) arXiv:0912.1856.


