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Abstract. Simultaneous distribution between the deflection angle and the lateral displacement of fast
charged particles traversing through matter is derived by applying numerical inverse Fourier transforms
on the Fourier spectral density solved analytically under the Molière theory of multiple scattering, taking
account of ionization loss. Our results show the simultaneous Gaussian distribution at the region of both
small deflection angle and lateral displacement, though they show the characteristic contour patterns of
probability density specific to the single and the double scatterings at the regions of large deflection angle
and/or lateral displacement. The influences of ionization loss on the distribution are also investigated. An
exact simultaneous distribution is derived under the fixed energy condition based on a well-known model
of screened single scattering, which indicates the limit of validity of the Molière theory applied to the
simultaneous distribution. The simultaneous distribution will be valuable for improving the accuracy and
the efficiency of experimental analyses and simulation studies relating to charged particle transports.

1 Introduction

Molière’s theory of multiple scattering [1–3] is still a most
advanced theory, taking account of the single and the
plural scatterings together in his theory, and showing
rapid convergence reflecting expansion by the low-frequent
large-angle scattering [4]. Nevertheless, no distributions
other than those of the deflection angle, the lateral dis-
placement, and the linear combination of the both, were
indicated by him [5], due to the mathematical difficulty or
complexity.

Effective approaches have been attempted to apply
the Molière theory to other problems. A differentially for-
mulated Molière theory was developed by Kamata and
Nishimura, expressing Molière’s theory by a simple ordi-
nary differential equation for the Fourier spectral density,
introducing new physical constants [6, 7]. They indicated
the terms appended by the Molière theory to their struc-
ture functions of electromagnetic shower. Later, the for-
mulation was applied by Nakatsuka to evaluate corrections
by the Molière theory to the longitudinal distribution of

a e-mail: nakatuka@olive.plala.or.jp
b Retired now from the university.

fast charged particles traversing through matter [8] and by
Nakatsuka and Nishimura to derive the angular and the
lateral distributions of those particles under the Molière
theory with ionization [4]. On the other hand, the numer-
ical functional transform was applied by Andreo et al. to
derive the higher-order terms of Molière’s series-coefficient
function [9,10], as well as by Bielajew to derive the exact
angular distribution based on a model of screened single
scattering [11,12].

We derive the simultaneous distribution between the
deflection angle and the lateral displacement, not solved
yet under the Molière theory [13], by applying the above
effective methods. The Molière simultaneous distribution
determines the energy of charged particle more accurately
with the maximum likelihood method than the Molière in-
dividual distribution for the deflection angle [14]. The for-
mer will give more reliable results than the latter in exper-
imental analyses concerning charged particle transports,
e.g. momentum measurements by emulsion cloud cham-
bers [15,16] or streamer tube chambers [17,18] in neutrino-
oscillation experiments, as well as arrival-direction deci-
sions in astronomical cosmic-ray observations [19,20].

Practically, we acquire the simultaneous distribution
with ionization by applying the inverse Fourier transforms
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numerically on the Fourier spectral density solved analyti-
cally by the Molière theory of differential formulation. The
distribution expressed by a power series of rapid conver-
gence is also presented. The results indicated by contour
maps of the probability density show characteristic pat-
terns of the single and the double scatterings other than
the central Gaussian pattern. We also propose a mathe-
matically exact simultaneous distribution based on a well-
known model of screened single scattering [11, 12], under
the fixed energy condition. Comparing the results with
those derived by the Molière theory, we discuss the limits
of validity and applicability of the Molière theory to the
simultaneous distribution.

2 Molière simultaneous distribution between
the deflection angle and the lateral
displacement

2.1 The analytical solution of Fourier spectral density
for the simultaneous distribution

Let F (�χ,�r, t) d�χ d�r be the simultaneous distribution be-
tween the deflection angle �χ ≡ (θy, θz) and the lateral dis-
placement �r ≡ (y, z) of fast charged particles after pene-
trating a matter of the thickness t, with �r and t measured
in units of radiation length X0 [21]. Then the diffusion
equation is described as [4, 11]

∂

∂t
F (�χ,�r, t) = −�χ

∂F (�χ,�r, t)
∂�r

+
∫∫ {

F
(
�χ − �χ′, �r, t

)

−F (�χ,�r, t)
}

σ(χ′) d�χ′, (1)

where σ(χ) denotes the screened single-scattering cross-
section for charged particles of energy E under the small
angle approximation [13],

σ(χ)2πχdχdt =
1

πΩ

K2

E2
χ−42πχdχdt,

for χ >
√

eχa, (2)

with the characteristic screening angle [1, 3] of

χa = (K/E)/e(Ω−1+2C)/2, (3)

K and Ω denote the scattering constants specific to the
matter introduced by Kamata and Nishimura [4,6,7], and
C = 0.57721 . . ., denotes Euler’s constant. We derive the
simultaneous distribution, taking account of continuous
energy loss by ionization with

E = E0 − εt, (4)

where E0 denotes the incident energy and ε the critical
energy [4, 21]. Applying Fourier transforms,

F̃ (�ζ, �η, t) =
1

4π2

∫∫∫∫
ei�ζ�χ+i�η �rF (�χ,�r, t) d�χ d�r, (5)

we have a diffusion equation for the Fourier spectral den-
sity,

∂F̃

∂t′
= �η

∂F̃

∂�ζ ′
+ 2πF̃

∫ ∞

0

{J0(ζ ′χ) − 1}σ(χ)χdχ

= �η
∂F̃

∂�ζ ′
− K2ζ ′2

4E′2 F̃

{
1 − 1

Ω
ln

K2ζ ′2

4E′2

}
, (6)

according to the differentially formulated Molière theory
[4, 6, 7], where �ζ ≡ (ζy, ζz) and �η ≡ (ηy, ηz) denote the
Fourier variables corresponding to �χ and �r, respectively.
Note that the variables �ζ ′ and E′ change together with
the increase of variable t′. The differential term with �ζ ′

vanishes when we replace the variable �ζ ′ by

�ζ ′ = �ζ + (t − t′)�η, (7)

where t and �ζ denote thickness and Fourier variable at the
destination, so that eq. (6) is integrated as [4]

ln 4π2F̃ = −
∫ t

0

K2(�ζ + (t − t′)�η )2

4(E0 − εt′)2

×
{

1 − 1
Ω

ln
K2(�ζ + (t − t′)�η )2

4(E0 − εt′)2

}
dt′

=
∫ 1

0

θ2
ME0E(�ζ + �ηtu)2

4B(E + εtu)2
ln

θ2
ME0E(�ζ + �ηtu)2

4eB(E + εtu)2
du,

(8)

where u replaces (t − t′)/t, E denotes the destination en-
ergy at t, and B and θM, called as the expansion parameter
and the scale angle [4], are introduced as

B − ln B = Ω − ln Ω + ln t, (9)
θ2
M = (B/Ω)K2t/(E0E). (10)

The thickness t and the square of scale angle θ2
M divided by

K2/(E0E) for charged particles traversing through mat-
ters of H2O (Ω = 15.2, K = 19.1MeV), Fe (Ω = 14.3,
K = 19.8MeV), and Pb (Ω = 13.0, K = 20.7MeV) are
plotted against B in figs. 1 and 2, respectively.

