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Abstract. The density in the core of neutron stars can reach values of about 5 to 10 times nuclear matter
saturation density. It is, therefore, a natural assumption that hadrons may have dissolved into quarks under
such conditions, forming a hybrid star. This star will have an outer region of hadronic matter and a core of
quark matter or even a mixed state of hadrons and quarks. In order to investigate such phases, we discuss
different model approaches that can be used in the study of compact stars as well as being applicable to
a wider range of temperatures and densities. One major model ingredient, the role of quark interactions
in the stability of massive hybrid stars is discussed. In this context, possible conflicts with lattice QCD
simulations are investigated.

1 Introduction

The physics of neutron stars is one of the central areas
of research in nuclear astrophysics. Neutron stars rep-
resent a unique environment for investigating extremely
dense strongly interacting matter at relatively low tem-
peratures. This renders neutron star physics as an ideal
complement to the efforts using relativistic heavy-ion col-
lisions in the study of matter under extreme conditions. In
the latter case the fireball created in the collision zone has
a very high temperature, thus sampling a different regime
of QCD matter than neutron stars.

Using equations of state of purely hadronic matter,
typical maximum densities in the center of the stars range
from about 5 to 10 times nuclear matter saturation den-
sity. As these numbers correspond to close packing from
a purely geometrical point of view, it is very natural to
assume that at this point (and perhaps much earlier) the
baryons have dissolved into their quark components. Such
an object is termed hybrid star, i.e. a star with a hadronic
outer core surrounding a quark, or mixed hadron-quark,
inner region [1–11]. Depending on the equation of state
used to describe the quark phase, very different masses
and radii are obtained for stars when compared to a purely
baryonic star. We will discuss this issue in detail in the fol-
lowing sections.
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2 Modeling compact stars

In order to investigate the properties of hybrid stars, we
first introduce the formulation of the hadronic chiral mean
field (CMF) model. It is based on a SU(3) extension of
a sigma-omega chiral model in a non-linear realization
of chiral symmetry, including all lowest hadronic multi-
plets [12,13]. The advantage of such an approach is that
it also incorporates dynamic mass generation, which al-
lows for a realistic description of chiral symmetry restora-
tion, while being in very good agreement of nuclear and
astrophysics properties.

2.1 The hadronic model

The CMF model includes nucleons, hyperons as well as
non-strange and strange mesons. As in the usual relativis-
tic mean field approach, the baryons interact via meson
fields. In addition, in the CMF approach also the bary-
onic masses are largely generated by the interaction with
the scalar fields, except for a small explicit mass term.
The specific form of the potential of the scalar fields leads
to non-vanishing vacuum expectation values, thereby pro-
ducing a dynamic baryon mass via the baryon-meson cou-
pling, analogously to chiral sigma models.

The terms in the Lagrangian density relevant for the
following discussions read [12,13]

L = LKin + LInt + LSelf + LSB. (1)
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LKin contains the kinetic energy of the fields. The interac-
tion term LInt defines the linear interaction between me-
son fields and baryons. It reads explicitly

LInt = −
∑

i

ψ̄i [γ0(giωω + giφφ + giρτ3ρ) + M∗
i ] ψi. (2)

The baryons i interact with the vector mesons ω
(isoscalar), ρ (isovector), and φ (isoscalar with hidden
strangeness). The various coupling constants gBM are fit-
ted as discussed below based on SU(6) symmetry [12]. The
effective masses M∗

i are generated by the coupling of the
baryons to the scalar mesons, reading

M∗
i = giσσ + giδτ3δ + giζζ + M0i

. (3)

These expressions include couplings to the various scalar
fields, the isosclar σ, the isovector δ and the field with hid-
den strangeness ζ. The couplings are connected via SU(3)
relations [12].

The scalar fields have self-interaction terms that are
responsible for generating non-vanishing vacuum expecta-
tion values for the σ and ζ that, in quark language, cor-
respond to the scalar vacuum condensates of non-strange
and strange quarks, respectively. Using SU(3) invariant
terms for the interactions, the Lagrangian term is given
by

LSelf = −1
2

(
m2

ωω2 + m2
ρρ

2 + m2
φφ2

)

+ k0

(
σ2 + ζ2 + δ2

)
+ k1
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)2

+ k2

(
σ4

2
+

δ4

2
+ 3σ2δ2 + ζ4

)
+ k3(σ2 − δ2)ζ

+ k4 ln
(σ2 − δ2)ζ

σ2
0ζ0

+ g4

(
ω4 +

φ4

4
+ 3ω2φ2 +

4ω3φ√
2

+
2ωφ3

√
2

)
. (4)

