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Abstract. We expand the Tsallis distribution in a Taylor series of powers of (q − 1), where q is the Tsallis
parameter, assuming q is very close to 1. This helps in studying the degree of deviation of transverse
momentum spectra and other thermodynamic quantities from a thermalized Boltzmann distribution. Af-
ter checking thermodynamic consistency, we provide analytical results for the Tsallis distribution in the
presence of collective flow up to the first order of (q−1). The formulae are compared with the experimental
data.

1 Introduction

It is now a standard practice to use the Tsallis distri-
bution [1] for describing the transverse momentum dis-
tributions at high energies. This has been pioneered by
the PHENIX and STAR Collaborations [2–4] at the Rela-
tivistic Heavy Ion Collider (RHIC) at BNL and by the AL-
ICE, ATLAS and CMS Collaborations [5–10] at the Large
Hadron Collider (LHC) at CERN. The Tsallis distribu-
tion is successful in explaining the experimental transverse
momentum distribution, longitudinal momentum fraction
distribution as well as rapidity distribution of hadrons off
the e+e− as well as p-p collisions [11–17]. The form of the
Tsallis distribution used in this paper has been described
in detail previously [18–21] and has the advantage of being
thermodynamically consistent. There is clear evidence for
a mild energy dependence of the parameters q and T [20].
Also, initially there were indications that the values ob-
tained for the parameters q and T were consistent with
each other for different particle species [17,19]. Different
conclusions have been reached in the literature [22–25],
albeit using slightly different formalisms and approaches,
and a more detailed analysis is still outstanding to prove
this beyond doubt.

2 Review of the main ingredients of the
model

For completeness we recall here the main ingredients.

a e-mail: Raghunath.Sahoo@cern.ch (corresponding author)

The relevant thermodynamic quantities can be written
as integrals over the following distribution function:

f =
[
1 + (q − 1)

E − μ

T

]− 1
q−1

. (1)

It can be shown [19] that the entropy, S, particle number,
N , energy density, ε, and the pressure, P , are given by

S = −gV

∫
d3p

(2π)3
[fq lnq f − f ] , (2)

N = gV

∫
d3p

(2π)3
fq, (3)

ε = g

∫
d3p

(2π)3
E fq, (4)

P = g

∫
d3p

(2π)3
p2

3E
fq, (5)

where V is the volume and g is the degeneracy factor.
The function appearing in eq. (2) is often referred to

as q-logarithm and is defined by

lnq(x) ≡ x1−q − 1
1 − q

.

The first and second laws of thermodynamics lead to
the following two differential relations:

dε = T ds + μdn, (6)
dP = sdT + ndμ, (7)

where, s = S/V and n = N/V are the entropy and particle
number densities, respectively.
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It is seen that if we use fq in stead of f to define the
thermodynamic variables, the above equations satisfy the
thermodynamic consistency conditions which require that
the following relations to be satisfied:

T =
∂ε

∂s

∣∣∣∣
n

, (8)

μ =
∂ε

∂n

∣∣∣∣
s

, (9)

n =
∂P

∂μ

∣∣∣∣
T

, (10)

s =
∂P

∂T

∣∣∣∣
μ

. (11)

Equation (8), in particular, shows that the variable T
appearing in eq. (1) can indeed be identified as a ther-
modynamic temperature and is more than just another
parameter. It is straightforward to show that these rela-
tions are indeed satisfied [19].

Based on the above expressions the particle distribu-
tion can be rewritten, using variables appropriate for high-
energy physics as [18]

dN

dpT dy
=

gV

(2π)2
pT mT cosh y

(
1 + (q − 1)

mT cosh y − μ

T

)− q
q−1

. (12)

It can be shown that at central rapidity, y = 0, one can
obtain the transverse momentum distribution in terms of
the central rapidity density, dN/dy|y=0, as the volume de-
pendence can be replaced by a dependence on dN/dy|y=0

using

dN

dy

∣∣∣∣
y=0

=
gV

(2π)2

[
1 + (q − 1)

m − μ

T

]− 1
q−1

T 3

(2q − 3)(q − 2)[
2 − (q − 2)

(
m − μ

T

)2

+ 2
m − μ

T

−2
μ

T
(2q − 3)

(
1 +

m − μ

T

)

+
μ2

T 2
(2q − 3)(q − 2)

]
. (13)

This leads to the following expression and generalizes
the expression given in [26] to non-zero values of the chem-
ical potential μ (see appendix A for an outline of the

derivation of eqs. (13) and (14)):

dN

dpT dy

∣∣∣∣
y=0

=
pT mT

T

dN

dy

∣∣∣∣
y=0

[
1 + (q − 1)

mT − μ

T

]− q
q−1

× (2 − q)δ
(2 − q)d2 + 2dT + 2T 2 + 2μδ(T + d) + μ2δ(2 − q)

×
[
1 + (q − 1)

d

T

] 1
q−1

, (14)

where the abbreviations d ≡ m − μ and δ ≡ 3 − 2q have
been used.

