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Abstract. In this work, the properties of strange quark matter and strangelets are investigated within the
framework of the improved quasiparticle model. The energy per baryon and particle chemical potentials
as a function of the quark matter density are given. In particular, within the multiple reflection expansion
method, the finite-size effects of strangelets are discussed in detail. The stable radius of a strangelet in
the present model is smaller than, but comparable with that of the corresponding nucleus with the same
baryon number. With the baryon number increment of stable strangelets, it is found that the surface
tension decreases to 33MeV fm−2 for strangelets with the baryon number greater than 104.

1 Introduction

Since the conjecture of Witten [1] that strange quark mat-
ter (SQM), rather than the normal nuclear matter, might
be the true ground state of QCD, much theoretical and
observational effort has been made on the investigation of
its properties and potential astrophysical significance [2–
4]. Meanwhile, searches for stable and metastable lumps
of SQM, the so-called strangelets, are still an active area
of nuclear physics research. SQM can exist in the inner
core of dense strange stars. The collision of strange stars
can release strangelets as an important part of cosmic
rays [5,6]. Some of the cosmic-ray strangelets could be on
the way to our Earth’s atmosphere [7]. Terrestrially, the
possible production of strangelets is studied in relativistic
heavy-ion collisions [8]. In ref. [9], the STAR Collabora-
tion claimed that they have achieved the sensitivity to
the detection of the metastable strangelets with lifetime
≥ 0.1 ns. Recently, we have studied the stability of the
dibaryon (Ξ0Ξ−) within the framework of the quasiparti-
cle model [10]. Our calculations showed that at least one
weak decay channel opens for the dibaryon decay while
all strong decay channels are closed. The results suggest
the dibaryon (Ξ0Ξ−) is one of the favorable candidates
for experimental detection.

Because of the well-known difficulty of QCD in the
nonperturbative domain, many effective models reflecting
the characteristics of the strong interaction are used to
study SQM. One of the most famous models is the MIT
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bag model with which Farhi and Jaffe find that SQM is
absolutely stable around the normal nuclear density for a
wide range of parameters [2]. In the bag model, the quark
mass is infinitely large outside while it is constant within
the bag.

As is well known in nuclear physics, quark mass varies
with environment. The effective mass has been extensively
discussed, for example, within the Nambu-Jona-Lasinio
(NJL) model [11] and within a quasiparticle model [12–
18]. A chiral phase transition and dynamical symmetry
breaking are demonstrated in the NJL model. In the lit-
erature, some authors have constructed the quasiparticle
model in terms of the temperature- and density- depen-
dent quark mass and made progress in studying the non-
perturbative QCD model at finite density [12–15,19–22].
Since the quark mass depends on chemical potentials and
temperature, the effective bag constant in these model is
also a function of chemical potentials and temperature,
in order to satisfy the fundamental relation of thermody-
namics. Recently, the researchers have generalized a ther-
modynamic quasiparticle description of deconfined matter
to finite chemical potential μ not yet accessible by present
lattice calculations [23].

In this article, we study the properties of strange quark
matter by using the improved quasiparticle model [23].
The energy per baryon and particle chemical poten-
tials as a function of the quark matter density are de-
scribed within the self-consistent thermodynamic treat-
ment. Then we apply the improved quasiparticle model to
study the properties of strangelets by including the impor-
tant finite-size effect. It is found that the stable radius of
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a strangelet is smaller than that of the corresponding ordi-
nary nucleus with the same baryon number, which might
be relevant for the analysis of the strangelet propagation
and detection. Particularly, we present the finite-size ef-
fects of strangelets and calculate the surface energy and
the surface tension versus the baryon number.

This paper is organized as follows. In sect. 2, we in-
troduce the equation of state and formulate the improved
quasiparticle model at finite chemical potential. The prop-
erties of strange quark matter are presented in sect. 3.
Then in sect. 4, the improved quasiparticle model is ex-
tended to include the finite-size effect, and the properties
of strangelets are calculated. Finally, a short summary is
given in sect. 5.

