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Abstract. Nuclear density functional theory (DFT) is one of the main theoretical tools used to study
the properties of heavy and superheavy elements, or to describe the structure of nuclei far from stability.
While on-going efforts seek to better root nuclear DFT in the theory of nuclear forces (see Duguet et
al., this Topical Issue), energy functionals remain semi-phenomenological constructions that depend on a
set of parameters adjusted to experimental data in finite nuclei. In this paper, we review recent efforts
to quantify the related uncertainties, and propagate them to model predictions. In particular, we cover
the topics of parameter estimation for inverse problems, statistical analysis of model uncertainties and
Bayesian inference methods. Illustrative examples are taken from the literature.

1 Introduction

Applications of nuclear science in energy production or
national security are based on nuclear data such as cross-
sections, energy levels, and lifetimes. In many cases of in-
terest, experimental measurements are not available, and
guidance from theory is indispensable. In the valley of sta-
bility, one still can employ simple models heavily tuned to
existing data. For example, the fission model implemented
in the GEF code uses about 50 parameters such as fission
barrier heights and level density parameter which are pa-
rameterized as a function of Z, N , or neutron incident
energy. The code also uses databases of binding energies
and shell corrections (in the ground state only). Based on
these parameters and data banks, qualitative arguments,
and a Monte Carlo sampling scheme, observables such as
fission probabilities, fission fragment yields, and neutron
multiplicities can be reproduced accurately in the actinide
region (with a few exceptions) [1]. While such an empiri-
cal approach fulfills some of the needs of data evaluators,
however, its predictive power beyond the region where the
model is fitted is null. Indeed, such models do not contain
any physics principle related to nucleons, their interaction,
and the quantum nature of the atomic nucleus.
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Therefore, even if data-driven empirical models will al-
ways be helpful in the short term, one must try to root
data evaluation into more microscopic theories of nuclear
structure and reactions in order to gain confidence in the
reliability of evaluations. In heavy elements, density func-
tional theory is currently the only candidate for such a
microscopic approach to nuclear structure. In particular,
recent advances in high-performance computing have en-
abled large-scale calculations of nuclear properties at the
scale of the mass table [2, 3]. Despite this progress, how-
ever, the accuracy and precision needed in data evalua-
tions represent a formidable challenge for nuclear density
functional theory (DFT). As an example, nuclear bind-
ing energies are computed within approximately 500 keV
in state-of-the-art DFT calculations [4, 5]. Although this
represents a relative error of 0.05% or less for nuclei with
mass A > 100, it remains far from the sub-keV accuracy
that is demanded in, for example, criticality studies. In
order to make data evaluations based on microscopic in-
puts from DFT a viable alternative to simpler models, two
challenges must be addressed in the next few years.

First, DFT must be more firmly and rigorously con-
nected to the theory of nuclear forces as defined, for ex-
ample, by effective field theory [6]. One possibility is to
formally derive local energy functionals from chiral effec-
tive field potentials by using the density matrix expan-
sion, and subsequently readjust coupling constants to re-
produce properties of finite nuclei [7,8]. Another is to use,
for example, many-body perturbation theory to expand
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energy and norm kernels of ab initio approaches in a form
amenable to DFT treatment [9]; see also Duguet et al. in
this Topical Issue.

Second, irrespective of its mathematical form and
physical origin, DFT kernels will always contain a pheno-
menological component in the sense that they depend on a
small set of parameters that must be adjusted to data. In
addition to making the theory usable, adjusting these pa-
rameters will effectively provide an ad hoc mechanism to
capture missing correlations. However, this optimization
will induce an obvious dependence on the data and the
optimization process itself, in addition to the pre-existing
uncertainties related to the form of the functional and pos-
sible truncation errors in the numerical implementation.
Therefore, rigorous methodology is essential in order to
identify, quantify and propagate model uncertainties.

In this paper, we review the progress made in this area
over the past 10 years. In sect. 2, we recall the essential as-
pects of nuclear density functional theory; in particular we
discuss the distinction between the self-consistent mean-
field theory and the energy density functional (EDF) ap-
proach. In sect. 3, we look at DFT from a statistician’s
point of view: What are the parameters of the model? How
can they be determined? How can we quantify the statis-
tical uncertainties? We summarize the various tools used
to answer these questions. In sect. 4, we review the most
recent attempts to propagate statistical uncertainties in
model predictions using either covariance techniques or
Bayesian inference.

2 Nuclear density functional theory

Density functional theory is a general approach for solving
the quantum many-body problem. Its most rigorous for-
mulation is in electronic structure theory, where it is based
on the existence theorem of Hohenberg and Kohn [10]. It
states that the energy of an interacting electron gas can
be written as a functional of the one-body local density
(of electrons), and the minimum of this functional gives
the exact ground state of the system. Shortly thereafter,
this formal existence theorem was supplemented with the
Kohn-Sham scheme, which allows one to determine the ac-
tual density of electrons that minimizes the energy (if the
functional itself is known) by solving equations analogous
to Hartree equations [11]. Various extensions have been
proposed to handle exchange energy exactly (the Kohn-
Sham equations then are similar to Hartree-Fock equa-
tions), excited states, systems at finite temperature, and
superfluid correlations (see, e.g., [12, 13]). These exten-
sions rely on reformulating the Kohn-Sham scheme with
the full one-body density matrix (rather than the local
density), density operators, a combination of one- and
two-body densities, and so forth. Other extensions account
for relativistic effects [14].

Implementations of DFT in nuclear physics are less
straightforward, since the nuclear Hamiltonian is not
known, in contrast with electronic structure theory. In
addition, nuclei are self-bound, and correlation effects are
much stronger than in electron systems [6]. Consequently,

most nuclear energy functionals used so far have been in
fact derived from the expectation value on the quasipar-
ticle vacuum of effective nuclear forces used in the self-
consistent nuclear mean-field theory [15]. Therefore, they
are formulated in terms of the intrinsic one-body nonlo-
cal density matrix and nonlocal pairing tensor, which can
break symmetries of realistic nuclear forces such as trans-
lational or rotational invariance, parity, time-reversal in-
variance, and particle number. This spontaneous symme-
try breaking is essential for introducing long-range corre-
lations in the nuclear wave function [16, 17]. Nuclear en-
ergy functionals are, therefore, substantially different from
their counterpart in electronic DFT. This difference is re-
flected in the name of energy density functional (EDF)
formalism.