In all fits to transverse momentum spectra, the pa-
rameter q turns out to be very close to 1 [20,21]. In fact,
the value of the non-extensive parameter q for high-energy
collisions is found to be 1 ≤ q ≤ 1.2 [11,27]. In the limit
where q is exactly 1, eq. (12) reduces to the standard ex-
ponential function appearing in the Boltzmann distribu-
tion. It is therefore useful to expand the above expressions
in a Taylor series in (q − 1) and see how the deviations
from a Boltzmann distribution develop. Such an expansion
has been considered previously in [28,29]. The present pa-
per develops a more systematic analysis than the previous
ones and considers a slightly different form of the Tsallis
distribution, having an extra power of q, because it is con-
sistent with basic thermodynamic relations.

The aim of this paper is to develop a Taylor expansion
of eq. (12) in (q − 1) based on the fact that (q − 1) � 1
(see for example [30]). The conditions of validity of such
an expansion for pure Tsallis distribution (eq. (1)) is |1−
q|E/T < 1. Apart from this, up to first order in (q −
1) an additional condition |1 − q|(E/T )2 < 2 must be
satisfied [28]. The condition of validity for expansion up
to order (q − 1)2 term will be |1 − q|2(E/T )3 < 3. The
expansion to higher orders has also been considered in [31]
in the framework of an analysis of quasi-additivity for the
Tsallis entropy for different subsystems.

The Taylor expansion is useful as a mathematical tool
because it breaks the Tsallis distribution in a series of
(q − 1) containing powers of energy E. Now, the advan-
tage we get is, it will be easier to consistently include the
effect of flow on the Tsallis distribution just by making a
substitution E → pμuμ, for a collective four-velocity uμ of
particles with representative four-momentum pμ [32,33].

There have been earlier attempts to include the effect
of collectivity in the dynamics of the particles following
the Tsallis distribution in the form of Tsallis-Blast Wave
(TBW) formalism [22], or in refs. [32,34]. In all cases, an
ansatz of fluid four-velocity is taken and energy is replaced
by the scalar product pμuμ. The inclusion of flow inside
non-extensive statistics reduces the value of q [35] since
some degree of non-extensivity is shared by the dynam-
ics. Also, whenever we have an inhomogeneous thermody-
namic system, with regions having different temperatures
and exchanging heat with the bigger system, we can de-
fine an effective temperature Teff which is affected by en-
ergy transfer only when q �= 1 [36–38]. The variation of
effective temperature with q is seen in [39]. Another im-
portant observed phenomenon like mT scaling is affected
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by flow. In p-p or p-A collisions, the particle spectra for
different hadrons are having the same slope parameter T
and this phenomenon is known as mT scaling [40]. Due to
this scaling behaviour, the particle species cannot be iden-
tified just by looking at the spectrum. This behaviour will
be manifested in particle distributions following eq. (12).
But, because of the inclusion of collectivity the particle
species start having different slope parameters. The aver-
age collective velocity as well as the mass of particles will
contribute to the slope parameter and hence the scaling is
broken [41]. It is possible that q represents the joint action
of many dynamical factors [42] and it cannot be excluded
at present that when these are accounted for, the factor
q − 1 could well become zero. The values of the parame-
ters are clearly sensitive to the details of the hadronization
mechanism [43,44].

The TBW formalism considers an implicit dependence
of fluid rapidity on the velocity; but, in the present case,
we consider a cylindrical geometry and velocity comes ex-
plicitly in the calculations. In contrast to the numerical
treatment in [22], we provide an analytical formula for the
Tsallis distribution expanded up to O(q−1) in presence of
flow. In the next section, we derive the Taylor expansion
for the Tsallis distribution in the series of (q − 1) and we
compare the order-by-order deviation from a thermalized
Boltzmann distribution of transverse momentum spectra
in hadronic and nuclear collisions. In sect. 4 we find out
the expressions for number density (n), pressure (P ) and
energy density (ε) for a system with non-zero chemical
potential (μ). We verify the thermodynamic relationship
n = ∂P/∂μ. In sect. 5 we derive an analytical formula
including flow up to O(q − 1) of a Taylor series expan-
sion of the Tsallis distribution and show its application
to experimental data. Finally we summarize the paper in
sect. 6.

3 Momentum distributions to first and
second order in (q − 1)

Assuming the parameter q to be close to 1, as is the value
for many cases in high energy physics, the modified Tsal-
lis distribution, fq, appearing in the expressions for the
thermodynamic quantities can be expanded in a Taylor
series in q − 1 with the following result (see appendix B
for a detailed derivation):

[
1 + (q − 1)

E − μ

T

]− q
q−1

� e−
E−μ

T

{
1 + (q − 1)

1
2

E − μ

T

(
−2 +

E − μ

T

)

+
(q − 1)2

2!
1
12

[
E − μ

T

]2
[
24 − 20

E − μ

T
+ 3

(
E − μ

T

)2
]

+O
{
(q − 1)3

}

+ . . .