By taking the spectral density F̃ (�ζ, �η, t) of eq. (5) on
the coordinates of �ζ = (ζ, 0) and �η = (η, 0), we have the
spectral density for the projected components, as

f̃(ζ, ηt, t) =
1
2π

exp
[∫ 1

0

θ2
ME0E(ζ + ηtu)2

4B(E + εtu)2

× ln
θ2
ME0E(ζ + ηtu)2

4eB(E + εtu)2
du

]
. (11)

We expressed the spectral density as the function of ζ and
ηt. Then applying the inverse Fourier transforms with ζ
and ηt, we have the simultaneous distribution between the
projected components, θ and y, as

f(θ, ψ, t) dθ dψ =
dθ d(y/t)

2π

∫ ∞

−∞

∫ ∞

−∞
e−iθζ−iψ(ηt)

×f̃(ζ, ηt, t) dζ d(ηt), (12)
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Fig. 1. The traversed thickness t in units of radiation length
plotted against B for matters of H2O, Fe, and Pb.
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Fig. 2. The squared scale angle θ2
M divided by K2/(E0E) plot-

ted against B for matters of H2O, Fe, and Pb.

where we expressed the simultaneous distribution as the
function of the deflection angle θ and the chord-angle ψ,
defined as

ψ ≡ y/t. (13)

It should be reminded that the variables ζ and ηt always
appear in the forms of θMζ and θMηt in the Fourier spec-
tral density of eq. (11), so that the variables θ and ψ be-
come scaled by θM in the probability density of f(θ, ψ, t)
due to the relation of eq. (12).

Note that the diffusion equation (1) is valid under
the small angle approximation [13] where θ2 is required

smaller enough than 1. Thus so as the Molière simulta-
neous distributions derived below to be valid, θ2

M which
increases with t (or the corresponding B) and works pro-
portionally to K2/(E0E) is required smaller enough than
1. Note also that the continuous energy loss of eq. (4) is
valid for charged particles not to suffer radiation loss, e.g.
for electrons with their energies of about E < ε [21] and
for muons with their energies of about E < 625GeV in
the standard rock [22].

2.2 Double Fourier transforms to derive the
simultaneous distribution

The simultaneous distribution is derived by the double
Fourier transforms of eq. (12), by applying FFT (Fast
Fourier Transform) tools [23] or applying numerical func-
tional transforms. As it holds a symmetric relation of

f̃(−ζ,−ηt, t) = f̃(ζ, ηt, t), (14)

the double Fourier transforms of eq. (12) is reduced to the
double cosine transforms as

f(θ, ψ, t) dθ dψ =
dθ d(y/t)

π

∫ ∞

0

d(ηt)
∫ ∞

−∞
cos(θζ + ψηt)

×f̃(ζ, ηt, t) dζ. (15)

The simultaneous distribution can also be expressed as
g(ρ, ϕ, t)ρdρdϕ in the cylindrical coordinate, satisfying

f(θ, ψ, t) = g(ρ, ϕ, t), (16)

with
θ = ρ cos ϕ, ψ = ρ sin ϕ. (17)

On the radial axis with the azimuthal angle of 0, the prob-
ability density is expressed as

g(ρ, 0, t) = f(ρ, 0, t) =
1
π

∫ ∞

0

dζ cos(ρζ)

×
∫ ∞

−∞
f̃(ζ, ηt, t) d(ηt). (18)

If we introduce the new θ′-ψ′ and ζ ′-η′t coordinates by
rotating both the θ-ψ and ζ-ηt coordinates with ϕ, the
probability density on the θ′ axis, or g(ρ, ϕ, t), is derived
same way as eq. (18) on the rotated coordinate,

g(ρ, ϕ, t) =
1
π

∫ ∞

0

dζ ′ cos(ρζ ′)

×
∫ ∞

−∞
f̃(ζ ′ cos ϕ − η′t sin ϕ, ζ ′ sin ϕ + η′t cos ϕ, t) d(η′t).

(19)

2.3 The simultaneous distribution under the Gaussian
approximation

Integrating eq. (11) with the limiting condition of B → ∞,
we have the analytical solution of simultaneous spectral
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density under the Gaussian approximation [13], as

f̃G(ζ, ηt, t) =
1
2π

exp
[
−

∫ 1

0

θ2
ME0E(ζ + ηtu)2

4(E + εtu)2
du

]

=
1
2π

exp
[
−θ2

ME0E

4ε2t2

{
η2t2− 2ηt(Eηt−εtζ)

εt

× ln
E0

E
+

(Eηt − εtζ)2

E0E

}]
, (20)

so that we have the Gaussian simultaneous distribution

fG(θ, ψ, t) dθ dψ =
ε2t2/(E0E){

ε2t2/(E0E) − ln2(E0/E)
}1/2

dθ dψ

πθ2
M

× exp
[
− ε2t2/(E0E)/θ2

M

ε2t2/(E0E) − ln2(E0/E)

×
{

θ2 − 2θ(Eθ + εtψ)
εt

ln
E0

E

+
(Eθ + εtψ)2

E0E

}]
. (21)

These spectral density and the distribution agree with
Eyges’ results [24], if we regard his pβ as our E.

Especially under the fixed energy condition, we have

f̃G(ζ, ηt, t) =
1
2π

exp
[
−θ2

M

4

(
ζ2 + ζηt +

η2t2

3

)]
, (22)

at the limit of ε → 0 thus E0 → E, so that we have the
simultaneous distribution

fG(θ, ψ, t) dθ dψ =

2
√

3
πθ2

M

exp
[
− 4

θ2
M

(
θ2 − 3θψ + 3ψ2

)]
dθ dψ, (23)

well known as the Fermi distribution [21].

2.4 Molière simultaneous distribution under the fixed
energy condition

Integrating eq. (11) with the limiting condition of ε → 0,
we have the analytical solution of simultaneous spectral
density under the fixed energy condition, as

ln 2πf̃ =
1
B

θ2
M

12ηt

{
(ζ + ηt)3 ln

θ2
M(ζ + ηt)2

4e2/3+B
− ζ3 ln

θ2
Mζ2

4e2/3+B

}
,

(24)

identical with Molière’s result [5], where we should remind
his χ′

c

√
l0B agrees with our θM.

By applying the double cosine transforms of eq. (15),
we have the Molière simultaneous distribution f(θ, ψ, t)
between the deflection angle θ and the chord-angle ψ ≡
y/t as indicated in fig. 3 for B = 8, where we find the prob-
ability density decreases as two-dimensional Gaussian at
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Fig. 3. Probability density of the Molière simultaneous distri-
bution f(θ, ψ, t) between the deflection angle θ and the chord-
angle ψ ≡ y/t with the both projected angles scaled by θM, for
B = 8 under the fixed energy condition.