Finally, an explicit symmetry breaking term that also gen-
erates masses for the pseudoscalar mesons is included

LSB = m2
πfπσ +

(√
2m2

kfk − 1√
2
m2

πfπ

)
ζ. (5)

The equations of motion for hadronic matter at zero or
finite temperature are determined from extremizing the
grand canonical potential

Ω/V = −LInt − LSelf − LSB − LV ac

∓T
∑

i

γi

(2π)3

∫ kFi

0

d3k ln
(
1 ± e−

1
T (E∗

i (k)−μ∗
i )

)
,

(6)

including a heat bath of quasiparticles. This model ap-
proach has been used in many applications in relativis-
tic heavy-ion physics [14,15], nuclear structure calcula-
tions [16,17], as well as astrophysical studies [18,19]. Fig-
ure 1 shows a sample of these equations of state at van-
ishing temperature [18]. Between the equation of state of

Fig. 1. Equation of state of the CMF hadronic model at T =
0. Each curve shows the equation of state for different cases:
isospin symmetric nuclear matter and star matter assuming
different degrees of freedom.

nucleonic matter and the relatively soft equation of state
for isospin symmetric matter, the figure also incorporates
results taking into account the hyperon states as well as an
extension of the calculation that also includes the spin-3/2
decuplet of baryon resonances. As can be observed, adding
further degrees of freedom leads to a softening of the equa-
tion of state [18,19]. Note that for the isospin symmetric
nuclear matter calculation net strangeness is set to zero,
whereas in general stellar matter is calculated assuming
beta equilibrium and charge neutrality.

2.2 Hybrid stars

As has been argued in the introduction, it is very natural
to assume that, at some density, quark degrees of free-
dom appear inside compact stars. Before discussing the
extension of the hadronic model to include quarks, let us
look at some general aspects of hybrid star solutions. For
this purpose, we combine an often-used hadronic model
(G300 [20]) with a simple MIT bag quark equation of
state [21,22]. In this approach we can adjust the quark
phase bag pressure B. The choice of B essentially deter-
mines at what chemical potential the phase transition to
quark matter occurs and, connected to this, it determines
the strength of the first-order phase transition.

Figure 2 shows that for larger values of the bag pres-
sure the transition point is shifted to higher densities and
the jump in the energy density also significantly increases.
Both of these have direct consequences for hybrid star
solutions. The curves in fig. 3 are the solutions of the
Tolman-Oppenheimer-Volkov (TOV) equations for static
spherically symmetric stars [23,24] for this set of equa-
tions of state. The kinks in the curves in fig. 2 mark the
onsets of the quark phase. The general effect of this insta-
bility is a reduction of the maximum star masses as well
as a shift of the radius of these stars to smaller values.
In the case of very strong transitions, the onset can even
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Fig. 2. Equation of state of the G300/MIT hybrid model.
The various curves correspond to different choices of the vac-
uum pressure with values B1/4 = 160, 165, 167.5, 170, 180MeV
(larger values generating later transitions).

Fig. 3. TOV solutions for the equations of state shown in fig. 2.
Strong first-order phase transitions with large latent energies
lead to stellar instability when quarks appear.

lead to a removal of all stars with a quark core from the
range of stable solutions. This is the case for the equation
of state generated with a bag pressure B = (180MeV)4.
For some cases, also two maxima develop, which would
correspond to twin star solutions, meaning two branches
of stable hadronic and hybrid stars, respectively [25–29].

This general behaviour can be modified by including
interactions between the quarks as shown in fig. 4. Fol-
lowing the simplified procedure outlined in ref. [30], the
modified quark phase is described by the grand canonical
potential

Ωq = − 3
4π2

μ2
[
(1 − 2αs/π)μ2 − m2

s

]
+ B. (7)

Here, the additional term proportional to the strong in-
teraction coupling strengh αs contains the repulsive in-
teraction between the quarks. As was pointed out in
ref. [30], adjusting the interaction strength accordingly,
the transition between quarks and hadrons becomes weak,

Fig. 4. As fig. 3, but effectively including a repulsive inter-
action to the quark equation of state. Results for coupling
strengths α = 0.1, 0.3, 0.7 are shown. Large repulsion leads
to larger star masses and weaker phase transitions.

effectively leading to similar masses and radii for the
hadronic and hybrid stars. In this way, a strong repul-
sive quark interaction helps to stabilize hybrid stars. A
general discussion of the stability of hybrid stars, using
model-independent parameterized equations of state, can
be found in ref. [31]. However, this procedure of stabiliz-
ing hybrid stars creates different problems, as it will be
briefly discussed in sect. 3.