2.1 The energy density functional approach

In this section, we succinctly describe the basic ingredients
of the single-reference EDF (SR-EDF) approach with non-
relativistic empirical functionals such as derived from the
Skyrme or Gogny effective interactions. We refer to [6,17]
for discussions of more general frameworks such as mul-
tireference EDF and ab initio DFT. The starting point is
a set of single-particle states |i〉 that form a basis of the
one-body Hilbert space. The related creation/annihilation
operators are c†i and ci and define the configuration space
representation of the Fock space [16, 18]. The coordi-
nate space representation is obtained by invoking the
continuous basis |x〉 ≡ |rστ〉 of the one-body Hilbert
space, with σ = ±1/2 the intrinsic spin projection and
τ = ±1/2 the isospin projection. The single-particle func-
tions are then 〈x|i〉 = φi(x), and the corresponding cre-
ation/annihilation operators are the field operators c†(x)
and c(x). The particle vacuum of the Fock space is de-
noted by |0〉 and is characterized by the property that
∀ i, ci|0〉 = 0, or, alternatively, ∀x, c(x)|0〉 = 0.

Because of the importance of pairing correlations in
low-energy nuclear structure [19], we introduce a canonical
transformation between particle operators and quasiparti-
cle operators βμ, β†

μ. This Bogoliubov-Valatin transforma-
tion is characterized by the matrices U and V [15,18,20,21]

βμ =
∑

m

[
U†

μm cm + V †
μm c†m

]
,

β†
μ =

∑

m

[
V T

μm cm + UT
μm c†m

]
. (1)

In the SR-EDF approach, we introduce the reference state
|Φ〉 as a product wave function of quasiparticle operators
acting on the particle vacuum,

|Φ〉 =
∏

μ

βμ|0〉. (2)

Note that, by construction, the quasiparticle vacuum (2)
does not conserve particle number.

The next step is to recall that for any given many-body
state |Ψ〉, the one-body density matrix ρ and two-body
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pairing tensor κ are defined in configuration space as

ρij =
〈Ψ |c†jci|Ψ〉
〈Ψ |Ψ〉 , κij =

〈Ψ |cjci|Ψ〉
〈Ψ |Ψ〉 , (3)

and the generalized density R as

R =
(

ρ κ
−κ∗ 1 − ρ∗

)
. (4)

When |Ψ〉 is the quasiparticle vacuum (2), the correspond-
ing generalized density matrix verifies R2 = R and R† =
R [18]. In addition, the Wick theorem ensures that the ex-
pectation values of any operator on the quasiparticle vac-
uum can be expressed as functions of ρ, κ and κ∗ alone.
These three mathematical objects are thus the basic de-
grees of freedom of the theory. In particular, the energy is
then expressed as a functional E[ρ, κ, κ∗].

The actual density and pairing tensor of the nucleus
in its ground state are determined by solving the Hartree-
Fock-Bogoliubov (HFB) equations, which are obtained by
applying the variational principle with respect to ρ, κ, and
κ∗ [15, 16,18]. This leads to

[H,R] = 0, (5)

where H is the HFB matrix, Hij = ∂E/∂Rji. One-body
observables can then be computed as the trace of the rel-
evant operator and ρ. Because of the nonlinear nature of
the HFB equations, it is possible for the generalized den-
sity to break various symmetries of nuclear forces. Con-
versely, conserved symmetries can be used to label quasi-
particle states [22–24]. In practice, the HFB equations (5)
are solved iteratively. The most common approach is to
adopt the following iterative procedure:
1) Choose an initial guess for the density matrix ρ(n) and

pairing tensor κ(n) (hence the generalized density ma-
trix R(n)) at the first iteration, n = 1.

2) Build the HFB matrix from H(n) = ∂E/∂R(n) at the
first iteration, n = 1.

3) Diagonalize H(n): this provides the matrices U and V
of the Bogoliubov transformation at the first iteration,
n = 1.

4) These matrices can be used to compute the density
matrix and pairing tensor at the next iteration n = 2
according to ρ(n+1) = V ∗V T and κ(n+1) = V ∗UT .

5) Go back to step 1 and repeat until the densities do not
change. In practice, this can be decided by imposing
that the maximum value of the matrix |ρij | does not
exceed some criterion ε.

Various techniques can be employed to try and reduce
the number of iterations [25]. Another popular approach
to solving the HFB equations is the generalized gradient
method: it is an iterative procedure that does not rely on
successive matrix diagonalizations [16].

2.2 Pseudopotentials and energy functionals

Until recently, most applications of the nuclear EDF ap-
proach have been based on semi-empirical EDFs explicitly

derived from the expectation value of effective two-body
forces V̂eff. on the quasiparticle vacuum,

E[ρ, κ, κ∗] =
〈Φ|T̂ + V̂eff.|Φ〉

〈Φ|Φ〉 , (6)

where T̂ is the kinetic energy operator. In particular, the
Skyrme effective force is a zero-range two-body pseudopo-
tential for which the EDF becomes a functional of the
local density only [26, 27]. The Gogny force has a finite
range and gives a functional of the nonlocal one-body den-
sity [28]; see, for example, [15, 29] for comprehensive re-
views of applications of Skyrme and Gogny EDFs. The
empirical nature of both the Skyrme and Gogny poten-
tials is manifested by the presence of density dependen-
cies, which prohibits writing the potential in strict second
quantization form [30]. With the exception of a few re-
cent applications [31–33], these EDFs have been used in
the context of the self-consistent mean-field theory rather
than in a strict Kohn-Sham scheme.

In particular, many applications used the underlying
effective pseudopotential V̂eff. to implement beyond mean-
field techniques, where EDF reference states of the type
(2) serve as basis states to expand the unknown many-
body wave function, for example, in the generator coor-
dinate method, or to restore broken symmetries by using
projection techniques [15, 16]. A few years ago, however,
standard beyond mean-field techniques were shown to be
invalid with density-dependent pseudopotentials [34–38].
This result has stimulated efforts to remove density depen-
dencies, for example by using momentum-dependent two-
body pseudopotentials [39] or zero-range two- and three-
body pseudopotentials [40, 41]. Since these pseudopoten-
tials are specifically designed to enable beyond mean-field
techniques such as projection and configuration mixing,
the central element of all these approaches is the effective
Hamiltonian T̂ + V̂eff. rather than the EDF itself.