1e-010

1e-008

1e-006

0.0001

0.01

1

0.1 1 10

P
ro

ba
bi

lit
y 

D
en

si
ty

Radial Distance (+/M)

=  
=/ 

=/ 

=/ 

=/
=/

Fig. 4. Radial variation of the Molière simultaneous distribu-
tion f(θ, ψ, t) ≡ g(ρ, ϕ, t) for B = 8 under the fixed energy
condition with the radial distance scaled by θM, on the az-
imuthal angles ϕ of π/6, 0, π/3, 5π/6, π/2, and 2π/3 from top
to bottom.

the central region of ρ � θM. The same distribution is also
indicated in fig. 4 by the radial variation g(ρ, ϕ, t) of the
density defined in eq. (19), where we find the probability
density decreases with power law of the index of about −4
or −6 at the peripheral regions of ρ � θM depending on
the azimuthal angle ϕ of the radial direction (the indexes
of about −4.2, −3.9, −6.2, −6.1, −6.0, and −6.0 for ϕ of
π/6, 0, π/3, 5π/6, π/2, and 2π/3, from the top line to
the bottom). The probability density f(θ, ψ, t) is also in-
dicated in the contour map in fig. 5, whose characteristic
patterns appearing in the peripheral regions are discussed
later in subsect. 3.3.
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Fig. 5. Contour maps of the probability density of the Molière simultaneous distribution between the deflection angle θ and
the chord-angle ψ ≡ y/t with the both projected angles scaled by θM, in cases of fixed energy (left), as well as with fractional
energy-loss of 1/4 (middle) and 1/2 (right), for B of 8, 12, and 16 from outside curve to inside. The probability densities plotted
are 1, 10−1, 10−2, . . . , 10−5 in the central and the single-scattering regions and 10−7, 10−9 in the double-scattering region.

2.5 Molière simultaneous distribution with ionization

Integrating eq. (11) partly using mathematica [25], we
have the analytical solution of simultaneous spectral den-
sity with ionization, as

ln 2πf̃ =
θ2
ME0E

4B(E0 − E)2

{
ηt

[
(ζ + ηt) ln

θ2
M(ζ + ηt)2

4eB

− ζ ln
θ2
Mζ2

4eB
− E0 + E

E0 − E
ηt ln

E0

E

]

+(Eηt − εtζ)
[
ζ + ηt

E0
ln

θ2
M(ζ + ηt)2

4eB+2

− ζ

E
ln

θ2
Mζ2

4eB+2
−

(
ζ + ηt

E0
+

ζ

E

)
ln

E0

E

]

− (Eηt − εtζ)ηt

E0 − E

[
ln

E2
0(ηt)2

(Eηt − εtζ)2
ln

θ2
M(ζ+ηt)2

4eB

− ln
E2(ηt)2

(Eηt − εtζ)2
ln

θ2
Mζ2

4eB

+ 4 Li2

(
− (E0 − E)(ζ + ηt)

Eηt − εtζ

)

− 4Li2

(
− (E0 − E)ζ

Eηt − εtζ

)]}
, (25)

with B and θM of eqs. (9) and (10), where Li2(z) denotes
the dilogarithm function indicated in appendix A1. The
spectral density indicates that the simultaneous distribu-
tion between the deflection angle θ and the chord-angle
ψ ≡ y/t, both scaled by θM, depends only on the ex-
pansion parameter B and the fractional energy E/E0.
The simultaneous distribution with fractional energy-loss,
(E0 − E)/E0, of 1/4 and 1/2 are derived numerically
through eq. (15)2 as indicated in contour maps of the
probability density in fig. 5, whose characteristic patterns

1 Details of the dilogarithm function are indicated in, e.g.,
http://en.wikipedia.org/wiki/Spence’s function.

2 We evaluated the probability densities by numerical inte-
gration of eq. (15), though in the case of fractional energy-loss
of 1/4, we evaluated the density through series expansion of
f (0) + B−1f (1) + B−2f (2) indicated in subsect. 3.1, to reduce
computation time.

appearing in the peripheral regions are discussed later in
subsect. 3.3.

3 Relating problems and discussions

3.1 Molière simultaneous distribution expressed by
power series with B−1

The spectral density of the Molière simultaneous distribu-
tion under the fixed energy condition of eq. (24) can be
expressed as

f̃ =
1
2π

exp
[
−θ2

M

4

(
ζ2 + ζηt +

η2t2

3

)
+

θ2
M/B

12ηt

×
{

(ζ + ηt)3 ln
θ2
M(ζ + ηt)2

4e2/3
− ζ3 ln

θ2
Mζ2

4e2/3

}]
. (26)

We can expand the density by power series with B−1 as

f̃ =
1
2π

e−
θ2
M
4 (ζ2+ζηt+ η2t2

3 )
∞∑

k=0

1
k!

(θ2
M/B)k

(12ηt)k

×
{

(ζ + ηt)3 ln
θ2
M(ζ + ηt)2

4e2/3
− ζ3 ln

θ2
Mζ2

4e2/3

}k

, (27)

so we find the Molière simultaneous distribution is ex-
pressed by power series with B−1 as

f(θ, ψ, t)=f (0)(θ, ψ)+B−1f (1)(θ, ψ)+B−2f (2)(θ, ψ)+. . . ,
(28)

with the t-dependent B of eq. (9) and the B-independent
series-coefficient functions of

f (k)(θ, ψ) =
1/k!
4π2

∫∫
e−iθζ−iψηt

(
θ2
M

12ηt

)k

×
{

(ζ + ηt)3 ln
θ2
M(ζ + ηt)2

4e2/3
− ζ3 ln

θ2
Mζ2

4e2/3

}k

×e−
θ2
M
4 (ζ2+ζηt+ η2t2

3 ) dζ d(ηt), (29)

similarly as the series expansion of the Molière angular
distribution [2].
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Fig. 6. Series-coefficient function of f (1)(θ, ψ) with the vari-
ables θ and ψ ≡ y/t scaled by θM.

Especially for the first three series-coefficient func-
tions, we have

f (0)(θ, ψ) =
1

4π2

∫∫
e−iθζ−iψηte−

θ2
M
4 (ζ2+ζηt+ η2t2

3 )dζ d(ηt)

=
2
√

3
πθ2

M

exp
[
− 4

θ2
M

(
θ2 − 3θψ + 3ψ2

)]
, (30)

f (1)(θ, ψ) =
1

4π2

∫∫
e−iθζ−iψηte−

θ2
M
4 (ζ2+ζηt+ η2t2

3 )

×
{

θ2
M

4

(
ζ2 + ζηt +

η2t2

3

)
ln

θ2
Mζ2

4e2/3

+
θ2
M(ζ+ηt)3

12ηt
ln

(
1+

ηt

ζ

)2
}

dζ d(ηt), (31)

f (2)(θ, ψ) =
1/2!
4π2

∫∫
e−iθζ−iψηte−

θ2
M
4 (ζ2+ζηt+ η2t2

3 )

×
{

θ2
M

4

(
ζ2 + ζηt +

η2t2

3

)
ln

θ2
Mζ2

4e2/3

+
θ2
M(ζ+ηt)3

12ηt
ln

(
1+

ηt

ζ

)2
}2

dζ d(ηt), (32)

where at |ηt
ζ | ≤ 0.01 we evaluate

θ2
M(ζ + ηt)3

12ηt
ln

(
1 +

ηt

ζ

)2

	

θ2
M(ζ + ηt)3

6ζ

(
1 − ηt

2ζ
+

η2t2

3ζ2
− . . .

)
. (33)

f (0)(θ, ψ) derived analytically is a 2-dimensional Gaus-
sian, already indicated in eq. (23). f (1)(θ, ψ) and f (2)(θ, ψ)
are derived numerically as indicated in figs. 6 and 7 and
given in tables 1 and 2 for representative radial directions
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Fig. 7. Series-coefficient function of f (2)(θ, ψ) with the vari-
ables θ and ψ ≡ y/t scaled by θM.

in the θ-ψ coordinate. Then we can derive the simulta-
neous distributions accurately enough by the first three
terms of the power series (28), easily with B from eq. (9),
f (0) of eq. (30), and f (1), f (2) of tables 1 and 2 especially
on the radial lines indicated in the tables without apply-
ing the numerical integration of eq. (15). The distributions
derived by the first three terms of the power series agree
very well with those derived by the numerical integration
of eq. (15), as compared in fig. 8 on the radial lines of
θ = 0 and ψ ≡ y/t = 0 for B = 8.

