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Abstract. We outline a separable matrix ansatz for the potentials in effective field theories of non-
relativistic two-body systems with short-range interactions. We use this ansatz to construct new fixed
points of the renormalisation-group equation for these potentials. New fixed points indicate a much richer
structure than previously recognized in the RG flows of simple short-range potentials.

1 Introduction

The renormalisation group (RG) has proved to be a pow-
erful tool for elucidating the scale dependences of systems
in many areas of physics [1]. (For more recent reviews, see
refs. [2,3].) These systems include ones consisting of two
or three particles at low enough energies that the motion
can be treated as non-relativistic. In the case of two-body
scattering by short-range forces, the existence of a nontriv-
ial fixed point of the RG was first noted by Weinberg [4],
although he did not go on explore the RG flow in its vicin-
ity. This idea was further developed in refs. [5–7], and a
complete RG analysis of the flow around this fixed point
was carried out in ref. [8].

This fixed point describes a system in the “unitary
limit”, where the scattering length is infinite. A system
with a large scattering length compared to the scales of
the underlying physics can be described in terms of per-
turbations around this point. The resulting expression for
the scattering amplitude is just given by the effective-
range expansion [9]. This provides a systematic organizing
scheme, or “power counting” for an effective field theory
(EFT) that has been applied to nucleon-nucleon scatter-
ing and to ultracold atoms in traps. A review of the RG
approach in nuclear physics can be found in ref. [10].

The RG for two-body scattering is expected to have
other fixed points. For example, there is a trivial one, cor-
responding to weakly interacting systems where the scat-
tering can be treated perturbatively [8]. The existence of
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further, nontrivial fixed points has been conjectured [11]
and hints of them were seen in a functional RG analysis
by Harada and Kubo [12,13], but explicit forms for them
were not found.

Here we present a systematic method for constructing
an infinite number of possible fixed points of the RG for
two-body scattering by short-range forces. For selected ex-
amples, we study the flows close to them, which determine
the power counting rules for EFTs expanded around these
points. We also construct some of the renormalised trajec-
tories that flow from one fixed point to another. Each of
the new fixed points has at least two unstable directions
and so two or more parameters would need to be “fine
tuned” for a physical system to be described by it.

2 RG flow

Following the approach of ref. [8], a convenient starting
point is the Lippmann-Schwinger integral equation for the
K-matrix for S-wave two-body scattering,

K(k′, k, p) = V (k′, k, p, Λ) + 2M P∫
d3l θ(Λ − l)

(2π)3
V (k′, l, p, Λ)K(l, k, p)

p2 − l2
, (1)

where P stands for the principal value, M is the reduced
mass, and p =

√
2ME is the on-shell relative momen-

tum. The integral over the momentum l of the intermedi-
ate state has been regulated by cutting it off at l = Λ.
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The solution to eq. (1) is the fully off-shell K-matrix,
whose matrix elements depend on the initial and final off-
shell momenta, k and k′. On-shell observables can be ob-
tained from it by setting k = k′ = p. For example, the on-
shell K-matrix, K(p) = K(p, p, p), is related to the phase
shift δ(p), and hence to the effective-range expansion, by

1
K(p)

= − M

2π
p cot δ(p)

= −M

2π

(
−1

a
+

1
2
rep

2 + v2p
4 + . . .

)
. (2)

To obtain the RG equation, we first demand that the
solution to eq. (1) be independent of the cutoff Λ. From
the physical point of view it is not necessary to have a
cutoff-independent off-shell K-matrix. However, it is al-
ways possible to find an on-shell equivalent modification
of the potential such that the off-shell K-matrix is cutoff
independent. The obtained RG equation contains only the
potential, in contrast to the potential Vlow-k of Bogner et
al. [14], whose evolution equation involves the scattering
matrix as well. The resulting potential V (k′, k, p, Λ) then
has a well-defined evolution with Λ [8],

∂V

∂Λ
=

M

π2
V (k′, Λ, p, Λ)

