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Abstract. We study the exclusive photoproduction of a lepton pair off the proton with the aim of studying
the proton quark structure via the Generalized Parton Distributions (GPD) formalism. After deriving the
amplitudes of the processes contributing to the γP → P ′e+e−, the timelike Compton scattering and the
Bethe-Heitler process, we calculate all unpolarized, single- and double- spin beam-target observables in
the valence region in terms of GPDs.

1 Introduction

The scattering of light on matter, which can generically
be called Compton scattering, is a powerful tool to inves-
tigate its inner structure. Nowadays, understanding the
structure of hadrons in terms of quark and gluon (partons)
degrees of freedom, i.e. the basic constituents of matter
known to this day, is the subject of an intense research
effort. Only these past fifteen years or so, thanks to the
emergence of high-intensity, high-energy (multi-GeV) and
high duty-cycle lepton accelerators, Compton scattering
at the partonic level starts to be investigated experimen-
tally in an efficient way.

A particular case of Compton scattering at the par-
tonic level is the Deeply Virtual Compton Scattering
(DVCS) process on the proton P , i.e. γ∗P → γP ′ where
the initial virtual photon γ∗ is radiated from an incoming
lepton beam (see fig. 1, top). It is of particular interest as
the amplitude of the process allows to access some essen-
tial operators of Quantum Chromo-Dynamics (QCD, the
fundamental theory governing the interactions of quarks
and gluons). Indeed, at sufficiently large virtuality of the
initial photon (Q2 = (k − k′)2), the DVCS amplitude can
be factorized into an elementary “hard” (perturbative)
scattering process γ∗q → γq (where q is a quark of the pro-
ton), exactly calculable from Quantum Electro-Dynamics
(QED) as well as perturbative QCD, and a “soft” (non-
perturbative) QCD bilocal matrix elements. The Fourier
transforms into momentum space of these QCD matrix
elements are the so-called Generalized Parton Distribu-
tions (GPDs). In DVCS on the nucleon, at QCD leading-
twist order there are four quark helicity conserving GPDs
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(H,E, H̃ and Ẽ) which can be accessed and which cor-
respond to the four independent helicity-spin transitions
between the initial quark-proton system and the final one.
The GPDs contain a wealth of information on the par-
tonic structure of the proton: the longitudinal momentum
and transverse space distributions of the quarks and glu-
ons, the correlation between these momentum and space
distributions, sensitivity to the quark-antiquark content
in the proton, the quark orbital momentum contribution
to the proton spin, etc. We refer the reader to the re-
views [1–4] on GPDs for the details of the formalism and
of their properties.

DVCS is currently widely investigated, experimentally
as well as theoretically. Reference [4] compiles all existing
data in the valence region and presents some first infor-
mations on the partonic structure of the proton that can
be extracted, within some approximations, from the first
DVCS data through the GPD formalism. One example of
a pioneering result is the first quantitative evaluation of
the increase of the transverse size of the proton as smaller
longitudinal momentum fractions of partons are probed.

However, the GPD information is difficult to extract:
DVCS cross sections are small (of the order of pb), there
is the competing Bethe-Heitler (BH) process which leads
to the same final state ePγ but where the final photon is
emitted from the incoming or scattered lepton and which
is therefore not related to GPDs but nevertheless inter-
feres. Furthermore, there is the need of measuring a se-
ries of spin (beam and/or target) observables to constrain
the different GPDs, etc. It would therefore be useful to
investigate if supplementary and/or complementary con-
straints on GPDs could be obtained from processes other
than DVCS. In this spirit, we investigate in this arti-
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Fig. 1. Top: QCD leading-twist DVCS diagram. Bottom: QCD
leading-twist TCS diagram (the crossed diagrams of both pro-
cesses are not shown). The dashed line illustrates the factoriza-
tion between the quark-level hard process exactly calculable in
QED and the complex non-perturbative QCD nucleon struc-
ture parametrized by the GPDs.

cle the related process of Timelike Compton Scattering
(TCS) which corresponds to the exclusive photoproduc-
tion of a lepton pair on the proton: γP → P ′γ∗ ↪→ e+e−

and which is displayed in fig. 1, bottom. Like for DVCS,
at sufficiently large virtuality of the final virtual photon
(Q′2 = (k + k′)2), it is predicted that the process factor-
izes and is sensitive to GPDs, the same ones accessed in
DVCS.

The TCS process was originally investigated in terms
of GPDs about ten years ago in ref. [5]. In this pioneering
work, analytical formulas in terms of GPDs were derived
for the unpolarized and the circularly polarized beam cross
sections of the process γP → P ′e+e−, i.e. on a proton
target. Very recently, a second article continued the in-
vestigation by studying the linearly polarized beam cross
section [6].