Note that the term f (k)(θ, ψ) for k ≥ 1 does not
contribute to the probability of simultaneous distribution
with θ and ψ as a whole, as confirmed by

∫ ∞

−∞
dψ

∫ ∞

−∞
dθf (k)(θ, ψ) =

lim
ηt→0

[
lim
ζ→0

1
k!

(
θ2
M

12ηt

)k {
(ζ + ηt)3 ln

(ζ + ηt)2

4e2/3

− ζ3 ln
ζ2

4e2/3

}k

e−
θ2
M
4 (ζ2+ζηt+ η2t2

3 )

]
= 0 (for k ≥ 1).

(34)

3.2 A cross-section dividing model to interpret the
series expansion of the Molière simultaneous
distribution

We divide the screened single-scattering cross-section σ(χ)
of eq. (2) as [4]

σ(χ) = σM(χ) + σL(χ), (35)

where the moderate scattering σM(χ) and the large-angle
scattering σL(χ) are divided at

χB = eB/2
√

eχa. (36)
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Table 1. Series-coefficient function f (1)(θ, ψ) on the radial lines with the azimuthal angle of ϕ, or θ = ρ cos ϕ and ψ = ρ sin ϕ.
θ, ψ, and ρ are scaled by θM. f (1)(0, 0) = 9.106e-01.

ρ ϕ = 0 ϕ = π/6 ϕ = π/3 ϕ = π/2 ϕ = 2π/3 ϕ = 5π/6
0.1 7.939e-01 8.888e-01 7.675e-01 5.735e-01 4.971e-01 5.969e-01
0.2 4.936e-01 8.251e-01 4.094e-01 −6.495e-02 −1.902e-01 −1.380e-02
0.3 1.314e-01 7.253e-01 3.185e-03 −4.105e-01 −4.167e-01 −3.733e-01
0.4 −1.644e-01 5.976e-01 −2.913e-01 −3.494e-01 −2.410e-01 −3.411e-01
0.5 −3.180e-01 4.527e-01 −4.027e-01 −1.525e-01 −5.398e-02 −1.509e-01
0.6 −3.267e-01 3.018e-01 −3.585e-01 −2.727e-02 1.153e-02 −1.595e-02
0.7 −2.405e-01 1.557e-01 −2.383e-01 9.890e-03 1.405e-02 2.741e-02
0.8 −1.238e-01 2.371e-02 −1.163e-01 1.006e-02 6.643e-03 2.564e-02
0.9 −2.428e-02 −8.689e-02 −3.139e-02 4.772e-03 2.487e-03 1.537e-02
1.0 3.805e-02 −1.717e-01 1.151e-02 1.742e-03 8.957e-04 8.123e-03
1.1 6.486e-02 −2.290e-01 2.493e-02 5.684e-04 3.306e-04 4.263e-03
1.2 6.783e-02 −2.598e-01 2.366e-02 1.777e-04 1.248e-04 2.310e-03
1.3 5.916e-02 −2.669e-01 1.775e-02 5.455e-05 4.741e-05 1.292e-03
1.4 4.723e-02 −2.547e-01 1.195e-02 1.643e-05 1.787e-05 7.383e-04
1.5 3.623e-02 −2.282e-01 7.676e-03 4.823e-06 6.628e-06 4.278e-04
1.6 2.751e-02 −1.927e-01 4.867e-03 1.370e-06 2.406e-06 2.499e-04
1.7 2.106e-02 −1.529e-01 3.106e-03 3.749e-07 8.519e-07 1.467e-04
1.8 1.638e-02 −1.129e-01 2.008e-03 9.846e-08 2.933e-07 8.619e-05
1.9 1.297e-02 −7.556e-02 1.316e-03 2.476e-08 9.803e-08 5.063e-05
2.0 1.044e-02 −4.300e-02 8.722e-04 5.950e-09 3.174e-08 2.968e-05
2.1 8.537e-03 −1.628e-02 5.827e-04 1.364e-09 9.944e-09 1.733e-05
2.2 7.067e-03 4.320e-03 3.914e-04 2.991e-10 3.011e-09 1.008e-05
2.3 5.913e-03 1.909e-02 2.638e-04 6.313e-11 8.802e-10 5.827e-06
2.4 4.994e-03 2.873e-02 1.781e-04 1.249e-11 2.482e-10 3.347e-06
2.5 4.253e-03 3.412e-02 1.204e-04 1.387e-12 6.747e-11 1.909e-06
2.6 3.648e-03 3.622e-02 8.138e-05 −8.856e-13 1.767e-11 1.080e-06
2.7 3.150e-03 3.594e-02 5.496e-05 −4.881e-13 4.468e-12 6.064e-07
2.8 2.736e-03 3.406e-02 3.706e-05 6.913e-13 1.083e-12 3.374e-07
2.9 2.390e-03 3.124e-02 2.494e-05 1.348e-12 2.363e-13 1.860e-07
3.0 2.098e-03 2.797e-02 1.675e-05 8.406e-13 4.347e-14 1.016e-07
3.1 1.850e-03 2.459e-02 1.121e-05 −4.193e-13 1.691e-14 5.491e-08
3.2 1.638e-03 2.134e-02 7.483e-06 −1.335e-12 1.161e-14 2.938e-08
3.3 1.456e-03 1.836e-02 4.976e-06 −1.086e-12 −4.968e-15 1.556e-08
3.4 1.299e-03 1.571e-02 3.297e-06 1.371e-13 −1.339e-14 8.149e-09
3.5 1.163e-03 1.341e-02 2.175e-06 1.265e-12 −2.151e-15 4.222e-09
3.6 1.045e-03 1.144e-02 1.429e-06 1.283e-12 6.124e-15 2.163e-09
3.7 9.415e-04 9.787e-03 9.348e-07 1.479e-13 −2.202e-15 1.095e-09
3.8 8.507e-04 8.398e-03 6.086e-07 −1.138e-12 −6.768e-15 5.484e-10
3.9 7.707e-04 7.239e-03 3.943e-07 −1.416e-12 1.128e-15 2.713e-10
4.0 7.000e-04 6.271e-03 2.542e-07 −4.224e-13 2.821e-15 1.327e-10
4.1 6.373e-04 5.463e-03 1.630e-07 9.572e-13 −5.541e-15 6.407e-11
4.2 5.816e-04 4.785e-03 1.040e-07 1.479e-12 −5.568e-15 3.057e-11
4.3 5.319e-04 4.214e-03 6.598e-08 6.748e-13 3.101e-15 1.441e-11
4.4 4.874e-04 3.730e-03 4.163e-08 −7.270e-13 3.480e-15 6.707e-12
4.5 4.475e-04 3.318e-03 2.612e-08 −1.467e-12 −1.873e-15 3.083e-12
4.6 4.117e-04 2.965e-03 1.629e-08 −8.966e-13 −5.534e-16 1.397e-12
4.7 3.794e-04 2.660e-03 1.010e-08 4.606e-13 5.103e-15 6.249e-13
4.8 3.502e-04 2.396e-03 6.229e-09 1.391e-12 4.151e-15 2.775e-13
4.9 3.238e-04 2.166e-03 3.817e-09 1.080e-12 −5.501e-16 1.242e-13
5.0 2.999e-04 1.964e-03 2.325e-09 −1.745e-13 −1.334e-15 5.624e-14
5.5 2.087e-04 1.254e-03 1.773e-10 1.290e-12 4.630e-15 4.060e-15
6.0 1.498e-04 8.451e-04 1.150e-11 5.131e-13 8.644e-15 −2.877e-15
6.5 1.104e-04 5.927e-04 6.321e-13 −1.129e-12 7.577e-16 −6.694e-15
7.0 8.319e-05 4.292e-04 2.883e-14 −8.049e-13 6.337e-16 −3.657e-16
7.5 6.388e-05 3.191e-04 1.093e-15 9.861e-13 5.755e-15 −1.047e-15
8.0 4.988e-05 2.424e-04 2.539e-16 1.243e-12 6.844e-16 −1.668e-15
8.5 3.952e-05 1.877e-04 −1.069e-15 −5.201e-13 −5.090e-15 −6.774e-16
9.0 3.172e-05 1.477e-04 −2.111e-17 −1.425e-12 −4.723e-16 1.923e-15
9.5 2.576e-05 1.179e-04 2.230e-15 −3.169e-14 2.644e-16 3.154e-15