2 The improved quasiparticle model

According to the improved quasiparticle model, the effec-
tive quark mass can be expressed as m2

i = mi0
2 + Π∗

i ,
where mi0 and Π∗

i denote the rest mass and thermal
mass of the quasiparticle, respectively. Π∗

i are given by
the asymptotic values of the gauge-independent hard-
thermal/density-loop self-energies [24]:

Π∗
i = 2ωq0(mi0 + ωq0),

ω2
q0 =

N2
c − 1

16Nc

(
T 2 +

μ2
i

π2

)
g2, (1)

where μi denotes the quark chemical potential, and Nc =
3 is the number of colors. The thermodynamic potential
density of a quasipartical system can be decomposed into
the contributions of the quasiparticles and their mean field
interaction B,

Ω =
∑

i

Ωi

(
T, μi,m

2
i

)
+ B(Π∗

i ), (2)

where Ωi = −diT
∫

d3k/(2π)3 ln(1 + exp{(−ωi + μi)/T})
are the contributions of the quarks (for the antiquarks,
the chemical potential differs in the sign) and di = 6 count
the degeneracy degrees of freedom. The function B(Π∗

i ) is
determined from a thermodynamical self-consistency con-
dition, via

∂B

∂Π∗
i

=
∂Ωi(T, μi,m

2
i )

∂m2
i

, (3)

here B = B0 +B∗ stands for the total bag constant, B0 is
regarded as a normal vacuum constant, and B∗ is medium-
dependent bag constant.

The entropy and the particle densities are given by the
sum of the quasiparticle contributions as follows:

si =
∂Ωi(T, μi,m

2
i )

∂T
, ni =

∂Ωi(T, μi,m
2
i )

∂μi
. (4)

By comparison with lattice data at μ = 0, Peshier et
al. [24,25] have tested the quasiparticle approach, which
can provide an appropriate description of the decon-
fined matter even close to the confinement transition,

Fig. 1. The coupling constant g(T = 0, μ) as a function of μ.

with the effective coupling in eq. (1) nonperturbatively
parametrized by the following:

g2(T, μ = 0) =
48π2

27 ln
(

T+Ts

Tc/λ

)2 , (5)

interpolating to the asymptotic limit of QCD.
Encouraged by the successful quasiparticle description

of the μ = 0 lattice data, the model has extrapolated
to finite chemical potential. As a direct consequence, the
Maxwell relation implies for the improved quasiparticle
model ∑

i

[
∂ni

∂m2
i

∂Π∗
i

∂T
− ∂si

∂m2
i

∂Π∗
i

∂μi

]
= 0, (6)

which is the integrability condition for the function B de-
fined by eq. (3). Following directly from principles of ther-
modynamics, we can get a flow equation for the effective
coupling with Π∗

i depending on g2. This flow equation is
quasilinear partial differential equation of the form

aT
∂g2

∂T
+ aμ

∂g2

∂μ
= b, (7)

with the coefficients aT,μ and b depending on T , μ, and
g2. Consequently, the running coupling in the asymptotic
limit of large chemical potential can be simulated from
that of large temperatures at zero chemical potential,
which will help us to overcome the difficulty of calculating
equation of state in nonperturbative regime [23].

Here we use the parameters λ = 6.6, Ts = −0.78Tc

and TC = 170MeV. For convenience later, we can ap-
proximately formulate g(T = 0, μ) as follows [26]:

g2(T = 0, μi) =
48π2

27 ln
(

μi+Ts

Tcπ/λ

)2 . (8)

The running coupling constant as a function of chemi-
cal potential g(T = 0, μ) is displayed in fig. 1. Based on the
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extended coupling constant, the equation of state of SQM
is immediately obtained from the basic thermodynamic
relations. In ref. [27], the authors utilized the improved
quasiparticle model to obtain the equation of state and
used it as an input to get the mass-radii relation of a pure
quark star successfully.

In the present calculations we choose mu0 = 5MeV,
md0 = 10MeV for up and down quarks [28], respectively.
For the current mass of strange quarks, we take ms0 =
120MeV which seems more reasonable according to the
recent investigations of the current quark masses [28]. The
adopted value of B

1/4
0 = 145MeV is equivalent to the

conventional bag constant.

3 Bulk properties of deconfined strange quark
matter

In this section we study the properties of SQM in bulk.
As normally done, we assume SQM to be composed of u,
d and s quarks and electrons. And weak equilibrium is
always reached by the weak reactions such as

d, s ⇀↽ u + e + ν̄e, s + u ⇀↽ u + d. (9)

Correspondingly, relevant chemical potentials satisfy

μd = μs, (10)
μd = μu + μe. (11)

There are only two independent chemical potentials from
eqs. (10) and (11).