}
. (15)

This result can be used for the invariant yield of par-
ticles if it is written in terms of the Tsallis distribution,

E
dN

d3p
= CE

[
1 + (q − 1)

E − μ

T

]− q
q−1

, (16)

where C ≡ gV/(2π)3. Let us use the following notations:
(q−1) ≡ x; (E−μ)/T = Φ and 1+(q−1)E−μ

T = 1+xΦ =
f(x). Hence, the expansion of the Tsallis distribution up
to O(x2) can be written as

E
dN

d3p
� CEe−Φ + CE

x

1!
Φ

2
(−2 + Φ) e−Φ

+ CE
x2

2!
Φ2

12
(
24 − 20Φ + 3Φ2

)
e−Φ. (17)

Hence one obtains

dN

pT dpT dydφ
� CEe−Φ + CE

x

1!
Φ

2
(−2 + Φ) e−Φ

+CE
x2

2!
Φ2

12
(
24 − 20Φ + 3Φ2

)
e−Φ. (18)

Since we use a modified form of Tsallis distribution, a
comparison with similar work will be worthwhile at this
point. With this aim, we integrate over the rapidity vari-
able to compare the transverse mass spectrum obtained
from the present approach with that obtained in ref. [29]:

dN

mT dmT
=

gV

2π2
mT

[
K1

(mT

T

)
e

μ
T

−q − 1
2

mT

T

{
K0

(mT

T

)
+ K2

(mT

T

)}

+
q − 1

8

(mT

T

)2 {
K3

(mT

T

)
+ 3K1

(mT

T

)}

+
μ(q − 1)

T
K1

(mT

T

)
+

μ2(q − 1)
2T 2

K1

(mT

T

)

−μmT (q − 1)
2T 2

{
K0

(mT

T

)
+ K2

(mT

T

)}]

+O((q − 1)2) + . . . , (19)

where Kns are the modified Bessel’s functions of sec-
ond kind (see appendix E). In principle, while examin-
ing the transverse spectra, the rapidity integration should
be within a maximum value ymax, say. But, owing to the
presence of the term e−mT cosh y/T , the integrand drops
down very fast with increasing y. And so, according to
the standard practice, we can effectively replace the ra-
pidity integration from 0 to ymax to 0 to ∞ so that the
integration yields Bessel functions. The first term in the
above expression is the well-known formula for a thermal
source with a Boltzmann distribution:

dN

pT dpT
=

gV

2π2
mT e

μ
T K1

(mT

T

)
. (20)

In the limit μ = 0, the transverse mass spectrum obtained
from ref. [29] (up to O(q − 1)) does not contain the term
involving K0 and K2.
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Fig. 1. Fits to the normalized differential yields of π+ as
measured by the ALICE Collaboration in p-p collisions at√

s = 0.9 TeV [6] fitted with the Tsallis (solid line) and Boltz-
mann distributions (dashed line). Also shown are fits with the
Tsallis distribution keeping terms to first (dash-dotted line)
and second order in (q−1) (dotted line). The lower part of the
figure shows the difference between model (M) and experiment
(E) normalized to the model (M) values.

The Boltzmann distribution, the pure Tsallis distribu-
tion (eq. (12)) and the expansion of the Tsallis distribu-
tion up to the first and second order of (q − 1) (eq. (18))
were used to fit the transverse momentum distributions
obtained by the ALICE Collaboration. The results are
shown in fig. 1 for p-p collisions at

√
s = 0.9TeV and

in fig. 3 for Pb-Pb collisions at
√

sNN = 2.76TeV. It is
well known that the Tsallis fits give excellent results for
p-p collisions but are not very good for Pb-Pb collisions
as can be seen clearly in fig. 3, where a large deviation at
small pT is seen.

It can be seen from the fits to the p-p distribution that
the successive terms in (q − 1) improve the fits but not in
a convincing manner. Clearly, it is the best to use the full
Tsallis distribution and not the series expansion. It might
turn out of course that the series expansion could be of
use in a different situation where the comparison with a
Boltzmann distribution is more relevant.

The fits in the figures were done using the MINUIT
package with the following numerical results.

In fig. 1 we show fits to the transverse momentum dis-
tribution of π+ in p-p collisions at 900GeV. For the plain
Tsallis distribution (solid line) the parameters were ob-
tained as being T = 70.8MeV, q = 1.1474. The volume
V was determined as corresponding to a spherical radius
of 4.81 fm. For the Boltzmann distribution (dashed line)
the parameters were determined as being T = 150.2MeV,
while the radius used to determine the volume was fixed
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p
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Fig. 2. Fits to the normalized differential yields of π+, includ-
ing only results at small values of the transverse momentum,
as measured by the ALICE Collaboration in p-p collisions at√

s = 0.9 TeV [6] fitted with the Tsallis (solid line) and Boltz-
mann distributions (dashed line). Also shown are fits with the
Tsallis distribution keeping terms to first (dash-dotted line)
and second order in (q − 1) (dotted line).
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Fig. 3. Fits to the normalized differential π− yields as mea-
sured by the ALICE Collaboration in (0–5)% Pb-Pb collisions
at