10.0 2.114e-05 9.525e-05 −1.624e-15 1.289e-12 −8.001e-15 4.586e-15
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Table 2. Series-coefficient function f (2)(θ, ψ) on the radial lines with the azimuthal angle of ϕ, or θ = ρ cos ϕ and ψ = ρ sin ϕ.
θ, ψ, and ρ are scaled by θM. f (2)(0, 0) = 2.416e+00.

ρ ϕ = 0 ϕ = π/6 ϕ = π/3 ϕ = π/2 ϕ = 2π/3 ϕ = 5π/6
0.1 2.011e+00 2.342e+00 1.916e+00 1.263e+00 1.018e+00 1.344e+00
0.2 1.029e+00 2.128e+00 7.485e-01 −5.425e-01 −7.802e-01 −4.006e-01
0.3 2.826e-04 1.799e+00 −3.668e-01 −9.139e-01 −6.846e-01 −8.565e-01
0.4 −6.090e-01 1.392e+00 −8.853e-01 −2.680e-01 2.486e-02 −2.698e-01
0.5 −6.641e-01 9.489e-01 −7.635e-01 1.432e-01 1.605e-01 1.669e-01
0.6 −3.534e-01 5.150e-01 −3.361e-01 1.207e-01 3.423e-02 1.532e-01
0.7 1.914e-02 1.284e-01 3.313e-02 2.059e-02 −1.536e-02 2.249e-02
0.8 2.431e-01 −1.821e-01 1.855e-01 −8.391e-03 −7.683e-03 −3.020e-02
0.9 2.764e-01 −4.002e-01 1.626e-01 −1.765e-03 1.062e-03 −2.545e-02
1.0 1.910e-01 −5.225e-01 7.678e-02 4.417e-03 2.999e-03 −1.198e-02
1.1 8.007e-02 −5.570e-01 7.186e-03 5.163e-03 2.520e-03 −4.468e-03
1.2 1.200e-04 −5.205e-01 −2.389e-02 3.882e-03 1.766e-03 −1.454e-03
1.3 −3.652e-02 −4.343e-01 −2.732e-02 2.544e-03 1.182e-03 −3.028e-04
1.4 −4.219e-02 −3.212e-01 −1.973e-02 1.597e-03 7.808e-04 1.664e-04
1.5 −3.376e-02 −2.017e-01 −1.132e-02 9.982e-04 5.149e-04 3.576e-04
1.6 −2.263e-02 −9.193e-02 −5.495e-03 6.326e-04 3.413e-04 4.181e-04
1.7 −1.373e-02 −2.785e-03 −2.223e-03 4.102e-04 2.287e-04 4.137e-04
1.8 −7.945e-03 6.051e-02 −5.844e-04 2.733e-04 1.555e-04 3.781e-04
1.9 −4.568e-03 9.748e-02 1.888e-04 1.871e-04 1.077e-04 3.300e-04
2.0 −2.701e-03 1.112e-01 5.387e-04 1.313e-04 7.599e-05 2.795e-04
2.1 −1.676e-03 1.069e-01 6.833e-04 9.432e-05 5.468e-05 2.318e-04
2.2 −1.100e-03 9.057e-02 7.243e-04 6.910e-05 4.007e-05 1.894e-04
2.3 −7.613e-04 6.792e-02 7.105e-04 5.152e-05 2.986e-05 1.532e-04
2.4 −5.526e-04 4.372e-02 6.676e-04 3.901e-05 2.260e-05 1.229e-04
2.5 −4.176e-04 2.142e-02 6.101e-04 2.994e-05 1.734e-05 9.814e-05
2.6 −3.265e-04 3.089e-03 5.467e-04 2.326e-05 1.347e-05 7.818e-05
2.7 −2.628e-04 −1.036e-02 4.829e-04 1.827e-05 1.059e-05 6.223e-05
2.8 −2.166e-04 −1.896e-02 4.217e-04 1.450e-05 8.401e-06 4.958e-05
2.9 −1.823e-04 −2.331e-02 3.651e-04 1.161e-05 6.728e-06 3.960e-05
3.0 −1.560e-04 −2.433e-02 3.139e-04 9.373e-06 5.434e-06 3.175e-05
3.1 −1.353e-04 −2.301e-02 2.685e-04 7.628e-06 4.424e-06 2.556e-05
3.2 −1.187e-04 −2.026e-02 2.286e-04 6.252e-06 3.627e-06 2.069e-05
3.3 −1.052e-04 −1.683e-02 1.941e-04 5.159e-06 2.993e-06 1.685e-05
3.4 −9.386e-05 −1.327e-02 1.644e-04 4.283e-06 2.486e-06 1.380e-05
3.5 −8.432e-05 −9.936e-03 1.391e-04 3.577e-06 2.077e-06 1.137e-05
3.6 −7.616e-05 −7.037e-03 1.176e-04 3.004e-06 1.744e-06 9.430e-06
3.7 −6.909e-05 −4.653e-03 9.946e-05 2.535e-06 1.472e-06 7.866e-06
3.8 −6.293e-05 −2.785e-03 8.416e-05 2.150e-06 1.249e-06 6.599e-06
3.9 −5.750e-05 −1.385e-03 7.130e-05 1.832e-06 1.064e-06 5.567e-06
4.0 −5.269e-05 −3.794e-04 6.051e-05 1.567e-06 9.107e-07 4.721e-06
4.1 −4.840e-05 3.086e-04 5.146e-05 1.346e-06 7.825e-07 4.023e-06
4.2 −4.456e-05 7.533e-04 4.387e-05 1.161e-06 6.749e-07 3.444e-06
4.3 −4.111e-05 1.018e-03 3.751e-05 1.005e-06 5.842e-07 2.962e-06
4.4 −3.799e-05 1.156e-03 3.216e-05 8.727e-07 5.075e-07 2.557e-06
4.5 −3.517e-05 1.206e-03 2.767e-05 7.605e-07 4.423e-07 2.216e-06
4.6 −3.260e-05 1.199e-03 2.388e-05 6.648e-07 3.867e-07 1.928e-06
4.7 −3.027e-05 1.157e-03 2.067e-05 5.829e-07 3.391e-07 1.683e-06
4.8 −2.814e-05 1.094e-03 1.796e-05 5.126e-07 2.982e-07 1.474e-06
4.9 −2.619e-05 1.020e-03 1.565e-05 4.519e-07 2.630e-07 1.294e-06
5.0 −2.440e-05 9.430e-04 1.369e-05 3.995e-07 2.325e-07 1.140e-06
5.5 −1.740e-05 6.004e-04 7.322e-06 2.236e-07 1.302e-07 6.294e-07
6.0 −1.269e-05 3.775e-04 4.181e-06 1.318e-07 7.679e-08 3.673e-07
6.5 −9.432e-06 2.428e-04 2.515e-06 8.116e-08 4.728e-08 2.244e-07
7.0 −7.127e-06 1.606e-04 1.579e-06 5.183e-08 3.020e-08 1.425e-07
7.5 −5.466e-06 1.092e-04 1.027e-06 3.415e-08 1.990e-08 9.345e-08
8.0 −4.248e-06 7.602e-05 6.880e-07 2.313e-08 1.348e-08 6.305e-08
8.5 −3.342e-06 5.412e-05 4.732e-07 1.604e-08 9.351e-09 4.360e-08
9.0 −2.658e-06 3.928e-05 3.329e-07 1.136e-08 6.625e-09 3.081e-08
9.5 −2.135e-06 2.901e-05 2.389e-07 8.201e-09 4.783e-09 2.220e-08