2.3 Unifying hadron and quark models

As the model approach under discussion is supposed to
be (and has been) applied to a large range of temper-
atures and densities, including conditions that exist in
the fireball of heavy-ion collisions, its general phase struc-
ture should be in accordance with the known features of
the QCD phase diagram. The well-established properties
are i) bound nuclear matter, i.e. a first-order liquid-gas
phase transition at the nuclear matter saturation density
of about 0.15 fm−3 and ii) a smooth crossover for vanish-
ing net baryon density at a temperature of about 160MeV
as it has been unambiguously established in lattice QCD
simulations [32,33]. Thus, a simple connection of two sep-
arate models of the hadronic and the quark phases, as it
was used in the previous section, is not sufficient to ful-
fil these requirements. Connecting both equations of state
will necessarily lead to a first-order transition for all condi-
tions (except perhaps for a single point, i.e. chemical po-
tential, by fine-tuning parameters). Therefore, a unified
model including hadronic and quark degrees of freedom
is required. In [5] such an approach has been developed
for the first time (see also refs. [34,35]). In this formula-
tion, quarks and baryons interact via the scalar and vector
meson condensates. In addition, in analogy to the quark
Polyakov loop—NJL (PNJL) model, an effective field Φ
is introduced that effectively describes the order param-
eter for the deconfinement transition [36,37]. This field
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Fig. 5. Phase diagram of the quark-extended CMF model.
Apart from the nuclear liquid-gas first-order phase transition,
the chiral/deconfinement transition exhibits a critical end-
point at small chemical potentials. Results for isospin sym-
metric and star matter are shown.

has a potential energy term, which is fitted in order to re-
produce the thermodynamic and Polyakov loop measure-
ments in lattice QCD simulations. A simplified potential
of this type was proposed in ref. [5]

U = (a0T
4 + a1μ

4 + a2T
2μ2)Φ2

+ a3T
4
0 log(1 − 6Φ2 + 8Φ3 − 3Φ4). (8)

The constants a0 and a3 were fitted to obtain a reasonable
agreement with lattice results at zero chemical potential.
The potential term U also contains terms that depend on
the chemical potential. They can be adjusted to gener-
ate a first-order phase transition at zero temperature to
a deconfined state at a chosen baryon chemical potential.
Further, they can be adjusted to lead to a phase diagram
with a critical end-point of the first-order phase transition
line that is in agreement with a particular lattice QCD
calculation [38]. The resulting phase diagram of such an
approach is shown in fig. 5. The figure exhibits a transi-
tion line with the end-point at small chemical potential.
It also shows the nuclear liquid-gas phase transition. The
two slightly shifted lines mark the difference of the tran-
sition for isospin-symmetric and star matter.

Another ingredient of this model approach is the cou-
pling of the Φ field to the masses of the baryons and
quarks. This is a simple phenomenological way of ensuring
that, for small value of the field, quarks are not populated
and vice versa in the case of baryons. The effective masses
read explicitly (for details, see ref. [5]):

M∗
B = gBσσ + gBδτ3δ + gBζζ + M0B

+ gBΦΦ2, (9)
M∗

q = gqσσ + gqδτ3δ + gqζζ + M0q
+ gqΦ(1 − Φ). (10)

With this model at hand, it is now possible to calcu-
late hybrid stars as well as quark-hadron matter at high
temperatures and/or densities in general. Using the model
parameters as given in refs. [5,39], the equation of state
of star matter can be determined. The result for vanish-
ing temperature is shown in fig. 6. As can be seen in this

Fig. 6. Equation of state for star matter in the quark-extended
CMF model at zero temperature. Two assumptions, local
(Maxwell) and global (Gibbs) charge neutrality, are consid-
ered.

Fig. 7. Mass-radius diagram of the quark-hadron model from
sect. 2.3. The strong first-order phase transition leads to unsta-
ble hybrid stars using Maxwell construction. With the Gibbs
procedure, hybrid stars with a core of a mixed state of quarks
and baryons become stable.

figure, the equation of state has a strong first-order phase
transition. The figure includes two different treatments of
the transition: first, local charge neutrality in both phases
is assumed, which corresponds to a Maxwell construction,
and a transition that happens at a fixed pressure. If one
relaxes this condition to a global charge neutrality, with
opposite charges in quark and hadronic phases, one ob-
tains a range with a mixed phase and varying pressure.
Which of these scenarios is correct, depends on the QCD
surface tension which has to be taken into account in a
mixed phase with bubbles of different phases. Unfortu-
nately the value of the surface tension, not to mention its
variation with density, is largely uncertain [40,41].