Λ2

Λ2 − p2
V (Λ, k, p, Λ). (3)

Next, we express all low-energy scales in units of Λ,
p̂ = p/Λ, etc., and we define the rescaled potential

V̂ (k̂′, k̂, p̂, Λ) =
M Λ

π2
V (Λk̂′, Λk̂, Λp̂, Λ). (4)

This converts eq. (3) into the form of an RG equation,

Λ
∂V̂

∂Λ
= k̂′ ∂V̂

∂k̂′
+ k̂

∂V̂

∂k̂
+ p̂

∂V̂

∂p̂
+ V̂ (k̂′, k̂, p̂, Λ)

+V̂ (k̂′, 1, p̂, Λ)
1

1 − p̂2
V̂ (1, k̂, p̂, Λ). (5)

This has a similar structure to the RG equations that
govern the evolution of interactions in other areas of
physics [1]. In this rescaled equation, the cutoff Λ, which
can be thought of as the highest acceptable low-energy
scale, is the only dimensioned quantity. The scaling of the
potential with Λ is directly related to the dependence on
the original low-energy variables, p, k and k′, as can be
seen from the logarithmic derivatives on the right-hand
side of eq. (5).

As Λ → 0, the solutions to eq. (5) tend to fixed points,
independent of Λ1. This is because, for low enough values
of Λ, all memory of the scales of the underlying physics
is lost and Λ becomes the only scale controlling the de-
pendence of the potential on energy and momentum. Ex-
pressed in units of Λ, the corresponding rescaled potential
becomes a constant.

1 In some cases the flows can drive the potential to infinity at
a finite value of Λ. In such cases it is better to follow the flow of
the inverse of the potential, which simply passes through zero
and continues towards a fixed point.

These fixed points describe scale-invariant systems.
For a system that lies close to one of these points, we
can use the RG flow near that point to define a system-
atic expansion of the potential in powers of the low-energy
scales. The resulting power counting can be used to organ-
ise the terms in a low-energy effective theory. In ref. [8],
two fixed points were identified. One is just the trivial
point, V̂ = 0. This is a stable point since all the perturba-
tions around it are irrelevant, that is, they flow towards it
as Λ → 0. In fact, their scaling with Λ follows from naive
dimensional analysis and the resulting expansion can be
used to describe weakly interacting systems.

The second fixed point is the momentum-independent
one that describes scattering in the unitary limit. As de-
scribed in ref. [8], this is an unstable point, with one rel-
evant perturbation which corresponds to the scattering
length a. The expansion around this point can be used
to describe systems where the scattering length is much
larger than the range of the forces. In the power counting
that controls this expansion, the terms are promoted by
two orders relative to naive dimensional analysis [8]. The
coefficients of these terms are directly related to those of
the effective-range expansion, and the counting reflects
the enhancement of the corresponding terms in scattering
amplitude by a factor of 1/a2.

Potentials corresponding to fine-tuned systems with
1/a = 0 lie on a critical surface [1,2] and flow towards
the unitary fixed point as Λ → 0. If 1/a is nonzero, then
the relevant perturbation drives the flow away from the
unitary fixed point for Λ � 1/a and towards the trivial
point as Λ → 0. This reflects the fact that at very low
energies, scattering can be treated perturbatively, at least
so long as the scattering length is finite. The RG flow line
linking the two fixed points is known as a “renormalised
trajectory” [1,2]. The theory corresponding to this tra-
jectory is renormalisable, both perturbatively and non-
perturbatively, in terms of a single coupling constant (in
this case, the coefficient of the energy- and momentum-
independent contact interaction).

3 More fixed points

To find further fixed points of the two-body system, we
consider here potentials that can be expressed as bivari-
ate polynomials in the off-shell momenta k and k′, whose
coefficients are functions of the on-shell energy p2. The
structure of the nonlinear term in the RG equation (5)
means that no approximation is involved in choosing this
ansatz. It allows us not only to identify the fixed points
but also to follow the RG flow lines in their vicinity. These
include the renormalised trajectories which run from one
fixed point to another.