10.0 −1.731e-06 2.176e-05 1.746e-07 6.020e-09 3.512e-09 1.627e-08
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Fig. 8. Comparison of the probability densities of the simul-
taneous distribution for B = 8 under the fixed energy con-
dition, between those expressed by the series expansion of
f (0) +B−1f (1) +B−2f (2) (solid lines) and those derived by the
numerical inverse transforms of eq. (15) (+ dots), on the radial
lines of y/t = 0 and θ = 0 with the radial distance scaled by
θM. The first series-expansion terms of f (0)(θ, y/t) in the cen-
tral region (dot lines), as well as B−1f (1)(θ, 0) and f2(0, y/t, t)
in the peripheral region (broken lines), are also indicated.

As we have [4, 13]

2π

∫ ∞

0

{J0(ζ ′χ) − 1}σM(χ)χdχ = −B

Ω

K2ζ ′2

4E2
+ O(ζ ′4),

2π

∫ ∞

0

{J0(ζ ′χ) − 1}σL(χ)χdχ =
1
Ω

K2ζ ′2

4E2
ln

eBK2ζ ′2

eΩ4E2

+O(ζ ′4), (37)

the diffusion equation (6) is described as

∂F̃

∂t′
= �η

∂F̃

∂�ζ ′
+ 2πF̃

∫ ∞

0

{J0(ζ ′χ) − 1}

×{σM(χ) + σL(χ)}χdχ

= �η
∂F̃

∂�ζ ′
− B

Ω

K2ζ ′2

4E2
F̃ +

1
Ω

K2ζ ′2

4E2
F̃ ln

eBK2ζ ′2

eΩ4E2
.

(38)

The differential term with �ζ ′ vanishes when we replace the
variable �ζ ′ by eq. (7), then we have

ln 4π2F̃ = −B

Ω

∫ t

0

K2(�ζ + (t − t′)�η )2

4E2
dt′

+
1
Ω

∫ t

0

K2(�ζ + (t − t′)�η )2

4E2

× ln
eBK2(�ζ + (t − t′)�η )2

eΩ4E2
dt′, (39)

under the fixed energy condition, so that we have the spec-
tral density for the projected components

ln 2πf̃ = −
∫ 1

0

θ2
M(ζ + ηtu)2

4
du +

1
B

∫ 1

0

θ2
M(ζ + ηtu)2

4

× ln
θ2
M(ζ + ηtu)2

4
du

= −θ2
M

4

(
ζ2 + ζηt +

η2t2

3

)
+

θ2
M/B

12ηt

×
{

(ζ + ηt)3 ln
θ2
M(ζ + ηt)2

4e2/3
− ζ3 ln

θ2
Mζ2

4e2/3

}
,

(40)

identical with eq. (24). It should be reminded that the
former and the latter terms are the correction terms on
the simultaneous distribution by the moderate scatter-
ing σM(χ) and the large-angle scattering σL(χ) expressed
in the Fourier component, respectively. So the successive
terms in the power series (27) with B−1 mean the Gaus-
sian distribution of eq. (23) produced by σM(χ) (k = 0)
and its corrected distributions by k-times scatterings of
σL(χ) within the thickness t (k ≥ 1), expressed in the
Fourier component. The successive terms in the power se-
ries (28) for the simultaneous distribution have the same
meaning.

The probability p of receiving σL(χ) within the thick-
ness t is evaluated as [4]

p ≡
∫ t

0

dt

∫ ∞

0

σL(χ)2πχdχ =
t

πΩ

K2

E2

∫ ∞

χB

χ−42πχdχ

= e2C−2/B, (41)

so that we find the power series (28) with B−1 means
the power series with the probability of receiving the low-
frequent large-angle scattering σL(χ) within the thickness
t, which explains very rapid convergence of the power se-
ries (28) for the Molière simultaneous distribution as the
traditional power series for the Molière angular distribu-
tion [4].

3.3 Contour patterns of probability density for the
Molière simultaneous distribution

Contour maps of the probability density f(θ, ψ, t) for the
simultaneous distribution with ionization are indicated in
fig. 5 with θ and ψ ≡ y/t scaled by θM. Those show B-
independent elliptic patterns of 2-dimensional Gaussian at
the central region of distribution (θ2 + ψ2 � θ2

M), which
are well approximated by the Gaussians of eq. (21), reveal-
ing as the limiting distribution at B → ∞ (or t → ∞ as in-
dicated in fig. 1). The azimuthal angle λ for the major axis
of the Gaussian in the θ-ψ coordinate is determined by the
rotation angle introduced in subsect. 2.2 to remove θ′ψ′



Page 10 of 14 Eur. Phys. J. A (2015) 51: 161

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

ta
n 


E  E / E
Fig. 9. Decrease of the azimuthal angle λ of the major axis
for the central Gaussian distribution, with the dissipation of
fractional energy.

term from eq. (21) in the θ′-ψ′ coordinate. Thus we have

tan 2λ =

2
(

E0 − E

E0
− ln

E0

E

)/

(
E0 + E

E0
− (E0 − E)2

E0E
− 2E

E0 − E
ln

E0

E

)
, (42)

which decreases from 3/2 to 0 with the increase of
fractional energy-loss, (E0 −E)/E0, as indicated in fig. 9.
The correlation coefficient μ is expressed as [26]

μ ≡ 〈θ · y/t〉av√
〈θ2〉av〈y2/t2〉av

=
(

ln
E0

E
− 1 +

E

E0

)/

√(
E0

E
− E

E0
− 2 ln

E0

E

)(
1 − E

E0

)
, (43)

which decreases from
√

3/2 to 0 with the increase of
fractional energy-loss, as indicated in fig. 10.