The condition of electric charge neutrality reads

2
3
nu − 1

3
nd − 1

3
ns − ne = 0. (12)

The baryon number density is defined as

nB =
∑

i=u,d,s

ni

3
. (13)

We can calculate the two independent chemical poten-
tials corresponding to a number density nB by solving the
two eqs. (12) and (13). Then we get the energy density
and pressure from the thermodynamic potential density
of quasipartical system in eq. (2).

In fig. 2, we show the energy per baryon as a function
of the density. The minimum energy per baryon is larger
than 930MeV so that SQM is not absolutely stable in
this improved quasiparticle model. The electric neutrality
is enforced for bulk matter. The positive charge of quarks
can be balanced by electrons. The chemical potentials of
strange quarks and electrons versus the baryon number
density are plotted in fig. 3. It can be seen that the chem-
ical potential μe is in the range from 29 to 35MeV, while
the chemical potential μs increases with density increases.
In fig. 4, we show the effective bag constant in eq. (3) as
a function of the density. The effective bag constant in-
creases at lower density and then decreases with the ascent
of the density at higher density region. This is consistent
with the fact that at extremely high densities, the quark
confinement becomes less important.

Fig. 2. The energy per baryon as a function of the density.

The bag constant is B
1/4
0 = 145 MeV.

Fig. 3. The strange quark (left) and electron chemical poten-
tial (right) versus the density of quark matter. With increas-
ing densities, the strange quark chemical potential increases.
When the density is 0.25 fm−3, the electron chemical potential
approaches the maximum.

4 Properties of strangelet and finite-size
effects

To study strangelets, it is necessary to extend the model
to include finite-size effects. Although the mode-filling ap-
proach where the exact single-particle levels are filled one
by one is good at finding the possible “stability island” [3],
it becomes difficult when the baryon number is big. In this
paper, we adopt the multi-reflection expansion approach
where the system quantities are expanded to the negative-
integer powers of the system radius [29,30].

The strangelet can be treated as an ideal gas of up,
down and strange quarks, and the energy of this system
is given by

E =
∑

i

(Ωi + Niμi) + BV, (14)
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Fig. 4. The effective bag function B as a function of the density
of strange quark matter. The horizontal line corresponds to the
bag constant B0.

here V stands for the bag volume, and Ni denote to-
tal number of quarks. The thermodynamical potential of
quark species i can be written as

Ωi = Ωi,V V + Ωi,SS + Ωi,CC, (15)

where ∂Ωi/∂μi = −Ni, the area S = 4πR2, and the ex-
trinsic curvature C = 8πR for a sphere.

In a multiple reflection expansion theory [29,30] the
thermodynamical quantities can be derived from a density
of states of the form given by

dNi

dk
= 6

[
k2V

2π2
+ f

(i)
S

(mi

k

)
kS + f

(i)
C

(mi

k

)
C

]
, (16)

where the second term on the right-hand side of eq. (16)
corresponding to the surface contribution was given by
Berger and Jaffe [31] as

f
(i)
S

(mi

k

)
= − 1

8π

(
1 − 2

π
arctan

k

m

)
, (17)

and the third term on the right-hand side of eq. (16) comes
from curvature of the bag surface. Madsen [32] proposed
the following ansatz for massive quarks:

f
(i)
C

(mi

k

)
=

1
12π2

[
1 − 3k

2mi

(
π

2
− arctan

k

mi

)]
. (18)

The number density of each quark species can be ob-
tained by means of

Ni =
∫ kF

i

0

dNi

dk
dk = ni,V V + ni,SS + ni,CC, (19)

with Fermi momentum kF
i =

√
μ2

i − m2
i = μi(1 −

λ2
i )

1/2, λi ≡ mi/μi.