An alternative route is to implement a strict Kohn-
Sham approach, where the only degrees of freedom are
ρ, κ, and κ∗, the ground-state wave function is always
a quasiparticle vacuum of the form (2), and there is
no mention of some underlying effective potential V̂eff..
In such an approach, the energy functional E[ρ, κ, κ∗]
must be designed so that it contains all relevant types
of correlations. Only two main families of such functionals
have been proposed in the literature: those proposed by
Fayans and Collaborators [42–44], and the BPCM func-
tionals from the Barcelona-Paris-Cataña-Madrid Collab-
oration [45, 46]. The main difficulty of this strict Kohn-
Sham scheme, which is more in line with the spirit of
DFT as encountered in electronic structure theory, is to
incorporate beyond mean-field correlations accounting, for
example, for large amplitude collective motion, or symme-
try restoration. Recent work suggests that this could be
achieved by introducing new densities representing collec-
tive degrees of freedom such as two-body or “collective”
densities [47–50] (which may lead to a generalization of the
Kohn-Sham equations) or by adding specific terms to the
functional designed to cancel symmetry breaking [51,52].
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2.3 Pairing correlations

Sometimes overlooked is the fact that, according to the
Hohenberg-Kohn theorem, the exact ground state of the
system can in principle be expressed entirely as a func-
tional of the local one-body density matrix only. If this
theorem could be extended directly to nuclear function-
als of the intrinsic one-body density (see, e.g., [53, 54]),
pairing correlations could —in principle— be produced
by an unique functional of ρ(r). In this idealized sce-
nario, there would be no need for quasiparticle operators,
the Bogoliubov transformation, or the pairing tensor: the
Kohn-Sham scheme would be implemented directly with
EDF reference states taken as particle-number-conserving
Slater determinants.

In practice, of course, the form of this functional is to-
tally unknown. Until further notice, therefore, it seems
more reasonable to build on the success of the self-
consistent mean-field theory, to seek an explicit pairing
term that is a functional of the usual pairing tensor, and
to work with symmetry-breaking reference states as in
eq. (2). Recall that the pairing tensor is defined from the
specific form that the two-body correlation function takes
in an HFB vacuum [12,47]. If we denote ρ2(x1, x2, x

′
1, x

′
2)

as the full, nonlocal, two-body density matrix, then we
have

ρ2(x1, x2, x
′
1, x

′
2) = κ∗(x1, x2)κ(x′

2, x
′
1)

−ρ(x′
2, x1)ρ(x′

1, x2)

+ρ(x′
1, x1)ρ(x′

2, x2). (7)

Because of this property, the pairing tensor κ and its com-
plex conjugate κ∗ are, indeed, the two only degrees of free-
dom needed to account for pairing correlations at the HFB
level.

The pairing EDF can then be obtained by taking
the expectation value of a pseudopotential V̂

(pair)
eff. on the

quasiparticle vacuum, which will immediately introduce a
dependence on κ∗ and κ. This potential can be the same
as the one used in the particle-hole channel, which is typ-
ically the choice retained when working with the Gogny
force [28]. It can also have a different form, ranging from
simple seniority pairing forces [16] to density-dependent
zero-range pairing forces [55] to separable expansion of
finite-range, Gogny-like potentials [56, 57]. Most of these
pairing forces, and hence the resulting pairing functionals,
are characterized by only a few parameters, and all lead
to EDFs that are functionals of κ∗ and κ only.

3 Density functional theory as a model

Whether building the description of atomic nuclei on an
effective potential V̂eff. that defines both the mean-field
and beyond mean-field corrections, or an EDF E[ρ, κ, κ∗]
in a strict Kohn-Sham framework, theoretical predictions
will depend on a set of unknown parameters x correspond-
ing, respectively, to the parameters of the effective nuclear

force or the coupling constants of the EDF. Some of these
parameters may be constrained by exploring the connec-
tions with the theory of realistic nuclear forces or inves-
tigating ideal systems such as nuclear matter or neutron
drops [58, 59]. In general, however, one will also have to
introduce experimental data in nuclei in order to set the
values of these parameters. This fit of low-energy coupling
constants to experimental data belongs to the class of in-
verse problems in statistics. In this section, we review some
of the techniques used in nuclear DFT to solve this prob-
lem. Most of our considerations are based on the SR-EDF
approach to nuclear structure but are easily extended to
the self-consistent mean-field approach.

3.1 Parameter estimation

The problem of determining the parameters of the nuclear
EDF is easily posed: one needs only to choose a set of data
points, define an objective function such as a χ2 function,
and minimize the objective function with respect to the
parameters. We use the following notations: y denotes the
values of a set of experimental observables, with yti the
value of the i-th observable of type t; x ≡ (x1, . . . , xnx

)
represent the vector of the nx parameters of the model,
that is, the EDF coupling constants in our case; and η
collects the output of all model calculations. In our case,
ηti(x) is thus the output of an HFB calculation for the ith
observable of type t. Also, ε is the vector containing the
error between the actual calculation and the experimental
value. By definition, we thus have

yti = ηti(x) + εti, εti
indep∼ N(0, σt), ∀ (t, i). (8)

In this expression, N(0, σt) refers to the normal distribu-
tion with mean σt. Based on these notations, we minimize
the weighted mean squared deviation given by

χ2(x) =
1

nd − nx

T∑

t=1

nt∑

i=1

(
yti − ηti(x)

σt

)2

, (9)

where T is the total number of different data types, nt the
total number of points of type t, and nd the total number
of experimental points, nd =

∑T
t=1 nt. By convention, the

vector of parameters at the minimum of the χ2 is noted
x̂. Recall that χ2 � 1 implies a poor fit, whereas χ2 ≈ 1
indicates a good fit. This is the familiar “χ2 per degree of
freedom”. If all errors εti are independent and normally
distributed with mean 0, then the minimization of (9) is
equivalent to maximizing the likelihood function [60, 61].
In addition, the χ2 is a random variable that follows a
genuine χ2 probability distribution function.