The equations of state from fig. 6 can then be used to
solve the TOV equations. The obtained results are pre-
sented in fig. 7. The full line in the large figure is the
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Fig. 8. Stellar mass and central strangeness fraction fs as
a function of the hyperon-vector meson interaction strength.
Reducing the coupling substantially increases the strangeness
fraction and reduces star masses.

result for stars without taking into account quarks but
including hyperons. The main reason that the hadronic
star including hyperons (hyper star) still has a large max-
imum mass, which is only reduced by about 0.06M� [18,
42], arises from the fact that in this full flavor-SU(3) ap-
proach the hyperons experience a strong repulsive force
from φ and ω meson exchange. As an illustration of this
feature, fig. 8 shows the resulting maximum mass and the
strangeness content fs (defined as the average strangeness
per baryon) in the center of the star as a function of the
scaled hyperon-omega meson interaction (note that one
could alternatively also scale the interaction with the φ
meson). Decreasing artificially the coupling shows a sub-
stantial increase in strange particles and the accompany-
ing drop in maximum mass.

Going back to the discussion of fig. 7, including the
quarks in the calculation, the resulting hybrid star so-
lution features a kink at around 2 solar masses. As we
discussed in more general terms in sect. 2.2, the latent
energy in the phase transition adds a large amount of en-
ergy density to the star matter when quark states begin to
be populated, but not much more pressure. Therefore, us-
ing the Maxwell-constructed equation of state, the hybrid
star becomes unstable with respect to collapse. On the
other hand, using the Gibbs construction, a mixed phase
of quarks and baryons survives in the core of the star as is
indicated in the inset of the figure. This region can extend
up to 2 km in the center of the star.

It is interesting to note that, although the maxi-
mum central density shifts from about 6ρ0 to 4ρ0 (in the
Maxwell case) due to the instability introduced by the
quark phase there is only a moderate reduction in maxi-
mum mass of about 0.1 solar masses. The reason for this
behaviour is illustrated in fig. 9. Here, the star masses
are plotted as function of central density for the purely
hadronic stars. The figure shows that the mass is quite in-
sensitive to the central density for a wide range of densities

Fig. 9. Star masses as a function of their central density ρc for
the hadronic CMF model. As can be seen for masses around
2 solar masses, the actual star mass is relatively insensitive to
ρc in this region.

below the maximum mass value. Therefore, in this case
even a reduction of the value of the central density by
about 30 percent does not appreciably change the maxi-
mum star mass.

2.4 Excluded volume corrections

In the development of the quark-hadron approaches as
discussed in this article, a second ansatz that incorporates
a different mechanism in transiting from baryons to quarks
at high densities and temperatures was developed. The
hadronic model used is the same as the one discussed in
sect. 2.1. In the calculation presented here, the expression
for the Polyakov loop potential is the one used in a number
of PNJL calculations [36,37]:

U = −1
2
a(T )ΦΦ∗

+ b(T ) ln
[
1 − 6ΦΦ∗ + 4(Φ3Φ∗3) − 3(ΦΦ∗)2

]
. (11)

The particular logarithmic term, which is also present in
eq. (8), corresponds to the Haar measure of integrating
over the SU(3) Polyakov loop matrix. The temperature-
dependent couplings are defined as a(T ) = a0T

4 +
a1T0T

3+a2T
2
0 T 2 and b(T ) = b3T

3
0 T . The numerical values

of the various parameters are adopted from ref. [36]. This
choice ensures a correct first-order phase transition in the
pure gauge sector, i.e. for the theory including only the
Φ field. Again, following the spirit of the PNJL model,
the distribution functions of the quarks and antiquarks
contain the Polyakov loop field

Ωq = −T
∑

j∈Q

γi

(2π)3

∫
d3k ln

(
1 + Φ exp

E∗
i − μi

T

)
,

(12)
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Fig. 10. Model results including excluded volume corrections at vanishing chemical potential. The figure contains plots of the
temperature dependence of the effective Polyakov loop field Φ, the scalar field σ, and the densities of quarks and hadrons with
data points from lattice calculations [47].

and

Ωq = −T
∑

j∈Q

γi

(2π)3

∫
d3k ln

(
1 + Φ∗ exp

E∗
i + μi

T

)
,

(13)
where γi stands for the spin and color degrees of freedom.
This ensures suppression of quarks in the confined state
(Φ = 0). In the case of hadrons, an excluded volume term
is introduced that effectively mimics short-range repulsion
of overlapping hadrons. Here, we follow a very simple ap-
proach, assuming different excluded volumes for quarks,
baryons, and mesons of the form

vQuark = 0,
vBaryon = v,

vMeson = v/a, (14)

with a value v = 0.64 fm3. The parameter a takes into ac-
count that the mesonic volume is smaller than the one for
baryons. We assume it to be a = 8, which implies a meson
radius of half the size of the baryonic one. In this basic
implementation, we neglect possible Lorentz contraction
effects for the excluded volumes, which were discussed in
refs. [43,44], or density or temperature-dependent hadron
sizes [45,46]. For thermodynamic consistency, the modi-
fied chemical potential μ̃i of particle species i is given by