The probability density in the peripheral region of
θ2 +ψ2 � θ2

M with ψ(ψ−θ) < 0 (single-scattering region)
depends only on θ and does not depend on y/t under the
fixed energy condition. We interpret the simultaneous dis-
tribution in this region by the single scattering illustrated
in fig. 11, taking account of ionization loss. Probability
σp(θy) dθy dt′ for charged particles to be scattered in the
projected angle between θy and θy +dθy within the thick-
ness of dt′ is derived from the spatial angular distribution
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Fig. 10. Decrease of the correlation coefficient μ, with the
dissipation of fractional energy.
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Fig. 11. The single- and the double-scattering dominant di-
rections in the peripheral regions.

expressed in eq. (2), as

σp(θy) dθy dt′ =
1

πΩ

K2

E′2 dθy dt′
∫ ∞

−∞

dθz

(θ2
y + θ2

z)2

=
1

2Ω

K2

E′2 θ−3
y dθy dt′, (44)

where the energy decreases as E′ = E0 − εt′ according
to eq. (4). So the probability of simultaneous distribution
determined by the single scattering, f1(θ, ψ, t) dθ dψ, is
evaluated as

f1(θ, ψ, t) dθ dψ =
K2

2Ω
dθ dy

∫ t

0

θ−3

E2
δ(y − (t − t′)θ) dt′

=
1

2Ω

K2θ−4

(E + εy/θ)2
dθ dy

=
θ2
M

2B

E0E

(E + εy/θ)2
θ−4 dθ d

y

t
, (45)

where δ denotes the delta function. On the contrary in
the peripheral region of θ2 + ψ2 � θ2

M with ψ(ψ − θ) > 0
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Fig. 12. Contour maps of the probability density of simultaneous distribution between the deflection angle θ and the chord-
angle ψ ≡ y/t with the both projected angles scaled by θM, predicted by the single and the double scatterings in cases of fixed
energy (left), as well as with fractional energy loss of 1/4 (middle) and 1/2 (right), for B of 8, 12, and 16 from outside curve to
inside. The probability densities plotted are 1, 10−1, 10−2, . . . , 10−5 in the central and the single-scattering regions and 10−7,
10−9, 10−11 in the double-scattering region.

(double-scattering region), we can interpret the simulta-
neous distribution by the double scattering as illustrated
in fig. 11. The probability of simultaneous distribution
determined by the double scattering, f2(θ, ψ, t) dθ dψ, is
evaluated as

f2(θ, ψ, t) dθ dψ =
(

K2

2Ω

)2

dθ dy

∫ t

0

dt′
∫ ∞

y/(t−t′)

dθ′

×θ′−3

E′2

∫ t

t′
dt′′

(θ − θ′)−3

E′′2 δ(y−(t − t′)θ′

−(t − t′′)(θ − θ′))

=
(

K2

2Ω

)2

dθ dy

∫ t

0

dt′
∫ ∞

y/(t−t′)

θ′−3

E′2

× (θ − θ′)−4

(E + ε(y − (t − t′)θ′)/(θ − θ′))2
dθ′

=
(

θ2
M

2B

)2

dθ d
y

t

∫ t

0

dt′

t

E0E

E′2

∫ ∞

y/(t−t′)

× E0Eθ′−3(θ − θ′)−2

(E0y/t + E(θ − y/t) − E′θ′)2
dθ′.

(46)

The contour maps derived from f1(θ, ψ, t) and f2(θ, ψ, t)
in case of fixed energy, as well as in cases with fractional
energy loss, (E0 − E)/E0, of 1/4 and 1/2 are indicated
in fig. 12, which well explain the Molière simultaneous
distributions of fig. 5 in the peripheral regions.

The contour lines of f1(θ, ψ, t) run parallel to the (y/t)-
axis in fig. 12 under the fixed energy condition (ε = 0),
as the probability density of the single scattering depends
only on θ and does not depend on the thickness t′ or the
lateral displacement y ≡ (t − t′)θ in the evaluation of
eq. (45). We derive the equation of the contour line of
f1(θ, ψ, t), which meets the θ-axis at θ0. As it satisfies
f1(θ, ψ, t) = f1(θ0, 0, t), we have the equation

(E0 − E)ψ = E(θ2
0/θ − θ), for ψ(ψ − θ) ≤ 0 (47)

of hyperbola, which explains the parallel lines to (y/t)-
axis under the fixed energy condition and the inclined lines
under the process with ionization, appearing in the single-
scattering region of the contour map in fig. 5.

The probability densities f(θ, ψ, t) on the radial lines
of θ = 0 and y/t = 0 under the fixed energy condition
are indicated in fig. 8 for B = 8. Those in the central re-
gion are well explained by the Gaussian distributions of
f (0)(θ, ψ) as good first approximations, though substan-
tial contributions from B−1f (1)(θ, ψ) and B−2f (2)(θ, ψ),
or the first and the second correction terms on the Gaus-
sian distributions by receiving the large-angle scattering
σL(χ) defined in subsect. 3.2, should be taken into account
as pointed out by Scott [13]. The density in the periph-
eral region indicated on the radial line of θ = 0 is well ex-
plained by f2(0, ψ, t) = (θ4

M/168)B−2ψ−6 derived by the
double scattering. On the other hand, the density in the
peripheral region on the radial line of y/t = 0 cannot be
explained by f1(θ, 0, t) derived by the single scattering, as
the density f(θ, 0, t) in the peripheral region indicated in
fig. 5 shows a little smaller value than f1(θ, 0, t) indicated
in fig. 12. This density is well explained by B−1f (1)(θ, 0)
term, or the first correction term on the Gaussian distribu-
tion by receiving the above scattering σL(χ), as indicated
in fig. 8 [27].

3.4 Comparison of the Molière simultaneous
distribution with an exact distribution based on a
screened single-scattering model and limits of the
Molière theory

It is well known that Molière’s Fourier spectral density for
his angular distribution [2] showed Gaussian at the central
region of spectrum (θ2

Mζ2 + θ2
Mη2t2 � 1), agreeing very

well with an exact spectral density [9,10] derived under a
model of screened single scattering [11, 12]. Though with
the increase of frequency, it began to depart from the exact
spectral density and to increase and diverge after taking
a deep minimum, so that the resultant Molière angular
distribution wiggled especially in case of small B [9, 10].
The Molière simultaneous spectral density of eq. (24) has
also the same problem, as indicated in fig. 13 for B = 8. It
has the peak value of 1/(2π) at ζ = ηt = 0 and decreases
with 2-dimensional Gaussian at low-frequency regions of
ζ and ηt. Though, it begins to increase after revealing a
deep ditch and diverges at θ2

Mζ2 + θ2
Mη2t2 � 1, which

fact disturbs convergence of the numerical integration of
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Fig. 13. Fourier spectral density (logarithmic value) of the
Molière simultaneous distribution, for B = 8 under the fixed
energy condition.

eq. (15) to obtain the Molière simultaneous distribution
in case of small B.