The volume terms for quark species i are given by

Ωi,V = − μ4
i

4π2

(
(1 − λ2

i )
1/2

(
1 − 5

2
λ2

i

)

+
3
2
λ4

i ln
1 + (1 − λ2

i )
1/2

λi

)
, (20)

ni,V =
μ3

i

π2
(1 − λ2

i )
3/2. (21)

The surface terms are given by

Ωi,S =
3μ3

i

4π

[
1 − λ2

i

6
− λ2

i (1 − λi)
3

− 1
3π

(
arctan

(1 − λ2
i )

1/2

λ

− 2λi(1 − λ2
i )

1/2 + λ3
i ln

1 + (1 − λ2
i )

1/2

λi

)]
, (22)

ni,S = −3μ2
i

4π

[
1 − λ2

i

2
− 1

π

(
arctan

(1 − λ2
i )

1/2

λ

−λi(1 − λ2
i )

1/2

)]
. (23)

The curvature terms are given by

Ωi,C =
μ2

i

8π2

[
λ2

i ln
1 + (1 − λ2

i )
1/2

λi
+

π

2λi
− 3πλi

2
+ πλ2

i

− 1
λi

arctan
(1 − λ2

i )
1/2

λi

]
, (24)

ni,C =
μi

8π2

[
(1 − λ2

i )
1/2 − 3π

2
1 − λ2

i

λi

+
3
λi

arctan
(1 − λ2

i )
1/2

λi

]
. (25)

Once the thermodynamical potential is known, the
energy density E can be obtained from eq. (14). In
a strangelet, the weak equilibrium conditions, eqs. (10)
and (11), are still valid due to the same reactions as in
eq. (9). On the other hand, the strangelet size is generally
much smaller than the Compton wavelength of electrons,
and so electrons cannot be located within a strangelet. We
therefore have ne = 0. The total baryon number A of a
strangelet can be expressed by

A =
4
3
πR3 nu + nd + ns

3
. (26)

For a given baryon number A, we can show the en-
ergy per baryon as a function of the radius, as in fig. 5,
where A = 100 has been taken. The stable radius of the
strangelet with baryon number A = 100 is about 4.3 fm.
In the left graph of fig. 6, we show the energy per baryon
versus the baryon number A up to 106, while the corre-
sponding radius is plotted on the right graph of fig. 6.
With increasing baryon number, the energy per baryon
decreases while the radius increases. For the same baryon
number, the radius of a strangelet is smaller than that of
the corresponding ordinary nucleus, R = 1.12A1/3 fm.
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Fig. 5. The energy per baryon versus the radius of a strangelet
with baryon number A = 100. The stable radius is about
4.3 fm.

Fig. 6. The left graph denotes the energy per baryon as a
function of the baryon number. The right graph denotes the
radius of strangelets versus the baryon number.

It is well known that the surface tension is a funda-
mental parameter for the finite-size effects and nucleation
phase transition [33]. The surface tension σ, the free en-
ergy per unit surface area can be defined as [34]

σ =
∑

i

ES,iV

4πR2
=

∑
i

R

3
ΩS,i. (27)

In fig. 7, the surface energy per baryon is shown on the
left graph and the total surface tension of strangelets is
shown on the right graph. When the baryon number of
strangelets increases to A > 104, the surface tension has
a slight decline and comes gradually down to the vicinity
of 33MeV fm−2, which is consistent with the range within
10–50MeV fm−2 given by the pioneering work [35,36].

Fig. 7. The surface energies of strangelets are showed as a
function of the baryon number A on the left graph. The right
graph denotes the surface tension σ decreases with the increas-
ing baryon number A.

Fig. 8. The ratio Z/A of strangelets as a function of the baryon
number A.

Finally, in fig. 8 we present the dependence of the elec-
tric charge for strangelets on the baryon number. When A
is large, the behavior of Z as a function of A is Z � 0.265A.

5 Summary

In summary, we have extended the quasiparticle model
to include the finite-size effect and studied the proper-
ties of strange quark matter in bulk and strangelets. With
the self-consistent thermodynamic treatment, the chem-
ical potential-dependent effective bag constant and the
equation of state of strange quark matter are calculated.
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The properties of small strangelets have large dependence
on the finite-size effect. By comparing the geometrical size
of a strangelet with that of the corresponding ordinary
nuclei, it is found that the strangelet radius is smaller
than, but comparable with that of the ordinary nuclei with
the same baryon number. The surface tension is approxi-
mately 33MeV fm−2 in this model. SQM is not absolutely
stable in this model, as explicitly presented in fig. 2. It is
known that there are several methods to tackle the con-
sistence of thermodynamical potential with the effective
quark masses. Recently, The author Zong and his cooper-
ators proposed mew thermodynamical treatment by using
the partition function of a quasiparticle system [37,38].
Therefore, the stability of SQM needs to be further inves-
tigated in the future.
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jor State Basic Research Development Program in China (No.
2014CB845402).
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