μ̃i = μi − vi P, (15)

where P is the sum over all partial pressures. In this for-
malism the thermodynamic quantities are calculated with
respect to the temperature T and the modified chemical
potentials μ̃i. Thermodynamic consistency is fulfilled by
multiplying the densities (energy density ε̃i, number den-
sity ρ̃i, entropy density s̃i), calculated with the values μ̃i

by a factor f , which is the ratio of the total volume V to
the unoccupied reduced volume V ′

f =
V ′

V
=

(
1 +

∑

i

viρi

)−1

. (16)

Thus, for instance, the energy density then reads

ε =
∑

i

f ε̃i. (17)

Some results of this model for vanishing baryon chemical
potential are collected in fig. 10. The plots compare model
results to lattice QCD calculations [47]. The left panel
shows the temperature dependence of the Polyakov loop
and the scalar condensate, whereas the right panel depicts
the densities of quarks and hadrons (summing particle and
anti-particle densities). As the transition in this regime is
a smooth crossover, it is rather natural to assume that
there is a mixed state, and not a mixture of two separate
phases, of hadrons and quarks as it is observed in this
model.

When calculating the phase structure of isospin sym-
metric matter for a wide range of temperatures and densi-
ties, this model does not lead to a first-order phase transi-
tion (in addition to the liquid-gas phase transition). This
feature does not violate any established constraints, as the
type of phase transition of matter at high density is un-
known. However, in the case of charge-neutral matter in
beta equilibrium, the situation is different. More precisely,
some solutions for different interaction strengths of the
non-strange quarks to the ω field, gqω, and of the strange
quark to the corresponding φ field, gsφ, (with the relative
strength ξ = gsφ/gqω) produce a first-order transition to a
strangeness-enriched phase for star matter. This is shown
in fig. 11 for the strange scalar field ζ. The corresponding
solutions for the star families shown in fig. 12 demonstrate
that such a transition might lead to a small range of sec-
ond family “twin” stars (see also ref. [29] for the case of
very heavy twin solutions). Looking at the different par-
ticle densities as is shown in fig. 13, one can see a steep
rise in the s quark population beyond the phase transition.
Note that even stars that do not reach the critical density
of the phase transition already contain quarks, being also
hybrid stars.

Twin star solutions have recently been revisited in
the literature as they pose a particular solution for the
so-called “hyperon puzzle”. As the appearance of quark
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Fig. 11. Scalar field ζ with hidden strangeness normalized by
its vacuum value. Depending on the quark interaction strength
ξ a first-order transition might occur for star matter.

Fig. 12. TOV solutions for hybrid stars using different
strengths of the quark-ω and quark-φ couplings. For specific
choices, a twin-star solution might occur.

Fig. 13. Baryon number densities for hybrid star matter in-
cluding a first-order phase transition (ξ = −1.29). One can
observe the increased strangeness in the high-density phase.

matter suppresses the amount of hyperons at high density,
this scenario might allow for small, but massive stars.

One very interesting and promising venue in the study
of compact stars is the investigation of their thermal evo-
lution. This evolution is strongly dependent on the particle
composition of the star, which makes it an ideal tool to
gather information on the actual particle content of the
star. The equations that describe the stellar thermal evo-
lution in a general relativistic setting read [48]

∂(le2φ)
∂m

= − 1
ρ
√

1 − 2m/r

(
ενe2φ + cv

∂(Teφ)
∂t

)
, (18)

∂(Teφ)
∂m

= − (leφ)
16π2r4κρ

√
1 − 2m/r

. (19)

Here, the variables r, ρ(r) and m(r) denote the radial
distance from the center of the star, the energy density,
and the stellar mass, respectively. The various thermal
properties that enter the evolution are the temperature
distribution T (r, t), luminosity l(r, t), the neutrino emis-
sivity εν(r, T ), thermal conductivity κ(r, T ) as well as the
specific heat cv(r, T ). The equations have to be supple-
mented by the appropriate boundary conditions. These
are given by demanding a vanishing heat flux at the cen-
ter of the star and fixing the luminosity at the surface.
Here, one has to take care of the relation between the
temperature of the mantle and the actual photosphere as
described in [49,50]. The calculation takes into account all
standard cooling channels via neutrino emission, includ-
ing direct and modified Urca processes as well as neutrino
bremsstrahlung and the pair-breaking-formation process
that occurs during the onset of pairing. The pairing chan-
nels include neutron singlet (1S0) in the crust, neutron
triplet (3P2) in the core as well as proton singlet (1S0) in
the core. In addition to that one may also have to con-
sider the different quark pairing that may occur in the de-
confined quark phase. Among the most promimnnt quark
pairing patterns are the Color-Flavor-Locked (CFL) and
the 2-color (2SC) superconductivity.