√
sNN = 2.76 TeV [10] fitted with the Tsallis (solid line) and

Boltzmann distributions (dashed line). Also shown are fits with
the Tsallis distribution keeping terms to first (dash-dotted line)
and second order in (q−1) (dotted line). The lower part of the
figure shows the difference between model (M) and experiment
(E) normalized to the model (M) values.
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at a value of 2.65 fm. For the fit using the Boltzmann dis-
tribution and the first order term in (q − 1) (dash-dotted
line) the values are T = 138.4MeV, q = 1.035 while the
radius is given by 2.80 fm. In the last case corresponding
to Boltzmann plus first and second orders in (q − 1) (dot-
ted line) one has T = 121.2MeV, q = 1.065 and a radius
of 3.09 fm. As is well known and evident, the fit using the
Tsallis distribution is very good.

In fig. 2 we show fits to the small transverse momen-
tum region of π+ in p-p collisions at 900GeV. In this
case the fits using the Boltzmann distribution are fairly
good. The deviation with the Tsallis distribution becomes
very prominent only for larger transverse momenta. For
the normal Tsallis distribution (solid line) the parameters
were obtained as being T = 70.8MeV, q = 1.145, similar
to the full range of pT . The volume V was determined
as corresponding to a spherical radius of 4.82 fm. For the
Boltzmann distribution (dashed line) the parameters were
determined as being T = 104.9MeV, i.e. much lower than
the full range in pT while the radius used to determine the
volume was fixed at a value of 3.61 fm. For the fit using the
Boltzmann distribution and the first order term in (q− 1)
(dash-dotted line) the values are T = 89.9MeV, q = 1.07
while the radius is given by 4.03 fm. In the last case cor-
responding to Boltzmann plus first and second orders in
(q − 1) (dotted line) one has T = 77MeV, q = 1.11 and a
radius of 4.54 fm.

In fig. 3 we show fits to the normalized differential π−

yields in (0–5)% Pb-Pb collisions at
√

sNN = 2.76TeV as
measured by the ALICE Collaboration [10] with the Tsal-
lis (solid line) and Boltzmann distributions (dashed line).
Also shown are fits with the Tsallis distribution keeping
terms to first order (dash-dotted line) and second order in
(q − 1) (dotted line). The lower part of the figure shows
the difference between the Tsallis distribution (M) and
experiment (E). It is clear that the best fit is achieved
with the full Tsallis distribution, whereas, using the Boltz-
mann distribution the description is not good. Successive
corrections in (q − 1) improve the description. There is a
clear deviation at very low transverse momentum (below
0.5GeV) and also at higher values above 2.75GeV.

4 Thermodynamic quantities to first order in
(q − 1)

The particle density in Tsallis thermodynamics is given to
first order in (q − 1) by the following expression:

nB + (q − 1)n1, (21)

where nB is the standard Boltzmann result for the particle
density,

nB =
g

2π2
e

μ
T T 3a2K2(a), (22)

with a ≡ m/T , and the first-order expression in q − 1 is

T (GeV)
0.1 0.2

 / 
n

1
+

(q
-1

)n
B n

0.8

0.9

1

1.1

1.01

1.08

1.1

1.15

Fig. 4. The ratio of the particle density calculated to first
order in (q − 1) normalized to the particle density of a Tsallis
gas as a function of the temperature for different values of the
parameter q. The mass is taken as being the pion mass. The
values of the parameter q are 1.01 for the dashed line, 1.08 for
the dot-(long)dashed line, 1.1 for the dot-(short)dashed line
and 1.15 for the dotted line.

given by

n1 =
ge

μ
T T 3

4π2

[
− 6a2K2(a) − 2a3K1(a)

− 4a2bK2(a) + 3a3K3(a) + a4K2(a) + a2b2K2(a)

− 2a3bK1(a)
]
. (23)

In fig. 4 we show the ratio of the particle density to
first order in (q − 1) to the full particle density as given
by the Tsallis distribution, (nB + (q − 1)n1)/n for several
values of q indicated in the figure as a function of the
temperature T .

It can be seen that the expansion in (q−1) is excellent
if (q − 1) = 0.01 but rapidly deviates from the full Tsallis
distribution for larger values of q. Already for (q−1) ≈ 0.1
the deviations are of the order of 10% as can be seen from
fig. 4.

For comparison we show in fig. 5, the first-order ex-
pansion compared to the Boltzmann expression, (nB +
(q − 1)n1)/nB , again as a function of the temperature
T for several values of the parameter q. In this case the
deviations are most pronounced for small values of the
temperature.