If we restrict our potentials to be Hermitian, as these
are of most interest, then our ansatz for them is conve-
niently written in a separable matrix form,

V (k′, k, p, Λ) = χT(k′)ω(p, Λ)χ(k), (6)

where ω is an N × N , matrix. Here χ(k) is defined as a
column vector of powers of momentum and χT(k) is its
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transpose,
χT(k) =

(
k2n1 , . . . , k2nN

)
, (7)

where S̄N = {n1, . . . , nN} is a set of N non-negative inte-
gers. The K-matrix for this potential has a similar sepa-
rable form,

K(k′, k, p) = χT(k′)κ(p)χ(k). (8)

From the Lippmann-Schwinger equation (1), we find
that κ(p) can be related to ω(p, Λ) by

κ(p)−1 = ω(p, Λ)−1 − G(p, Λ), (9)

where G(p, Λ) is the matrix

G(p, Λ) = 2M P
∫

d3l θ(Λ − l)
(2π)3

χ(l)χT(l)
p2 − l2

. (10)

The elements of this can be written as

Gij(p, Λ) =
M

π2
Ini+nj

(p, Λ), (11)

where the regularised loop integrals are

In(p, Λ) = −
n∑

m=0

Λ2m+1p2(n−m)

2m + 1
+

p2n+1

2
ln

Λ + p

Λ − p
. (12)

The rescaled version of the potential (6) can be written
analogously as

V̂ (k̂′, k̂, p̂, Λ) = χT(k̂′) ω̂(p̂, Λ)χ(k̂), (13)

where the elements of ω̂(p̂, Λ) are

ω̂ij(p̂, Λ) =
M

π2
Λ2(ni+nj)+1ωij(Λp̂, Λ). (14)

Inserting this into the RG equation (5), we find that the
evolution of ω̂(p̂, Λ) with Λ is governed by the equation

Λ
∂ω̂

∂Λ
= p̂

∂ω̂

∂p̂
+ 2D(SN ) ω̂ + 2 ω̂ D(SN )

+ω̂ + ω̂
χ(1)χ(1)T

1 − p̂2
ω̂, (15)

where D(SN ) is the diagonal matrix of the elements of SN .
This equation can be more easily solved if, following

ref. [15], it is rewritten as a linear equation for ω̂−1 (see
footnote2),

Λ
∂ω̂−1

∂Λ
= p̂

∂ω̂−1

∂p̂
− 2 ω̂−1D(SN )

−2D(SN ) ω̂−1 − ω̂−1 − χ(1)χ(1)T

1 − p̂2
. (16)

2 Further fixed points are obtained by considering non-
invertible ω matrices. We do not deal with that case here.

In this form, we can see that each of the elements of ω̂−1

satisfies an uncoupled RG equation,

Λ
∂

[
ω̂−1

]
ij

∂Λ
= p̂

∂
[
ω̂−1

]
ij

∂p̂

−(2ni + 2nj + 1)
[
ω̂−1

]
ij
− 1

1 − p̂2
, (17)

which can be integrated straightforwardly.
For any set of numbers SN , we can find a nontrivial

fixed-point solution, ω0(p̂), to eq. (16), whose elements
satisfy the ODEs

p̂
∂

[
ω̂−1

0

]
ij

∂p̂
= (2ni + 2nj + 1)

[
ω̂−1

0

]
ij

+
1

1 − p̂2
. (18)

This should satisfy the boundary condition that the ma-
trix ω be analytic in p̂2 as p̂ → 0 (or, in other words,
it should be analytic in the energy). Taking into account
eq. (9) we obtain for the elements of the resulting matrix

[
ω̂−1

0

]
ij

= Cij p̂2ni+2nj+1 + Îni+nj
(p̂), (19)

where Cij are arbitrary and we have introduced rescaled
versions of the loop integrals (12),