As an example of such a study, fig. 14 shows the cool-
ing curve of the two equal mass stars, one from the nor-
mal branch and one from the twin branch, which are
shown in fig. 12. Although both stars have equal mass of
M = 1.68M�, their thermal evolution is distinctly differ-
ent from each other. As can be seen, the strangeness-rich
twin star cools significantly faster than the star from the
ordinary branch. This might help to distinguish stars that
might have similar masses but a very different structure.
Note, however, that this result depends on the energy gap
used for the quark pairing. A large gap would make both
cooling curves more similar.

2.5 Including baryonic parity partners

With respect to hadronic models, there has been a num-
ber of studies looking at nuclear matter properties and
also at stellar matter with a different formulation of chi-
ral symmetry and the baryonic fields. These refer to the
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Fig. 14. Cooling curve of the hybrid star and its high-
strangeness twin solution with the same mass of 1.68 M�. As
can be seen in the figure, the twin star cools significantly faster.

so-called parity-doublet model [51–53]. The main feature
of the doublet model is the inclusion of both, the positive
and negative parity states of the baryons. By arranging
them in doublets, the components of the fields defining
the parity partners ϕ+ and ϕ− transform differently with
respect to chiral transformations:

ϕ′
+R = Rϕ+Rϕ′

+L = Lϕ+L,

ϕ′
−R = Lϕ−Rϕ−L = Rϕ−L, (20)

where L and R are rotations in the left- and right handed
subspaces. This behaviour is very similar to the mesonic
analogue of the sigma meson and the pion as grouped to-
gether in the linear sigma model. In the latter case, the
combination of sigma and pion σ2 + π2 is chirally invari-
ant, whereas the separate terms are not. Here, including
the opposite parity states helps to achieve the same ef-
fect. It allows for a chirally invariant mass-like term in
the Lagrangian of the form:

m0(ϕ̄−γ5ϕ+ − ϕ̄+γ5ϕ−) =
m0(ϕ̄−Lϕ+R − ϕ̄−Rϕ+L − ϕ̄+Lϕ−R + ϕ̄+Rϕ−L),

(21)

where m0 is a mass parameter.
The SU(3) extension of the parity-doublet approach

has been developed in ref. [54]. In general one can write
the following SU(3)-invariant baryon-meson interaction

LB =Tr
(
Ξ̄i/∂Ξ

)
+m0 Tr

(
Ξ̄γ5τ2Ξ

)
+D(1)

s Tr
(
Ξ̄ {Σ,Ξ}

)

+F (1)
s Tr

(
Ξ̄ [Σ,Ξ]

)
+ S(1)

s Tr(Σ)Tr
(
Ξ̄Ξ

)

+D(2)
s Tr

(
Ξ̄τ3 {Σ,Ξ}

)
+ F (2)

s Tr
(
Ξ̄τ3 [Σ,Ξ]

)

+S(2)
s Tr(Σ)Tr

(
Ξ̄τ3Ξ

)
+ Dv Tr

(
Ξ̄γμ {V μ, Ξ}

)

+Fv Tr
(
Ξ̄γμ [V μ, Ξ]

)
+ Sv Tr (V μ) Tr

(
Ξ̄γμΞ

)
. (22)

Here, Ξ denotes the baryon octet that now also contains
the doublets of all the octet states. The τ matrices act on

the doublet spinors. Σ and V μ represent the scalar and
vector multiplets, respectively. Note that there are now
two sets of couplings F (j), D(j), S(j) with j = 1, 2 for the
usual SU(3) invariant expressions.