Correspondingly, the energy density is obtained as

εB + (q − 1)ε1, (24)

εB =
ge

μ
T T 4

2π2
(3a2K2(a) + a3K1(a)), (25)

ε1 =
ge

μ
T T 4

4π2

[
9a3K3(a) + 4a4K2(a) + a5K1(a)

+ 2b
(
3a2K2(a) + a3K1(a) − 3a3K3(a) + a4K2(a)

)
b2

(
3a2K2(a) + a3K1(a)

) ]
. (26)
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Fig. 5. The ratio of the particle density calculated to first order
in (q − 1) normalized to the particle density of a Boltzmann
gas as a function of the temperature for different values of the
parameter q. The mass is taken as being the pion mass. The
values of the parameter q are 1.01 for the dashed line, 1.08 for
the dot-(long)dashed line, 1.1 for the dot-(short)dashed line
and 1.15 for the dotted line.
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Fig. 6. The ratio of the energy density calculated to first order
in (q − 1) normalized to the energy density of a Tsallis gas
as a function of the temperature for different values of the
parameter q. The mass is taken as being the pion mass. The
values of the parameter q are 1.01 for the dashed line, 1.08 for
the dot-(long)dashed line, 1.1 for the dot-(short)dashed line
and 1.15 for the dotted line.

In fig. 6 we show the ratio of the energy density to first
order in (q − 1) to the full energy density as given by the
Tsallis distribution, (εB+(q−1)ε1)/ε for several values of q
indicated in the figure as a function of the temperature T .

Again, as noted previously for the particle density,
it can be seen that the expansion in (q − 1) is excel-
lent if (q − 1) = 0.01 but rapidly deviates from the full
Tsallis distribution for larger values of q. Also here, for
(q−1) ≈ 0.1 the deviations are of the order of 20% as can
be seen from fig. 6. For comparison we show in fig. 7, the

T (GeV)

0 0.05 0.1 0.15 0.2

B
∈

 / 1
∈

+
(q

-1
)

B
∈

0

5

1.01

1.08
1.1

1.15

Fig. 7. The ratio of the energy density calculated to first order
in (q−1) normalized to the energy density of a Boltzmann gas
as a function of the temperature for different values of the
parameter q.
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 / 
P
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+

(q
-1

)P
B

P

0.4
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1
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1.01

1.08

1.1

1.15

Fig. 8. The ratio of the pressure calculated to first order in
(q−1) normalized to the pressure of a Tsallis gas as a function
of the temperature for different values of the parameter q.

first-order expansion compared to the Boltzmann expres-
sion, (εB +(q−1)n1)/εB , as a function of the temperature
T for several values of the parameter q. As in the previous
case the deviations are most pronounced for small values
of the temperature. Finally, the pressure is given by

PB + (q − 1)P 1, (27)

PB =
ge

μ
T T 4a2K2(a)

2π2
, (28)

P 1 =
ge

μ
T T 4

4π2

[
a4K2(a) + 3a3K3(a)

− 2a3bK3(a) + a2b2K2(a) + 2a2bK2(a)
]
. (29)

In fig. 8 we show the ratio of the pressure to first or-
der in (q − 1) to the full pressure as given by the Tsallis
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Fig. 9. The ratio of the pressure calculated to first order in (q−
1) normalized to the pressure of a Boltzmann gas as a function
of the temperature for different values of the parameter q.

distribution, (PB + (q − 1)P 1)/P for several values of q
indicated in the figure as a function of the temperature T .

Again, as noted previously, it can be seen that the
expansion in (q−1) is excellent if (q−1) = 0.01 but rapidly
deviates from the full Tsallis distribution for larger values
of q. Also here, for (q − 1) ≈ 0.1 the deviations are of
the order of 20% as can be seen from fig. 8. Again, we
show in fig. 9, the first-order expansion compared to the
Boltzmann expression, (PB +(q−1)P 1)/PB , as a function
of the temperature T for several values of the parameter q.
In this case the deviations are most pronounced for small
values of the temperature.

The entropy density can be obtained from the above
expressions by using the thermodynamic relation

ε + P = Ts + μn (30)

and is not shown here.
Before closing the section, we comment about the va-

lidity of the present expansion up to the second order in
(q− 1). As we have already seen, for truncation of the ex-
pansion up to the first order with pure Tsallis distribution,
one needs to satisfy two conditions, i.e.

|1 − q|E
T

< 1 (31)

and

|1 − q|
(

E

T

)2

< 2. (32)

With the thermodynamically consistent Tsallis dis-
tribution, the second condition turns out to be |q(1 −
q)|(E/T )2 < 2. For expansion up to second order in (q−1)
with modified Tsallis distribution, the condition becomes
q2|1 − q|(E/T )3 < 3.

Given the two values (the highest and the lowest) of
(q − 1) used in the present analysis, we want to put an
upper bound in E/T until which the expansion will be re-
liable. If (q − 1) = 0.15, eq. (31) gives E/T < 6.7 and the

modified condition for expansion up to first order gives
(E/T )2 < 11.59. That means for T = 0.1GeV, the expan-
sion will be reliable up to E ≈ 0.3GeV when (q−1) = 0.15.