However, in order to obtain simple analytical expres-
sions, a few approximations were used in the calculation
of the TCS amplitude (for instance mass correction terms
of the order of m2/Q′2 where m is the mass of the pro-
ton were neglected). In the present work, we waive some
of these approximations and present calculations of dif-
ferent observables. In addition, besides unpolarized cross

sections, we study all single- and double-spin beam-target
observables. We focus in this article on a proton target.

This article is organized as follows: in the next section,
we present the general theoretical formalism of the TCS
process, in particular the expression of the QCD leading-
twist amplitude in terms of GPDs, and of the accompany-
ing BH process. We discuss some experimental considera-
tions in the third section. In the fourth section, we present
our numerical results for the unpolarized cross section of
the γP → P ′e+e− process and we compare them to the
previous work of ref. [5]. In the fifth section, we present
our results for single-spin observables (beam and target)
and we compare our work for the beam polarization ob-
servables to the results of ref. [5]. In the sixth section, we
present our results for the double-spin beam-target ob-
servables. For each case, we will show the dependence of
the observables on different GPDs and its sensitivity on
different kinematics. In the seventh section we show the
impact of next-to-leading-twist corrections on the cross
sections and on the asymmetries. We will conclude in the
eighth section.

2 Formalism

We are studying the process:

γ(q)P (p) → P ′(p′) e−(k) e+(k′) (1)

in a GPD framework, i.e. when the final photon’s virtu-
ality Q′2 = (k + k′)2 is sufficiently large and the proton
momentum transfer t = (p − p′)2 is sufficiently small so
that the factorization illustrated in fig. 1, bottom can be
applied. From DVCS, Deep Inelastic Scattering (DIS) and
Drell-Yan analysis and experiments, it is believed that
Q′2 > 2GeV2 and −t < 1GeV2 should define such a
reasonable phase space. Regarding Q′2, one should also
avoid regions where one can have the production of vector
mesons, decaying into e+e− pairs (for instance, the broad
ρ′(1700)). Additionally, one should consider the squared
center-of-mass energy of the incoming photon and target
proton s = (q + p)2 � 4GeV2, in order to minimize pos-
sible contributions from the Dalitz decay of proton reso-
nances. In the present work, we will consider Q′2 values
typically around 7GeV2, and momentum transfers −t typ-
ically less than 0.7GeV2. This results in ratios −t

Q′2 < 10%,
which kinematically suppresses possible higher twist terms
by a factor around 10.

2.1 Kinematics

We will use the notation of Ji [7, 8] for GPDs, i.e. GPDs
depend on the three variables, x, ξ and t, where the
quark longitudinal momentum fractions x and ξ are de-
fined w.r.t. the average proton momentum P and proton
momentum transfer Δ, respectively. We therefore define

P =
1
2
(p + p′), (2)

Δ = (p′ − p) = (q − q′), (3)
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and we also introduce the average photon momentum

q̄ =
1
2
(q + q′). (4)

GPDs are matrix elements of QCD operators which are
defined at equal light-cone time. It is therefore convenient
to use a frame where the q̄ and P momenta are collinear
along the z-axis and in opposite directions. We define the
lightlike vectors along the positive- and negative-z direc-
tions as

p̃μ = P+/
√

2(1, 0, 0, 1), (5)

nμ = 1/P+ · 1/
√

2(1, 0, 0,−1), (6)

and we define the light-cone components a± by a± ≡ (a0±
a3)/

√
2. We have p̃2 = n2 = 0 and p̃ · n = 1. In this

light-cone frame, introducing the + components of the Δ
and q̄ four-vectors, ξ̃ and ξ̃′, respectively, the various four-
vectors involved can be decomposed as

Pμ = p̃μ +
m̄2

2
nμ, (7)

q̄μ = −ξ̃′ p̃μ − q̄2

2ξ̃′
nμ, (8)

Δμ = −2ξ̃p̃μ + ξ̃m̄2nμ + Δμ
⊥, (9)

with m̄2 = m2 − Δ2

4 and m is the proton mass. We relate
the final photon virtuality to the average photon momen-
tum,

q̄2 = Q′2/2 − Δ2/4. (10)

We have to relate the light-cone momentum fractions
ξ̃ and ξ̃′ to the kinematical variables which are experi-
mentally accessible. To do so, we introduce the variables
ξ and ξ′:

ξ′ = − q̄2

2P · q̄ =
−Q′2 + Δ2/2

2(s − m2) + Δ2 − Q′2 , (11)