After diagonalization in the doublet-spinor space, the
following Lagrangian results

LB =
∑

i

(
B̄ii/∂Bi

)
+

∑

i

(
B̄im

∗
i Bi

)

+
∑

i

(
B̄iγμ (gωiω

μ + gρiρ
μ + gφiφ

μ) Bi

)
. (23)

The coupling constants for the baryons Bi with the vector
mesons ω, ρ and the strange meson φ are analogous to
eq. (2). The main difference to the previous approaches
appears in the expression for the effective baryon masses
(neglecting the isovector scalar meson, for simplicity)

m∗
i =

√[(
g
(1)
σi σ + g

(1)
ζi ζ

)2

+ (m0 + nsms)2
]

± g
(2)
σi σ ± g

(2)
ζi ζ, (24)

where there are two sets of coupling constants to the
baryons i gj

σi, gj
σi, which are combinations of the origi-

nal parameters. The signs ± distinguish the cases of op-
posite parity baryons. As can be seen in the expression,
in the case of vanishing scalar fields, the various doublets
are degenerate but not massless. The expression contains
a SU(3) breaking mass term with ms = 150MeV, respon-
sible for the generation of an explicit mass corresponding
to the number of strange quarks ns in each baryon.

With these relations at hand, we can perform a calcu-
lation analogous to the one in sect. 2.4 including quarks.
The resulting phase structure of the model for isospin-
symmetric matter is given in fig. 15. As an interesting
difference to the previous discussion, the model exhibits a
second first-order phase transition, which is driven by the
appearance of quarks as well as the parity-doublet partner
of the nucleons. This transition ends in a critical end-point
around a temperature of 60MeV. Thus, it might be very
useful to study the implications of such a phase structure
in neutron star merger calculations that might sample the
conditions close to such a critical point.

Besides the parametrization used in the calculation de-
scribed above, which reproduces a high value for the com-
pressibility at saturation, we define another parametriza-
tion with a lower value for the compressibility. TOV so-
lutions for both equations of state are shown in fig. 16.
All curves for the star solutions show the familiar be-
haviour of a kink signalling the crossing of the first-order
transition point, with a maximum between 1.7 and 2M�,
respectively, for the soft and stiffer equation of state at
zero temperature. In addition, the figure contains results
for a fixed temperature of 30MeV with slightly increased
maximum masses. Note that the fixed temperature calcu-
lation is not an ideal approximation for a snapshot of a
proto-neutron star thermal evolution, where a calculation
at fixed entropy per baryon would have been more real-
istic and should be performed in future work. The tem-
perature used mimics the maximum temperature effect to
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Fig. 15. Phase diagram of the SU(3) parity-doublet model in
the plane of temperature and quark chemical potential. Two
first-order phase transitions for isospin-symmetric matter can
be observed, corresponding to liquid-gas and chiral transitions.
The bands correspond to a change in value of the Φ and σ fields
between 20 and 80 percent of their maximum value.

Fig. 16. TOV solutions for hybrid stars in the parity-doublet
approach. Two different equations of state are compared. Re-
sults for vanishing temperature and T = 30MeV are shown.

be expected in the core of the star. It corresponds to an
entropy per baryon of about 2 in the stellar center, which
is a reasonable early-stage value compared to numerical
simulations [55–57].

The particle composition of these stars can be quite
complex as is presented in fig. 17 for the stiff equation
of state at zero temperature. These stars contain baryons,
quarks, as well as the opposite parity states of the nucleons
and some hyperons.

Finally, we look at the temperature evolution of stars
within this model. Figure 18 shows results for a range of
star masses for the stiff equation of state. The calcula-
tion includes a gap of 10MeV for the quark pairing in the
core. The figure also includes a range of observed stellar
temperatures and star ages derived from the spin-down

Fig. 17. Particle densities as a function of distance from the
center of the star for the maximum mass star of the stiff equa-
tion of state of fig. 16 at T = 0. The complex particle cocktail
contains the octet of baryons and their parity doublets as well
as quarks and leptons.

Fig. 18. Stellar temperature as a function of stellar life time
resulting from a cooling simulation. Observational data are in-
cluded as symbols. The curves show results for different star
masses. The simulation includes quark pairing with a gap of
10 MeV.

of the pulsar as well as from kinematics, tracing the star
back to the original supernova. Overall, there is a quite
good agreement of the different measurements with the
region of possible temperatures. However, a simultaneous
measurement of star masses would be very helpful in con-
straining neutron star models via studies of stellar thermal
evolution.

3 Possible conflict with lattice results

As has been documented in the previous sections, one
nearly universal ingredient for all hybrid star calculations,
within the framework discussed in the article as well as in
many other calculations, is the inclusion of a strong re-
pulsive force between the quarks [29,30,58–62]. This force
stiffens the equation of state and allows for the survival
of a larger quark core without immediate collapse to a
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black hole. The calculation in sect. 2.3 did not introduce
a non-zero vector coupling of the quarks. However, as it
was shown, this then only allows for a region of a mixed
phase of quarks and baryons if one performs a Gibbs con-
struction of the phase transition.