If (q − 1) = 0.01, eq. (31) gives E/T < 100 and the
modified condition for expansion up to first order gives
(E/T )2 < 198. That means for T = 0.1GeV, the expan-
sion will be reliable up to E ≈ 1.4GeV when (q−1) = 0.01.
The permissible values of (q − 1) and E/T for reliable ex-
pansion up to the second order in (q − 1) are shown to
reside inside the smaller area filled with slanted lines. This
is shown in fig. 10.

Hence, we conclude from the above discussion that the
smaller the q value the more reliable the expansion be-
comes.

5 Inclusion of flow to first order in (q − 1)

In order to see how the inclusion of flow could improve
the description of the transverse momentum distributions
obtained in Pb-Pb collisions, we have included a constant
flow velocity, v. Assuming space-like freeze-out surface,
the invariant yield is given by (see appendix for the deriva-
tion),

1
pT

dN

dpT dy
=

gV

(2π)2{
2T [rI0(s)K1(r) − sI1(s)K0(r)]

− (q − 1)Tr2I0(s)[K0(r) + K2(r)]
+ 4(q − 1)TrsI1(s)K1(r)
− (q − 1)Ts2K0(r)[I0(s) + I2(s)]

+
(q − 1)

4
Tr3I0(s)[K3(r) + 3K1(r)]

−3(q − 1)
2

Tr2s[K2(r) + K0(r)]I1(s)

+
3(q − 1)

2
Ts2r[I0(s) + I2(s)]K1(r)

− (q − 1)
4

Ts3[I3(s) + 3I1(s)]K0(r)
}

, (33)

where

r ≡ γmT

T
(34)

s ≡ γvpT

T
. (35)

In(s) and Kn(r) are the modified Bessel functions of the
first and second kind. Now, in this formula, the freeze-
out surface has been considered to be space-like and so
the integration over the freeze-out surface turns out to
be trivial. For a more detailed treatment of the freeze-out
surface in this context, the readers are referred to ref. [34].

The comparison between model and experiment is
quite good with notable deviations at small values of
the transverse momentum pT and again above values of
2.5GeV (see fig. 11). These could easily be attributed to
the coarse way of treating transverse flow. More detailed
investigations have been carried out in [22].
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Fig. 10. (Colour on-line) The region of validity for the expan-
sion in (q−1) up to second order. The area under the solid line
denotes the region where only the condition |1 − q|E/T < 1 is
satisfied. The common overlapped area (i.e. the area under the
dotted line) depicts the region within which all the conditions
for expansion up to second order are satisfied.
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Fig. 11. Fits to the normalized differential π− yields as mea-
sured by the ALICE collaboration in (0–5)% Pb-Pb collisions
at

√
sNN = 2.76 TeV [10]. The fit given by the dashed line rep-

resents the Tsallis distribution including flow keeping terms to
first order in (q − 1). The flow velocity is fixed at β = 0.609,
with T = 146MeV, q = 1.030 and the radius of the volume is
R = 29.8 fm. The solid line is the Tsallis distribution without
flow as given in fig. 3. The lower part of the figure shows the
difference between model (M), i.e. Tsallis with flow up to first
order in (q − 1), and experiment (E) normalized to the model
(M) values.

6 Summary and conclusion

The Tsallis distribution describes extremely well the
transverse momentum distributions in p-p collisions at
high energies. All fits performed so far show that the pa-
rameter q is always close to 1. In view of this, we have
presented in this paper a series expansion of quantities rel-
evant in the analysis of high-energy physics in (q−1). The
Tsallis distribution itself has been obtained to second or-
der in (q−1). A rough comparison with experimental data
has been done for the transverse momentum distributions
obtained in p-p collisions. In the case of Pb-Pb collisions
we have given an estimate using flow with a fixed flow ve-
locity. In most cases the series expansion turns out not to
be a useful description of transverse momentum distribu-
tions but it could be useful in analyses where a comparison
and detailed investigation is needed when comparing the
Tsallis and the Boltzmann distributions. Furthermore, a
systematic study of the identified particle yield due to p-p
and heavy-ion collision at RHIC and LHC has been done
in [35] where the flow formula (eq. (33)) has been used to
fit the spectra.

The authors would like to thank Dr. Prakhar Garg, IIT Indore
for useful discussions and help during the preparation of the
manuscript. We thank the referees for their helpful comments
which improved the paper.