În(p̂) =
1

Λ2n+1
In(Λp̂, Λ)

= −
n∑

m=0

p̂2(n−m)

2m + 1
+

p̂2n+1

2
ln

1 + p̂

1 − p̂
. (20)

Demanding analyticity of the potential in p2 at p2 = 0
means that we have to take Cij = 0. When we undo the
rescaling of eq. (14), we find that, in physical units,

ω−1
0 (p, Λ) = G(p, Λ). (21)

From eqs. (9) and (21) we see that each fixed point
corresponds to a K-matrix with vanishing κ(p)−1 or, pro-
vided n1 = 0, infinite scattering length. For example, the
case N = 1 and S1 = {0} gives the unitary fixed point as
in ref. [8],

V̂U (p̂) =
1

Î0(p̂)
= −

[
1 − p̂

2
ln

1 + p̂

1 − p̂

]−1

. (22)

Adding an energy-independent perturbation to
[
ω̂−1

0

]
11

leads to a solution to eq. (17) with the form

[
ω̂−1

]
11

=
α

Λ
+ Î0(p̂). (23)

The corresponding K-matrix is

K(p) =
π2

Mα
, (24)

and so the parameter α is related to the physical scattering
length by

α =
π

2a
. (25)
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This perturbation grows as Λ is lowered and so it is a
relevant one. It defines a renormalised trajectory which
consists of the potentials

V̂ (p̂, Λ) =
[

α

Λ
− 1 +

p̂

2
ln

1 + p̂

1 − p̂

]−1

. (26)

This flows from unitary fixed point for Λ � 1/a to the
trivial one as Λ → 0. All other perturbations around the
unitary point are irrelevant [8] and so for α = 0 the other
perturbations define the critical surface of potentials that
flow into this point as Λ → 0.

The more general ansatz described above allows us to
construct an infinite number of other fixed points using
different sets SN of powers of the off-shell momenta. The
simplest of these points have a one-term-separable struc-
ture. For example, the one with N = 1 and S1 = {1} is

V̂S(k̂′, k̂, p̂) =
k̂′2k̂2

Î2(p̂)

= −k̂′2
[
1
5

+
p̂2

3
+ p̂4 − p̂5

2
ln

1 + p̂

1 − p̂

]−1

k̂2.

(27)

The solution to the RG equation (16),

V̂ (k̂′, k̂, p̂, Λ) = k̂′2
[

γ

Λ5
+

η p̂2

Λ3
+

σ p̂4

Λ
+ Î2(p̂)

]−1

k̂2,

(28)
shows that this fixed point has three relevant perturba-
tions. This means that it would describe triply fine-tuned
systems, which makes it very unlikely to be realised in
practice. The potentials (28) that contain only these per-
turbations form a three-parameter family of renormalised
trajectories that run from V̂S to the trivial point.

At the same order in the off-shell momenta, there is
also a fixed point with N = 2 and S2 = {0, 1}:

V̂L(k̂′, k̂, p̂) =
(
1, k̂′2

) (
Î0(p̂) Î1(p̂)

Î1(p̂) Î2(p̂)

)−1 (
1

k̂2

)
. (29)

This is the simplest example of a fixed point that does not
have a one-term separable form. The existence of such a
point had been hinted at previously [11,12] but no explicit
expression for it was found. It has six relevant perturba-
tions, which can be seen in the potential,

V̂ (k̂′, k̂, p̂, Λ) =(
1, k̂′2

)

×

⎛
⎜⎜⎝

α

Λ
+ Î0(p̂)

β

Λ3
+

δ p̂2

Λ
+ Î1(p̂)

β

Λ3
+

δ p̂2

Λ
+ Î1(p̂)

γ

Λ5
+

ζ p̂2

Λ3
+

η p̂4

Λ
+ Î2(p̂)

⎞
⎟⎟⎠

−1

×
(

1

k̂2

)
, (30)

which satisfies the RG equation (16). The on-shell K-
matrix for this is

K(p) =
π2

M

γ + ζ p2 + η p4 − 2(β + δ p2)p2 + α p4

α(γ + ζ p2 + η p4) − (β + δ p2)2
. (31)

The fixed point describes the scale-free limit where all of
the parameters α, . . . , η vanish. However the correspond-
ing scattering amplitude is not uniquely defined until one
specifies how this limit is taken.