3.1.1 Experimental dataset and bias estimation

Choosing which and how many data points to include in
the χ2 is the first important decision, and several strate-
gies have been followed. In nuclear mass models based
either on the Skyrme or Gogny force, all available experi-
mental information on atomic masses is used; see [4,5] and
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Fig. 1. Experimental data set used for optimizing the UN-
EDF2 Skyrme functional [33]. For reference, the gray area rep-
resents all nuclei where the binding energy is known (based on
the 2003 evaluation [66]). Colored squares indicate the nuclei
included in the fit of UNEDF2 with the color denoting the
type of data: Mdef. refer to the binding energy of nuclei that
are deformed in their ground-state; Msph. the binding energy
of closed shell nuclei, which are spherical in their ground-state;

Δ
(3)
n and Δ

(3)
p refer to the 3-point indicator for the odd-even

mass difference for neutrons and protons, respectively; see [67]
for a discussion; EFI refers to the excitation energy of the fis-
sion isomer; see supplementary material of [33] for the full list
of data points.

references therein. It is supplemented by additional data
on, for example, fission barriers [62] or neutron matter [4].
The main concern for mass models is the risk of producing
a high-bias estimator of the data. In simpler terms, it is
by no means guaranteed that mass model parameteriza-
tions of Skyrme of Gogny forces are reliable for computing
observables that are not masses.

By contrast, most historical fits of the Skyrme and
Gogny forces were based on the smallest possible set of
data. These included nuclear matter properties, binding
energies, radii, and single-particle states; see [15, 29, 63]
for a discussion. In addition, data in finite nuclei were
taken almost exclusively in doubly magic spherical nuclei:
symmetry breaking effects were rarely probed during the
optimization itself. Two of the most notable exceptions are
the SkM* parameterization of the Skyrme force [64] and
the D1S parameterization of the Gogny force [65], which
included information on the fission barrier in 240Pu. The
combination of small data set and a lack of constraints
on nuclear deformation properties is also likely to lead to
high-bias estimators.

The recently proposed parameterizations of the
Skyrme EDF by the Universal Nuclear Energy Density
Functional (UNEDF) Collaboration [3] represent an at-
tempt to reduce the bias of the fitting procedure by taking
a medium-sized sample of 100+ data points carefully se-
lected from both spherical and deformed nuclei; see fig. 1
for the specific case of the UNEDF2 functional [31–33]. As
a result, the ability of UNEDF functionals to reproduce

masses or fission barriers has degraded between UNEDF0
(3 different types of nuclear data included in the optimiza-
tion for a total of 108 data points) and UNEDF2 (5 data
types, 130 points), while the ability to predict binding
energies near closed shells and single-particle states in-
creased. Note that until now, no attempt has been made
to rigorously quantify the bias of EDF parameterizations.

The pairing channel represents an additional difficulty
when determining the parameters of the nuclear EDF. In-
deed, very little data can effectively and unambiguously
constrain the pairing functional directly at the HFB level.
In practice, the odd-even staggering (OES) of binding en-
ergies is most often used [67–71]. The UNEDF functionals
were the first ones where the fit of the pairing functional
was performed simultaneously with the fit of the Skyrme
EDF. As a result, there are built-in correlations between
the parameters of the Skyrme EDF and the two parame-
ters that control the pairing functional.

3.1.2 Optimization algorithm

The minimization of the χ2 function in the context of nu-
clear DFT remains costly in computational resources. In
the example of the UNEDF functionals, 100+ full, HFB
calculations in axially deformed nuclei must be performed
in order to define the χ2. Some of the most popular pa-
rameterizations of the nuclear EDF were published in the
1980s and 1990s, where the cost of running a full HFB
calculation was prohibitive in terms of χ2 minimization.
Even now, the optimization of HFB mass models by the
Bruxelles-Montréal Collaboration, where the χ2 includes
over 2500 points, is still performed with a DFT solver with
built-in spherical symmetry. The effect of deformation in
the ground-state binding energy is taken into account by
using an empirical renormalization procedure; see [72] for
details.

In view of this computational cost, specifically de-
signed algorithms with a focus on efficiency and robust-
ness are especially valuable. We recall that derivatives
∂ηti(x)/∂xμ are not available analytically for the min-
imization of the χ2 (9). Of course they can always be
computed numerically, but at a significant cost when
nx is large. Therefore, the optimization of the nuclear
EDF is most efficiently performed with derivative-free ap-
proaches.

Although a rich literature on the subject exists, we
mention here only the Practical Optimization Using No
Derivatives for sums of Squares (POUNDERS) algorithm
developed in the framework of the UNEDF Collabora-
tion [31, 73–75]. POUNDERS is a derivative-free trust-
region method based on forming a local quadratic model
of each component of the χ2. The quadratic models are
valid only in a small region of the parameter space near
the current point x, but their aggregate approximation
can be minimized analytically. The minimum x + δx de-
fines the next point of a Newton-like procedure. As seen
in fig. 2, the POUNDERS algorithm converges quickly
compared to the traditional Nelder-Mead algorithm; most
important, it gives a better solution. POUNDERS has
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Fig. 2. Performance (log-log scale) of three solvers (limited-
memory variable metric, POUNDERS Nelder-Mead) for non-
linear generalized χ2 problems with nx = 6 parameters and
nd = 428 data points; from [73].

Table 1. Root-mean-square deviations for each type of nu-
clear data included in the UNEDF1 χ2 as a function of the
standard deviation σOES used for OES data of both protons
and neutrons; see text for details. All r.m.s. values are in MeV
except the ones for proton radii, which are in fm; from [79].

σOES 0.025 0.050 0.075 0.100

Deformed masses 0.944 0.776 2.596 0.806

Spherical masses 2.427 1.836 2.669 1.718

Proton radii 0.022 0.022 0.022 0.022

OES neutrons 0.012 0.051 0.065 0.080

OES protons 0.043 0.074 0.075 0.072

Fission isomer 0.809 0.558 0.535 0.530

recently been applied to other problems of interest in nu-
clear physics [76,77].