Appendix A. Derivation of eq. (13) and
eq. (14)

The result quoted in eq. (13) can be obtained by a change
of variable from pT to x which is defined by

x1 ≡ 1 + (q − 1)
mT − μ

T
. (A.1)

This leads to the following integral:

dN

dy

∣∣∣∣
y=0

=
∫ ∞

0

dpT
dN

dpT dy

∣∣∣∣
y=0

=
gV

(2π)2

∫ ∞

0

dpT pT mT

×
[
1 + (q − 1)

mT − μ

T

]− q
q−1

=
gV

(2π)2
T

q − 1

∫ ∞

a

dx1 x
− q

q−1
1

[
x1 − 1
q − 1

T + μ

]2

,

(A.2)

with

a ≡ 1 + (q − 1)
m − μ

T
. (A.3)
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This is an elementary integral over a polynomial func-
tion. The result is

dN

dy

∣∣∣∣
y=0

=
gV

(2π)2

[
1 + (q − 1)

m − μ

T

]− 1
q−1

{
T 3

(2q − 3)(q − 2)

[
2 − (q − 2)

(
m − μ

T

)2

+ 2
m − μ

T

]

− 2
T 2μ

q − 2

[
1 +

m − μ

T

]
+ Tμ2

}
. (A.4)

This makes it possible to express the volume V in terms
of dN

dy |y=0 from eq. (13) in the text. Replacing the volume
term in eq. (12) in terms of eq. (A.4), we get eq. (14).

Appendix B. Expansion in (q − 1) of Tsallis
distribution

The Taylor expansion is done efficiently by the following
change of variables:

q − 1 ≡ x;
E − μ

T
≡ Φ (B.1)

1 + (q − 1)
E − μ

T
≡ 1 + xΦ ≡ f(x) (B.2)

− q

q − 1
= −1 + x

x
≡ g(x). (B.3)

The relevant distribution function can then be written as

[
1 + (q − 1)

E − μ

T

]− q
q−1

= [1 + xΦ]−
1+x

x

= f(x)g(x)

= F(x). (B.4)

Expanding F(x) in Taylor series about x = 0, we get

F(x = 0) = e−Φ (B.5)
dF(x)

dx

∣∣∣∣
x=0

=
1
2
(−2 + Φ)Φe−Φ (B.6)

d2F(x)
dx2 x=0

=
Φ2

12
(
24 − 20Φ + 3Φ2

)
e−Φ, (B.7)

for O(x0), O(x) and O(x2), respectively. The final results
can be summarized in the following equation:

[
1 + (q − 1)

E − μ

T

]− q
q−1

� e−
E−μ

T

+ (q − 1)
1
2

E − μ

T

(
−2 +

E − μ

T

)
e−

E−μ
T

+
(q − 1)2

2!
1
12

[
E − μ

T

]2

×
[
24 − 20

E − μ

T
+ 3

(
E − μ

T

)2
]

e−
E−μ

T

+ . . . . (B.8)

For completeness we also quote the following result:

[
1 + (q − 1)

E − μ

T

]− 1
q−1

� e−
E−μ

T

+ (q − 1)
1
2

(
E − μ

T

)2

e−
E−μ

T

+
(q − 1)2

2!
1
12

[
E − μ

T

]2

×
[
−8

(
E − μ

T

)
+ 3

(
E − μ

T

)2
]

e−
E−μ

T

+ . . . . (B.9)

Appendix C. Tsallis thermodynamics

Appendix C.1. Particle number density n

Up to O(q − 1), the number density can be written as

n =
g

(2π)3

∫
d3p

[
e−

E−μ
T + (q − 1)

E − μ

2T(
−2 +

E − μ

T

)
e−

E−μ
T

]
. (C.1)

We define

p2 + m2 = E2;
E

T
= ω,

m

T
= a,

μ

T
= b. (C.2)

And, hence,

n = nB +
g(q − 1)e

μ
T T 3

4π2

∫
dω ω

(
ω2 − a2

) 1
2

(
−2ω + 2b + ω2 + b2 − 2ωb

)
e−ω

n = nB +
g(q − 1)e

μ
T T 3

4π2

[
− 6a2K2(a) − 2a3K1(a)

− 4a2bK2(a) + 3a3K3(a) + a4K2(a) + a2b2K2(a)

− 2a3bK1(a)
]
. (C.3)

Here the following form of the modified Bessel function of
second kind [45] is used:

Kn(a) =
2n−1(n − 1)!
(2n − 2)!an

∫ ∞

a

dω ω(ω2 − a2)n− 3
2 e−ω. (C.4)
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On the other hand, by using Boltzmann Statistics, one
obtains

nB =
ge

μ
T T 3a2K2(a)

2π2
. (C.5)

Appendix C.2. Pressure

To first order in (q − 1) the pressure is given by:

P =
g

(2π)3

∫
d3p

p2

3E

[
e−

E−μ
T + (q − 1)

E − μ

2T(
−2 +

E − μ

T

)
e−

E−μ
T

]
. (C.6)

Using the same definitions as in eq. (C.2), we get

P = PB +
g(q − 1)e

μ
T T 4

12π2

∫
dω

(
ω2 − a2

) 3
2

(
−2ω + 2b + ω2 + b2 − 2ωb

)
e−ω

= PB +
g(q − 1)e

μ
T T 4

4π2

[
a4K2(a) + 3a3K3(a)

− 2a3bK3(a) + a2b2K2(a) + 2a2bK2(a)
]
. (C.7)

Using eq. (C.2) along with eq. (C.4) as well as another
representation of the modified Bessel function,

Kn(a) =
2nn!