These problems vanished in derivation of the angular
distribution by applying an exact spectral density derived
under the well-known model of screened single scatter-
ing [11,12],

σ(χ)2πχdχdt =
1

πΩ

K2

E2

1
(χ2 + χ2

a)2
2πχdχdt. (48)

We obtain the simultaneous distribution, based on this
model. The diffusion equation for the Fourier spectral den-
sity is exactly described as

∂F̃

∂t′
= �η

∂F̃

∂�ζ ′
+

K2/E2

Ωχ2
a

F̃ {χaζ ′K1(χaζ ′) − 1} , (49)

instead of eq. (6) under the Molière theory where terms
of O(ζ ′4) were neglected [9, 12, 13]. K1 denotes the modi-
fied Bessel function of the first order [28]. The differential
term with �ζ ′ vanishes when we replace the variable �ζ ′ by
eq. (7), thus we get the simultaneous spectral density for
the projected components as

f̃(ζ, ηt, t) =
1
2π

exp
[
K2t/E2

Ωχ2
a

∫ 1

0

×{χa|ζ + ηtu|K1(χa|ζ + ηtu|) − 1} du

]

=
1
2π

exp
[
eB−1+2C

B

{∫ 1

0

θM|ζ + ηtu|
e(B−1+2C)/2

× K1

(
θM|ζ + ηtu|
e(B−1+2C)/2

)
du − 1

}]
, (50)

under the fixed energy condition, instead of eq. (24) de-
rived by the Molière theory, with χa of eq. (3) expressed as

χa = θM/e(B−1+2C)/2, (51)

according to eqs. (9) and (10).
The resultant spectral density is indicated in fig. 14 for

B = 8, for wider regions of ζ and ηt than fig. 13. It also
has the peak value of 1/(2π) at ζ = ηt = 0 and shows the
same Gaussian decrease at low-frequency regions of ζ and
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Fig. 14. Fourier spectral density (logarithmic value) of an
exact simultaneous distribution, for B = 8 under the fixed
energy condition.

ηt as the Molière spectral density of fig. 13. Though, it
continues to decrease monotonously with the increase of
ζ2 + η2t2 and approaches to the finite limiting density of

lim
ζ2+η2t2→∞

f̃(ζ, ηt, t) = e−t/t0/(2π), (52)

with
1/t0 = K2/(E2Ωχ2

a) = Ω−1eΩ−1+2C , (53)

corresponding to the survival probability of the incident
particle against the scattering of eq. (48) with the mean
free path of t0 [10]. Hence, the inverse Fourier transforms
of eq. (12), applied to the spectral density of eq. (50) with
the limiting density of e−t/t0/(2π) subtracted, converges
at any thickness of t and gives the exact simultaneous
distribution between θ and y/t, removing the delta func-
tion corresponding to the survival probability of the inci-
dent charged particle, as in the derivation of exact angular
distribution [10]. The exact simultaneous distribution ex-
pressed with the variables scaled by θM depends only on
the parameter B, under the fixed energy condition.

As the diffusion equation (6) under the Molière the-
ory is a highly accurate approximation of the exact equa-
tion (49) for small |ζ ′| [12], the resultant simple spectral
density of eq. (24) agrees very well with the exact one of
eq. (50) in the central region of spectrum, within the ditch
observed in fig. 13. We compare the both in the contour
map of fig. 15 for B = 8. We cannot find any visible differ-
ence between the both in the central region of spectrum
where the numerical inverse transforms of eq. (15) con-
verge. Thus the both simultaneous distributions derived
by the respective spectral densities agree very well, as in-
dicated in the contour map of fig. 16 for B = 8.

In case of small thicknesses of t (or the corresponding
B determined by eq. (9)), the ditch is shallow reflecting
the even high limiting density e−t/t0/(2π) of the exact
spectrum, so that the numerical integration of eq. (15)
does not converge due to the divergence of spectral den-
sities outside the ditch. With the increase of t, the ditch
becomes deep reflecting the decrease of the limiting spec-
tral density, so that the numerical integration begins to
converge in the central region of spectrum. And in case
of large enough t, we get the reliable Molière simultane-
ous distributions by the numerical inverse transforms of
eq. (15) with the integration converged in the accurate
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Fig. 16. The simultaneous distributions f(θ, y/t, t) are com-
pared between the Molière’s (line) and the exact one (+ dot)
on the contour map for B = 8, with the both variables scaled
by θM. The probability densities plotted are 1, 10−1, . . . , 10−9,
from inside to outside.

region of spectrum, even under the process with ionization
by applying the spectral density of eq. (25). On the other
hand, we can get the exact simultaneous distributions un-
der the fixed energy condition at any thickness of t (or the
corresponding B) by applying the numerical integration
of eq. (15) on the exact spectral density of eq. (50) with
the limiting density of e−t/t0/(2π) subtracted, though the
spectral density expressed in a definite integral is rather
complicated.

4 Conclusions

Simultaneous distribution between the deflection angle
θ and the lateral displacement y for charged particles
traversing through matter is derived under the Molière
theory of multiple scattering with ionization. The dis-
tribution is evaluated by applying the numerical inverse
Fourier transforms on the analytical Fourier spectral den-
sity solved by the differentially formulated Molière the-
ory. The distributions are indicated on the contour maps
of the probability density, which is characterized by three
regions: the central region, the single-scattering region,
and the double-scattering region, reflecting the properties
of the multiple scattering, the single scattering, and the
double scattering, respectively (sect. 2 and subsect. 3.3).

The simultaneous distribution with the both projected
angles, θ and ψ ≡ y/t, scaled by θM is expressed in power
series with B−1 under the fixed energy condition. The
first three terms of the series, f(θ, ψ, t) = f (0)(θ, ψ) +
B−1f (1)(θ, ψ)+B−2f (2)(θ, ψ), with B-independent series-
coefficient functions, f (0) of eq. (30) and f (1), f (2) of the
predetermined tables 1 and 2 for required radial directions
in the θ-ψ coordinate, are effective in easy derivations of
the probability density without applying the numerical
integration of eq. (15) at required thicknesses of t, with the
corresponding B and θM determined by eqs. (9) and (10)
(subsect. 3.1).

The Molière simultaneous distribution expressed by
the power series (28) with B−1 is well interpreted by the
cross-section dividing model, as series of the central Gaus-
sian distributions corrected successively by the k-times
large-angle scatterings of σL(χ) within the thickness t.
B−1 is proportional to the probability of receiving the
scattering σL(χ) within the thickness t, so that we find
the power series (28) shows very rapid convergence (sub-
sect. 3.2).

An exact simultaneous distribution derivable at any
thickness of t is solved based on the well-known model of
screened single scattering under the fixed energy condi-
tion, which shows the Molière theory gives accurate and
reliable distributions if the numerical integrations of in-
verse Fourier transforms are well converged within the ac-
curate central region of spectrum in case of large enough
t (subsect. 3.4), though both the exact and the Molière si-
multaneous distributions obtained here are valid under the
small angle approximation and are applicable to charged
particles not suffering radiation loss (subsect. 2.1).

The Molière simultaneous distribution, as easy to han-
dle as the traditional angular distribution, will give more
reliable and accurate results than the individual distribu-
tion in theoretical predictions and data analyses of exper-
iments concerning charged particle transports, and will
also give higher accuracy and efficiency in tracing charged
particles in simulation works [29,30].

The authors wish to express their sincere gratitude to
Dr. Naoya Takahashi for his contributions at the early stage of
our investigations.
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Appendix A. The dilogarithm function

The dilogarithm function is defined as

Li2(z) ≡ −
∫ z

0

ln(1 − u)
u

du

=
∞∑

k=1

zk/k2, (−1 < z < 1) (A.1)

Li2(z) = −Li2

(
1
z

)
− π2

6
− 1

2
ln2(−z), (z < −1)

(A.2)

Li2(z) = Li2(1) −
∫ z

1

ln |1 − u|
u

du, (1 < z) (A.3)

Li2(−1) = −π2/12, Li2(1) = π2/6. (A.4)
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