The renormalised trajectories that flow out of this fixed
point can be followed more easily by rewriting eq. (30) in
the form

V̂ (k̂′, k̂, p̂, Λ) =
(
1, k̂′2

)
det [ω(p̂, Λ)]

×

⎛
⎜⎜⎝

γ

Λ5
+

ζ p̂2

Λ3
+

η p̂4

Λ
+ Î2(p̂) − β

Λ3
− δ p̂2

Λ
− Î1(p̂)

− β

Λ3
− δ p̂2

Λ
− Î1(p̂)

α

Λ
+ Î0(p̂)

⎞
⎟⎟⎠

×
(

1

k̂2

)
, (32)

where

det [ω(p̂, Λ)]=
[(α

Λ
+Î0(p̂)

) (
γ

Λ5
+

ζ p̂2

Λ3
+

η p̂4

Λ
+Î2(p̂)

)

−
(

β

Λ3
+

δ p̂2

Λ
+ Î1(p̂)

)2
]−1

. (33)

In general these potentials run to the trivial fixed point.
For example, in the case that αγ − β2 is nonzero, the
determinant behaves for small Λ as

det [ω(p̂)] =
Λ6

αγ − β2
+ O(Λ7). (34)

As a result, all elements of the potential (32) vanish at
least linearly in Λ as Λ → 0.

In the more fine-tuned case where γ is nonzero but
αγ − β2 = 0, the determinant behaves as

det [ω(p̂)] =
Λ5

γÎ0(p̂)
+ O(Λ6), (35)

and all elements of the potential vanish except for V̂11. For
small Λ this has the form

V̂11(p̂, Λ) =
1

Î0(p̂)
+ O(Λ), (36)

which is just the unitary fixed point in the limit Λ → 0.
Finally, in the case that the only nonzero relevant pertur-
bation is α, we get a potential that runs to the separable
fixed point V̂S .
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The other perturbations around each of these fixed
points are all irrelevant. They involve either higher pow-
ers of the energy (p2) or different powers of the off-shell
momenta. The scaling of the former can be found easily
by adding additional energy-dependent terms to the po-
tentials just discussed. For the latter, we can use a more
general version of eq. (15) that contains all powers of k′2

and k2, not just the ones that appear in the fixed point.
Adding these perturbations leads to a critical surface for
each point, consisting of all potentials that flow to that
point as Λ → 0.

In cases such as S-wave nucleon-nucleon scattering
where the coefficients of the relevant perturbations are un-
naturally small, the potential lies close to the critical sur-
face for large cutoffs. As Λ is lowered the potential initially
runs towards the fixed point. Then, when Λ becomes com-
parable to the scales of the relevant perturbations (such
as 1/a), the flow deviates from the critical surface and
heads towards a renormalised trajectory that leads to a
different fixed point, generally the trivial one. (See, for
example, fig. 1 of ref. [8].)

4 Summary

In this paper we have outlined a separable matrix ansatz
for the potentials that arise in EFT descriptions of two-
body systems with short-range interactions. This provides
a tool for constructing new fixed points of the RG for these
systems, as well as the renormalised trajectories connect-
ing them. In particular we are able to construct a fixed
point whose existence has previously been only conjec-
tured. These new fixed points indicate a much richer struc-
ture than previously recognized in the RG flows of simple
short-range potentials. Each of them is unstable in at least
two directions and so a physical system described by one
of them would need to have fine-tuned values for at least
two parameters.
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