When one applies the different model approaches to
matter at vanishing baryon chemical potential, one has the
advantage to be able to compare results with lattice QCD
calculations. This has been used in adjusting the model
parameters of the approaches, discussed in sects. 2.3, 2.4,
and 2.5, and a direct comparison was shown in fig. 10.
Overall, without too much fine-tuning a reasonable agree-
ment with lattice data can be achieved for these star mod-
els. Unfortunately, such comparison cannot easily go fur-
ther, as lattice calculations at non-zero chemical potential
are notoriously difficult. In this case, a phase in the weight-
ing factor of the path integral leads to very problematic
numerical cancellations in the sampling of the integral.
Some effort has been put into a reweighting method to
calculate observables at finite chemical potential. A main
result was the computation of a critical end-point of a first-
order transition line at T = 162MeV and μB = 360MeV
with larger statistical errors. This result has been used in
sect. 2.3 to fix the model parameters. However, it is still
debated whether this critical point exists or not. Another
way of extrapolating into the regime of non-zero chemical
potential is to do a Taylor expansion of the grand canon-
ical potential and calculate coefficients of an expansion in
μB . The expansion of the pressure can be written as

p(T, μB)
T 4

=
∞∑

n=0

cn(T )
(μB

T

)n

(25)

cn(T ) =
1
n!

∂n(p(T, μB)/T 4)
∂(μB/T )n

∣∣∣∣
μB=0

. (26)

The advantage of this approach is that the coefficients
cn can be calculated on the lattice as expectation values of
operators at vanishing chemical potential. The first non-
zero correction term of such a study is c2. Calculating the
coefficient in the quark-hadron model discussed in sect. 2.4
and comparing it to lattice gauge simulations lead to the
results shown in fig. 19 [63]. The comparison in the figure
uses somewhat older lattice data [64]. For a more careful
study with recent lattice data, see ref. [65]. Note, however,
that all qualitative conclusions remain unchanged. Various
theoretical curves are shown that correspond to different
strengths of the vector interaction. As can be clearly seen,
a non-zero vector coupling leads to very significant differ-
ences with respect to the lattice data. In order to demon-
strate that this is not a model-specific result, an analogous
calculation was done for the PNJL model. These results,
depicted in fig. 20 demonstrate the same behaviour. A rea-
sonably large value of the vector interaction coupling GV

results in clear disagreement with the lattice simulations.
Also, an analysis of the pseudo-critical phase transition
line as function of chemical potential that, according to
ref. [66], signals a strong vector interaction term, does not
change this picture. As it has been shown in ref. [65], the
rather flat transition line is governed by the properties of

Fig. 19. Taylor coefficient of the pressure c2 as a function of
temperature at zero chemical potential for the quark hadron
model described in sect. 2.4. The solid line was obtained for
zero interaction, the dashed line represents results for gqω =
gNω/3. Again, a small interaction strength causes results that
are inconsistent with lattice data.

Fig. 20. Same as fig. 19 but for a standard PNJL model. The
curves correspond to different values of the repulsive quark-
quark interaction, Gv = 0, Gs/2, Gs, 2Gs, where Gs is the
strength of the scalar interaction. As can be seen, even a rela-
tively small interaction strength leads to strong disagreement
with lattice data.

matter below the transition, i.e. the hadronic matter that
naturally has a strong vector interaction, but not by the
quark phase (see also refs. [67,68]). Therefore, this prob-
lem still persists, at least for the models currently under
investigation.

4 Conclusions

In this article we have discussed several approaches con-
necting hadronic descriptions and quark models in a uni-
fying way, which allows for first-order and higher-order
phase transitions as well as crossovers. Such models can
reproduce a mixed state of quarks and hadrons, even with-
out the appearance of any sharp phase transition in dense
matter. As one interesting result, we observe twin star so-
lutions for some model parameters, yielding two sets of
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hybrid stars with different strangeness content and radius
but with the same mass. As was shown, these stars would
have a distinctly different thermal evolution.

In accordance with other theoretical studies, we find
that in order to obtain a star with a large quark core or
a more extended mixed phase of quarks and hadrons, the
quark interactions have to be strongly repulsive. However,
such assumption leads to problems in the agreement with
lattice data at small densities (that study the Taylor co-
efficients for an expansion of the pressure with respect to
baryon chemical potential). This problem should be ad-
dressed before one can make more definite claims about
the feasibility of hybrid stars with large quark cores. Hope-
fully, this point can be reasonably addressed without the
need to render the strong interaction models too complex
with the inclusion of many additional phenomenological
terms.

SWS acknowledges support from the Helmholtz International
Center for FAIR. RN acknowledged financial support from
CNPq and CAPES.
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