3.1.3 Choice of the objective function

Given a set of data points and a minimization algorithm,
some latitude remains in defining the weights, or stan-
dard deviations σt, associated with each data type. These
quantities represent the estimated error on the data type t.
They are in principle determined in such a way that the χ2

objective function (9) approaches 1 at the minimum. Sat-
isfying this condition may require readjusting the weights
during the minimization [78]. In practice, this step has
rarely been done in nuclear EDF optimization, and the
weights are most often kept constant (though data type
dependent). In table 1, we show the impact of changing a
single weight in the χ2 objective function. In practice, we
performed a refit of the UNEDF1 functional at the HFB

Table 2. Rerun of POUNDERS on the UNEDF0 problem
(nd = 108) from two different starting points: the SLy4 para-
metrization of the Skyrme EDF [80], and the SkM* parametri-
zation [64]. The Skyrme EDF is characterized by the following
parameters: ρc (saturation density) is in fm−3; ENM/A (bind-
ing energy per nucleon in nuclear matter), KNM (incompress-

ibility), aNM
sym (symmetry energy coefficient), and LNM

sym (slope of
the symmetry energy) are in MeV; M∗

s (scalar effective mass)

is dimensionless; CρΔρ
t (surface coupling constants) and Cρ∇J

t

(spin-orbit coupling constants), t = 0, 1 are in MeV fm5; and
V n

0 and V p
0 (pairing strengths) are in MeV fm3. The column

marked “final” shows the result of the optimization; bold face
highlights identical digits; underlined values indicate that the
corresponding parameters reached the boundary of their inter-
val of variation during optimization and were frozen there.

Starting from SLy4 Starting from SKM*

SLy4 final SkM* final

ρc 0.159539 0.160486 0.160319 0.160435

ENM/A −15.9721 −16.0685 −16 −16.073

KNM 229.901 230 216.658 230

aNM
sym 32.0043 31.3393 30.0324 31.7221

LNM
sym 45.9618 54.2493 45.7704 60.4725

1/M∗
s 1.43955 0.9 1.26826 0.9

CρΔρ
0 −76.9962 −55.2344 −68.2031 −55.7348

CρΔρ
1 15.6571 −64.1619 17.1094 −70.4274

V n
0 −285.84 −170.796 −280 −170.788

V p
0 −285.84 −197.782 −280 −198.038

Cρ∇J
0 −92.25 −77.9436 −97.5 −79.2915

Cρ∇J
1 −30.75 27.4519 −32.5 49.5737

f(x̂) 1188.75 67.9034 24814.1 67.5738

approximation only. In the case of UNEDF1, the χ2 func-
tion (9) is characterized by 4 different data types: masses
in spherical (28 points) and deformed nuclei (47), pro-
ton radii in spherical nuclei (28), odd-even staggering in
deformed nuclei (4 for protons, 4 for neutrons) and excita-
tion energy of fission isomers actinide nuclei (4) [31]. This
χ2 function is the same for each column in table 1, with
one exception: the weight of the OES data for both pro-
tons and neutron, which we vary between 0.025MeV and
0.100MeV (our reference result has σOES = 0.05MeV).
In all cases, the minimization of the χ2 is performed with
the same algorithm, the same initial point, the same DFT
solver, etc. We see that this single weight has a significant
impact on the results, even if OES data accounts for no
more than 8 out of the 115 data points included in the χ2

(7% of the data set).
Minimizing the χ2 (9) requires initializing the opti-

mization algorithm with a vector x0. Ideally, the opti-
mization algorithm would be able to converge to the ab-
solute minimum of the objective function, given a set of
constraints dictated by reality. In practice, it is nearly im-
possible to guarantee such a result. To our knowledge,
there is only one example where the impact of the ini-
tial point on the resulting parameterization was studied
in detail [73]. Table 2 illustrates the robustness of the
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POUNDERS algorithm; similar solutions to the optimiza-
tion problem are obtained when starting from the SLy4
or SkM* parameterization. The largest difference occurs
for LNM

sym (slope of the symmetry energy in nuclear mat-
ter at saturation density) and Cρ∇J

1 (isovector spin-orbit
coupling constant), which are poorly constrained by the
data set [31].

3.2 Statistical uncertainties of energy densities

Irrespective of the form of the energy functional, the de-
gree of arbitrariness in defining the χ2 used to determine
the “best” parameters of the EDF clearly suggests possi-
bly large uncertainties in the resulting parameterizations.
Standard methods of probability and statistics can be used
to quantify some of these uncertainties. In this section, we
review only the techniques used to estimate statistical un-
certainties. Few studies of systematic uncertainties have
been conducted so far; see [79] for discussion. Numerical
errors are discussed separately in sect. 3.3. This separa-
tion is made for convenience only, since it is illusory to
think that all sources of uncertainties can be completely
disentangled.

3.2.1 Covariance analysis

One of the most common quantities used for estimating
statistical uncertainties is the covariance matrix. The use
of covariance techniques in nuclear DFT is relatively re-
cent. Full regression analysis was first introduced in the
context of nuclear mass fits in [81]. The covariance ma-
trix was first mentioned and computed for Skyrme EDF
optimization in [63]. Since then, there have been many
applications of this technique to compute the standard
deviation of EDF parameters and propagate uncertainties
in model predictions; see sect. 4.

In the following, we denote CM the covariance matrix
of the parameters x of the model M that we are using
(EDF), formally,

(CM )ij = E [(xi − E(xi))(xj − E(xj))] , (10)

where E() refers to the average of a random variable; each
parameter xi is thus treated as a random variable. One
should distinguish CM from the “data” covariance matrix
CD. The latter notation will be used to refer to the covari-
ance matrix of the random variables ε associated with the
error between the model output η(x) and the experimen-
tal data y. All these misfits εti are often assumed to be in-
dependent, therefore CD is diagonal and (CD)ij = σ2

i δij .
One also assumes that they follow a (multivariate) normal
distribution with mean 0, ε ∼ N (0,CD).