(2n)!an

∫ ∞

a

dω(ω2 − a2)n− 1
2 e−ω. (C.8)

Equation (C.4) can be obtained from eq. (C.8) by dint
of partial integration. The Boltzmann pressure density is,
similarly, given by

PB =
ge

μ
T T 4a2K2(a)

2π2
. (C.9)

Appendix C.3. Energy density ε

ε =
g

(2π)3

∫
d3pE

[
e−

E−μ
T + (q − 1)

E − μ

2T(
−2 +

E − μ

T

)
e−

E−μ
T

]
. (C.10)

Using eq. (C.2) along with eq. (C.4),

ε = εB +
g(q − 1)e

μ
T T 4

4π2

[
9a3K3(a) + 4a4K2(a) + a5K1(a)

+ 2b
(
3a2K2(a) + a3K1(a) − 3a3K3(a) + a4K2(a)

)
b2

(
3a2K2(a) + a3K1(a)

) ]
, (C.11)

with

εB =
ge

μ
T T 4

2π2
(3a2K2(a) + a3K1(a)). (C.12)

Appendix C.4. Checking thermodynamic consistency

We know that for thermodynamic variables n and P at
non-zero μ, we have

n = ∂P/∂μ (C.13)

nB + (q − 1)n1 + . . . = ∂PB/∂μ

+ (q − 1)∂P 1/∂μ + . . . , (C.14)

where the superscripts denote the order of (q − 1) in the
expansion. Since the terms in the expansion are linearly
independent, the identity given by eq. (C.13) is to be sat-
isfied at every order of (q−1). Since our expansion is up to
O(q−1), we will check the identity for that order now. Re-
arranging and reordering the O(q − 1) terms in eq. (C.3),
we get

n1 =
ge

μ
T T 3

4π2

[
a3K3(a) + a4K2(a)

− 4a2bK2(a) + 2a3b(K3(a) − K1(a))
− 2a3bK3(a) + a2b2K2(a) − 6a2K2(a)

+ 2a3(K3(a) − K1(a))
]
. (C.15)

Using the recursion relation for the modified Bessel’s func-
tions,

Kn+1(a) − Kn−1(a) =
2n

a
Kn(a) , (C.16)

n1 =
g(q − 1)e

μ
T T 3

4π2

[
a3K3(a) + a4K2(a)

+ 4a2bK2(a) − 2a3bK3(a)

+ a2b2K2(a) + 2a2K2(a)
]

=
∂P 1

∂μ
. (C.17)

Hence, proved.

Appendix D. Momentum distribution

The invariant particle yield is given by,

E
dN

d3p
= CE

[
1 + (q − 1)

E − μ

T

]− q
q−1

, (D.1)

where C = gV
(2π)3 . Assuming q − 1 � 1 we are to expand it

in Taylor series. Let

dN

pT dpT dydφ
= CE

[
e−Φ +

x

1!
1
2

(−2 + Φ)Φe−Φ

+
x2

2!
Φ2

12
(
24 − 20Φ + 3Φ2

)
e−Φ + · · ·

]
,

(D.2)

where y is rapidity and φ is the azimuthal angle of emis-
sion. Now, parameterizing energy E in terms of rapidity y
i.e. putting E = mT cosh y and integrating over y, we get
eq. (19).
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Appendix E. Flow in Tsallis distribution

We use the following ansatz (in cylindrical polar coordi-
nates) for introducing flow inside our calculations:

pμ = (mT cosh y, pT cos φ, pT sin φ,mT sinh y) (E.1)
uμ = (γ cosh ζ, γv cos α, γv sin α, γ sinh ζ), (E.2)

where (ζ)y is the space-time rapidity (rapidity) of fluid-
element (particles) and v is the velocity of fluid. Now,
to include flow inside the Tsallis distribution, we replace
E → pμuμ assuming temperature to be scalar. The dot
product, then, becomes

pμuμ = γmT cosh(y − ζ) − γvpT cos(φ − α). (E.3)

Now putting eq. (E.3) in eq. (18) up to O(q − 1) and
integrating over φ and ζ, we get

1
pT

dN

dpT dy
=

gV

(2π)2{
2T [rI0(s)K1(r) − sI1(s)K0(r)]

− (q − 1)Tr2I0(s)[K0(r) + K2(r)]
+ 4(q − 1)TrsI1(s)K1(r)
− (q − 1)Ts2K0(r)[I0(s) + I2(s)]

+
(q − 1)

4
Tr3I0(s)[K3(r) + 3K1(r)]

−3(q − 1)
2

Tr2s[K2(r) + K0(r)]I1(s)

+
3(q − 1)

2
Ts2r[I0(s) + I2(s)]K1(r)

− (q − 1)
4

Ts3[I3(s) + 3I1(s)]K0(r)
}

, (E.4)

where

r ≡ γmT

T
(E.5)

s ≡ γvpT

T
(E.6)

In(s) is the modified Bessel function of first kind.
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