In the simple case of an unweighted, linear least-
squares optimization, where η(x) = Ax and σ2

i = 1, the
inverse of the covariance matrix CM can be computed
as [60,61]

(C−1
M )ij(x) =

(
1
2

∂2χ2

∂xi∂xj

)−1

= 2
(
H−1

)
ij

, (11)

where H is the Hessian matrix of (nd − nx)χ2(x). In the
case of nuclear EDF optimization, the quality of the co-
variance matrix estimation is thus contingent on the linear
dependence of observables with model parameters within
the range of variation of interest. From the literature, one
finds that nuclear binding energies behave linearly across
a broad range of parameter space [79]; single-particle or-
bitals have a small degree of nonlinearity [82]; nonlineari-
ties are more pronounced in the variation of fission isomer
excitation energies [79]. While covariance techniques have
been often employed recently to obtain estimates of sta-
tistical uncertainties on model predictions, see sect. 4, the
underlying hypothesis of linearity has rarely been investi-
gated in detail.

The covariance matrix can also be used to get an es-
timate of confidence intervals/regions. Recall that if the
errors ε follow a multivariate normal distribution, then
the confidence interval at α× 100 percent for parameter i
is defined by the endpoints

x̂i ±
√

(CM )iitnd−nx,1−α
2
, (12)

where tnd−nx,1−α
2

is the 1− α
2 quantile of the (Student’s)

t distribution with nd − nx degrees of freedom [60,81,83–
85]. This was used, for example, in the assessment of the
UNEDF functionals [31–33]. The diagonal elements of the
covariance matrix define the standard deviations, (CM )ii,
of each parameter i.

3.2.2 Bayesian techniques

Bayesian inference techniques have been used for many
years in the nuclear data community [86–90]. In nuclear
structure, this method has recently gained ground, for ex-
ample, to quantify uncertainties in chiral effective poten-
tials [91, 92]. In DFT, Bayesian inference has been used
in electronic structure theory to evaluate errors in atom-
ization and cohesive energies caused by the uncertainties
in determining the exchange-correlation functional in the
generalized gradient approximation [93].

Following [86], one may describe Bayesian techniques
as an exercise of inductive inference when the probability
for an hypothesis A to be true is interpreted not strictly as
the number of observations of A over the total number of
outcomes, but rather as the degree of plausibility that A
is true. The “philosophical” interpretation is that the true
value of the model parameters x is described probabilis-
tically. Additional data further constrain the probability
distribution but never reduces it to a single, known value.

Bayes’ theorem provides the mathematical foundation
for Bayesian techniques. In the case of continuous random
variables, it reads

p(x|y,M)dx =
P (y|x,M)P (x|M)dx∫

P (y|M)dx

. (13)

In practice, we seek the probability p(x|y,M)dx of the
model M having parameters x based on a set of observed
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data y. The model is typically characterized by a number
of features that add to the resulting uncertainties. In the
case of EDF optimization, these features include the type
of functional (Skyrme, Gogny, or other), the treatment of
pairing correlations (HFB approximation, particle num-
ber projection), and the numerical implementation. The
probability distribution p(x|y,M) is the posterior distri-
bution. Note that the posterior is computed within the
model M : it does not contain any information about the
validity of said model. In other words, suppose the pos-
terior distribution is sharply peaked around a given value
x0: the fact that x0 is the most likely parameter set does
not mean i) that it is the correct one (since more data may
change the distribution), and ii) that the resulting model
is the correct one (since everything is model-dependent).

In eq. (13), P (y|x,M) is the probability that the
model produces the data given the parameters: it is the
likelihood function [60]. P (x|M) is the probability that
the model has parameters x irrespective of any data: it
is the prior distribution. For a uniform prior distribu-
tion, maximizing the posterior distribution is equivalent
to maximizing the likelihood. We remark in passing that
both statistical approaches give different results if one
looks at the probability distribution of some new parame-
ter g(x) that is a function of the original parameters x [60].

Bayesian inference can also be used to compute an
estimate of the covariance matrix CM between the pa-
rameters. Assuming weak nonlinearities of the model pa-
rameters, that is, η(x) ∝ x, the likelihood function is ap-
proximately Gaussian with respect to x. If one assumes,
for simplicity, full ignorance about the prior distribution
(uniform distribution with independent parameters), then
the posterior covariance matrix is given by [94]

C̃
−1

M ≈ GT C−1
D G, (14)

where
Gij(x) =

∂ηi

∂xj
(x) (15)

and CD is, as before, the covariance matrix associated
with the misfits between data and the predictions. Owing
to the (near) linearity of the model parameters, one can
easily find that C̃

−1

M = 2H as obtained from the stan-
dard covariance matrix. The advantage of the Bayesian
approach is the possiblity of including in the calculation
of the covariance matrix the effect of prior knowledge of
the distribution of model parameters; see sect. 3.2.3 in [94]
for details.

Posterior distributions are typically sampled by us-
ing Markov chain Monte Carlo (MCMC) techniques [95],
the result being a (dependent) sequence of samples
{x(1), . . . ,x(T )}. In practice, this sampling can be compu-
tationally challenging, since thousands or millions of eval-
uations of the likelihood function, hence of the χ2 func-
tion, may be needed. As mentioned in sect. 3.1.2, the χ2

functions used in nuclear EDF optimizations may typi-
cally involve between 100 and 2500 HFB calculations or
more, making the direct sampling of the posterior distri-
bution prohibitive. The alternative is to estimate response

Fig. 3. Univariate and bivariate marginal estimates of the
posterior distribution for the 12-dimensional DFT parameter
vector of the UNEDF1 parameterization; see text for details.
The blue lines enclose an estimated 95% confidence level re-
gion for the posterior distribution found when only the de-
formed masses from the original UNEDF1 data are accounted
for. The red dot corresponds to the UNEDF1 values. The range
of variation of each parameter i is [x̂i − 3σi, x̂i + 3σi], with x̂i

the UNEDF1 value of the parameter, and σi it standard devi-
ation; see [99] for additional details and table II in [32] for the
values of x̂i and σi.

surface functions in order to emulate the behavior of the
model response ηti(x) at a much cheaper cost [96–98]. The
parameters of these response functions can also be incor-
porated in the statistical setting x.

Until now, there have been only two examples of Baye-
sian applications in nuclear EDF optimization. In [100],
the backward-forward Monte-Carlo method was applied
to estimate uncertainties in Skyrme mass model parame-
ters. In [101], the full 12-dimensional multivariate poste-
rior distribution of the Skyrme EDF corresponding to the
UNEDF1 χ2 was computed by using response functions
based on Gaussian processes. The resulting univariate and
bivariate marginal distributions are shown in fig. 3: the
univariate distribution for parameter xk is obtained by
fixing all xi�=k to their central, UNEDF1 values (repre-
sented by the red dots in the figure). Similarly, the bivari-
ate marginal distribution for a pair of parameters (xk, xl)
is obtained by fixing all other parameters xi�=k,l to their
central values. The characteristics of the posterior distri-
bution, such as the calculated standard deviations of the
parameters, are similar to the results from the analysis
based on the confidence interval given in [32].

3.3 Numerical implementations

Implementing the DFT equation (e.g., the HFB equations
for the SR-EDF approach) in a computer program intro-
duces numerical errors. These errors are unavoidable be-
cause the density matrix and pairing tensor have an infi-
nite number of degrees of freedom. In this section, we focus
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only on the problem of solving the HFB equations: in the
SR-EDF approach, these are the only equations needed. In
multireference EDF, the HFB equations also play a cen-
tral role because errors in the solutions will propagate to
the calculation of beyond mean-field corrections such as
in the generator coordinate method [15].

One of the most popular approaches for solving the
HFB equations is to expand the HFB solutions on a basis
of known functions. In atomic nuclei, the eigenstates of
the harmonic oscillator (HO) are most often used, since
they are given analytically on spherical, cylindrical, and
Cartesian coordinates. In addition, there is an exact sep-
aration between center of mass and relative motion, and
the nuclear mean field is well approximated by an HO.
Several DFT solvers using HO basis expansions have been
published; see [8,22,51,102–108]. In practice, all basis ex-
pansions are truncated. Therefore, HFB solutions become
dependent on the characteristic parameters of the basis;
in the case of the HO, these are the basis frequencies
ω = (ωx, ωy, ωz), number of oscillator shells N , and to-
tal number of basis states (if the basis is spherical, all
frequencies are identical and the number of states can
be computed from the number of shells). This spurious
dependence on the basis parameters may induce large er-
rors, for example in nuclei with large elongations or weakly
bound systems [79,109].

The HFB equations can also be solved by direct numer-
ical integration; see, for example, [111] for the HFB for-
malism in coordinate space. This has been done in spheri-
cal and axial symmetry only [110,112]. In these two cases,
the high precision of the coordinate space approach can
be used to estimate the truncation error of HO expan-
sion techniques. In the most recent DFT calculations of
ground-state nuclear properties, up to 20 full oscillator
shells are included in the basis [2]. Based on the results
shown in fig. 4, this indicates that the absolute error on the
binding energy would be at least of the order of 300 keV.
If one wanted to reduce this error to less than 100 eV, up
to N = 60 full oscillator shells should be included. This
implies that the size of the U and V matrices of the Bo-
goliubov transformation would be of the order of 40000×
40000, since the total number of states in the HO basis
with N shells is (N +1)(N +2)(N +3)/6 [113]. In the case
of fig. 4, spherical symmetry is assumed: one can take ad-
vantage of the degeneracy of single-particle states to make
the U and V matrices block diagonal [28] and reduce the
maximum block size to less than 2000× 2000. In the gen-
eral case of a nucleus with triaxial deformation, however,
such block reduction is not possible and the cost of solving
iteratively the HFB equations as described in sect. 2.1 be-
comes impractical unless the basis is significantly smaller.

For more complex geometries, the computational cost
of direct numerical integration also becomes prohibitive;
and hybrid strategies such as lattice discretization [114,
115], finite element analysis [116,117] and multi-resolution
wavelet expansion [118] have been investigated. In spite of
their high precision, all of these techniques are computa-
tionally expensive in terms of processes, memory, or disk
space. They are also not ideal for handling finite-range
local forces or nonlocal forces.

Fig. 4. Comparison between the pace of convergence of a
spherical DFT calculation in coordinate-space, (red squares),
and configuration space (HO basis), (black circles) for the
ground state of 208Pb. Results were obtained by setting both
direct and exchange terms of the Coulomb potentials to 0.
The HO basis results are optimized with respect to the oscil-
lator frequency. Coordinate space calculations were performed
with HFBRAD in a box of 20 fm [110], HO calculations with
HOSPHE [8]. Dashed lines indicate truncation errors of 1 MeV,
100 keV, 10 keV, 1 keV and 100 eV; from [79].

Numerical errors inherent in DFT solvers are often
overlooked, even though they may play a nonnegligible
role in the estimation of statistical uncertainties. For ex-
ample, the truncation error of HO expansions increases
with nuclear deformation, even when one tries to adjust
the geometry of the HO basis accordingly [109,119]. As a
result, the numerical error in the energy of, say, the fission
isomer or the top of the fission barriers in actinide nuclei
is always going to be larger than the error in the ground
state. In fact, at very large deformations, the error of one-
center basis expansions can reach a few MeV. Apart from
adopting empirical corrections based on auxiliary large-
scale surveys of numerical errors [120], the solution could
be to generalize asymptotic formulas such as proposed in
the context of ab initio theory [121–123]. This problem,
as well as the inclusion of these errors in the calculation
of uncertainties, remains open.

4 Uncertainty propagation and predictive
power

One of the main advantages of using the statistical anal-
ysis techniques briefly presented in sect. 3 is to provide a
rigorous framework for propagating the quantified uncer-
tainties to predictions. These predictions can be the result
of running the same model on a different data set; for ex-
ample, computing masses of exotic neutron-rich nuclei or
superheavy elements that have not been included in the
data set during the optimization [101].

Most important, uncertainties in the EDF could also,
in principle, be propagated to cases where the EDF is only
one of several theoretical components, each with a few
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sources of uncertainties. The calculation of low-lying ex-
cited states within the quasiparticle random phase approx-
imation (QRPA) is a straightforward example: it typically
contains approximation of its own (symmetry restrictions,
limited model space, etc.), but it is also strongly depen-
dent on the EDF.

Let us firmly reassert here that in both cases, propa-
gating uncertainties estimated using covariance of Baye-
sian techniques provides information only about the im-
pact of said uncertainties. The procedure does little to
provide ways to reduce them. In EDF optimization, nu-
merical errors due to basis or mesh truncation can easily
(at least in principle) be remedied. Statistical and a for-
tiori systematic uncertainties are much more difficult to
address without a detailed understanding of the nuclear
many-body problem.

Most uncertainty propagation reported in the litera-
ture was performed with covariance techniques. This sit-
uation implies that computed observables are linearly de-
pendent on model parameters, which is guaranteed only
locally near the optimal point. The computed value ηy(x)
of a single new observable y depends on the parame-
terization of the EDF, and one can estimate its stan-
dard deviation based on the parameter covariance matrix
CM [60, 94]:

σ2
y =

∑

ij

Gyi(C−1
M )ijGyj , Gyi(x) =

∂ηy

∂xi
(x). (16)

If one now considers two new observables y and y′, pos-
sibly correlated, such as the neutron skin in 208Pb and
electric dipole (E1) polarizability αD in the same nucleus,
then the above formula should be generalized to

Cyy′ = GT C−1
M G (17)

to account for cross-correlations.
In the context of DFT applications, such covariance

analysis has been applied to compare statistical and sys-
tematic uncertainties of neutron skins [124]; to explore the
properties of ground-state properties of closed-shell nuclei
far from stability [125]; and to optimize EDF for nuclear
astrophysics [126–128].

Bayesian techniques have been introduced only re-
cently in nuclear theory in general, and EDF optimiza-
tion in particular. As a result, in only a couple of cases
have these methods been applied to the propagation of
uncertainties. In [100], the backward-forward Monte-Carlo
algorithm [129], which is a particular implementation of
Bayesian inference, was used to estimate the statistical
uncertainties in Skyrme mass models. In [79,101], the full
posterior distribution of the UNEDF1 Skyrme EDF was
determined in a statistical setting by using Bayesian in-
ference, with uniform prior for x and a Gaussian process
to emulate the response of the model η(x). The poste-
rior distribution was then sampled and used to estimate
uncertainties on the fission barrier of 240Pu and the posi-
tion of the two-neutron dripline. The large uncertainties
on fission barriers visible in fig. 5 emphasizes the lack of
constraints on model parameters, which could be caused

Fig. 5. Comparison between the fission barrier predictions for
240Pu made with the original UNEDF1 (solid line), with a refit
of UNEDF1 including 17 more masses in neutron-rich nuclei
measured in the Canadian Penning Trap (CPT) at Argonne
National Laboratory (dashed line), together with the 90% con-
fidence interval (shaded gray area) obtained from the Bayesian
analysis of the original UNEDF1; from [101].

by an inappropriate choice of experimental data and/or
too limited a model (in this case the Skyrme EDF).

In addition to the applications mentioned in the previ-
ous section, a few attempts have been made to propagate
statistical uncertainties from the nuclear EDF to the cal-
culation of observables that involve another model. For ex-
ample, quantifying the impact of neutron skins on the elec-
tric dipole polarizability or on the weak-charge form factor
requires calculating the electric dipole response function,
that is, RPA calculations [130–132].

5 Conclusions

Over the past decade, nuclear density functional theory
has positioned itself as a candidate for a global, compre-
hensive, accurate, and predictive theory of nuclear struc-
ture. Thanks to the (very recent) introduction in this field
of standard statistical tools such as covariance techniques
or Bayesian inference, the statistical uncertainties associ-
ated with the most common energy functionals such as
the Skyrme, Gogny, or relativistic EDF have been com-
puted rigorously. The propagation of these uncertainties
to model predictions in nuclei far from stability has of-
ten highlighted the need to substantially improve the con-
straints on the parameters of the nuclear EDF, irrespec-
tive of the origin of the functional itself. Progress is thus
needed in two complementary directions. Better rooting
of the nuclear EDF in the theory of nuclear forces will
provide much-needed constraints on the expected pre-
dictive power of the theory. This effort should go hand
in hand with the generalization of statistical techniques
to the problem of EDF optimization, and the always-
indispensable conversations with the experimental nuclear
physics and data communities.

On a practical level, an exciting avenue of research
would be to extend the use of statistical techniques to
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complex problems where the nuclear EDF is one of sev-
eral theoretical tools used. For example, properties of the
neutron spectrum in neutron-induced fission are currently
described within the Hauser-Feshbach approach to nu-
clear reactions. Such calculations require fission fragment
yields, total kinetic energies, and excitation energies of
the fragments. These quantities, in turn, are currently ob-
tained from either semi-phenomenological models based,
for example, on Langevin dynamics [133,134], or from fully
microscopic calculations based on the time-dependent gen-
erator coordinate method [135–137]. Either way, these dy-
namical calculations depend on the potential energy sur-
face of the nucleus in some pre-defined collective space.
For the microscopic approach, this potential energy sur-
face depends on which nuclear EDF is used, how the EDF
has been fitted, and what types of corrections are in-
cluded [32,138–142]. Ultimately, one would therefore wish
to propagate the uncertainties all the way through this
chain of “models,” from the nuclear EDF to the fission
spectrum.

A related area of future research would be to define
a comprehensive framework to address uncertainties. In
this manuscript, we have insisted on the statistical uncer-
tainties, with only a short discussion of numerical errors.
However, we have also pointed out that all forms of un-
certainties are related to one another: numerical errors
are not a constant offset in DFT calculations, and thus
they propagate in a very nonlinear way into the calcu-
lation of the χ2, which will impact parameter optimiza-
tion and subsequent uncertainty analysis. The particular
mathematical formulation of the theory (SR-EDF versus
MR-EDF, HFB approximation only or HFB plus correc-
tions, etc.) also partially determines which observables can
be reliably computed by the model. For all others, the
statistical analysis may reveal that some parameters are
ill-constrained, not because the data is insufficient, but be-
cause the model is not sensitive to it. Moreover, one should
work toward incorporating experimental uncertainties. In
the case of the UNEDF2 parameterization, for example,
both fission isomer excitation energies and single-particle
states were included in the fit. Yet these quantities are
model-dependent, and their “experimental” error is rather
large. In the future, one should try to incorporate this in-
formation in the determination of EDF parameters.
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