ξ = − Δ · q̄
2P · q̄ =

Q′2

2(s − m2) + Δ2 − Q′2 . (12)

The light-cone momentum fractions ξ̃ and ξ̃′ are re-
lated to the kinematical variables ξ and ξ′ by

ξ̃ = ξ · 1 + ξ̃′2 m̄2/q̄2

1 − ξ̃′2 m̄2/q̄2
, (13)

ξ̃′ = ξ′ · 2
1 +

√
1 − 4ξ′2 m̄2/q̄2

. (14)

In the asymptotic limit, where mass and Δ terms are
neglected relatively to Q′2, we have

ξ̃ = ξ = −ξ̃′ = −ξ′ =
Q′2

2s − Q′2 . (15)

2.2 Timelike Compton amplitude

The two diagrams of fig. 2 have to be calculated. The
leading-order amplitude reads:

TTCS
H ∝ 1

(k + q̄)2 + iε
γν (/k + /̄q) γμ

+
1

(k − q̄)2 + iε
γμ (/k − /̄q) γν

∝ 1
2

[
/n (p̃μnν + p̃νnμ − gμν)

·
(

1
x − ξ̃′ + iε

+
1

x + ξ̃′ − iε

)

−/nγ5 iεμνκλ nλ p̃κ

(
1

x − ξ̃′ + iε
− 1

x + ξ̃′ − iε

) ]
.

(16)

The full TCS amplitude, corresponding to the diagram
of fig. 1, bottom (plus the associated crossed diagram)
reads then

TTCS = − e3

q′2
ū(k) γν v(k′) εμ(q)HTCS

μν , (17)

with, in the Bjorken limit where ξ = −ξ̃′,

HTCS
μν =

1
2

(−gμν)⊥
∫ 1

−1

dx

(
1

x − ξ − iε
+

1
x + ξ + iε

)

·
(

H(x, ξ, t)ū(p′)/nu(p)+E(x, ξ, t)ū(p′)iσαβnα
Δβ

2m
u(p)

)

− i

2
(ενμ)⊥

∫ 1

−1

dx

(
1

x − ξ − iε
− 1

x + ξ + iε

)

·
(

H̃(x, ξ, t)ū(p′)/nγ5 u(p)+Ẽ(x, ξ, t)ū(p′)γ5
Δ · n
2m

u(p)
)

,

(18)

where we used the metric:

(−gμν)⊥ = −gμν + p̃μnν + p̃νnμ,

(ενμ)⊥ = ενμαβ nα p̃β . (19)

The GPDs entering eq. (18) are proton GPDs, i.e. they
read, in terms of quark flavors:

HTCS(x, ξ, t) =
4
9
Hu/p +

1
9
Hd/p +

1
9
Hs/p. (20)

In this work, we will take the GPD parametrizations from
the VGG model [1,9–11], which are summarized in ref. [4]
and based on the Radyushkin double-distribution ansatz
for the (x, ξ)-dependence [12–14] and on a Reggeized
ansatz for the t-distribution [1, 11]. At a couple of in-
stances, in order to estimate the model-dependence of our
calculations, we will use the factorized ansatz for the t-
dependence of the H GPD [9]. Also, we will occasionally
study the sensitivity of observables to the so-called D-
term [15], which is included in the VGG model and whose
parametrization can be found as well in refs. [1, 9–11].
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Fig. 2. Leading-order diagrams for the process γq → γq. We
indicate between parenthesis the + components of the four-
vectors.

2.3 Gauge invariance

The leading-twist approximation to the TCS amplitude of
eq. (17) is not exactly gauge invariant. To restore gauge
invariance, twist-3 corrections of order Δ⊥/Q are needed.
As a first step in adressing this issue and estimating its
effect, we propose to add a correction term to the twist-2
vector part tensor as follows:

Hμν = Hμν
LO − Pμ

2P · q̄ · (Δ⊥)κ · Hκν
LO

+
P ν

2P · q̄ · (Δ⊥)λ · Hμλ
LO

− PμP ν

4(P · q̄)2 · (Δ⊥)κ · (Δ⊥)λ · Hκλ
LO, (21)

where Hμν
LO stands for the tensor of eq. (18). This is a

generalization of the prescription proposed in refs. [10,16]
for DVCS (we also refer the reader to refs. [17–19] for fur-
ther discussions on the issue of gauge invariance in the
DVCS amplitude). One can readily check that Hμν re-
spects gauge invariance both w.r.t. initial and final pho-
tons, i.e. qμHμν = 0, and q′νHμν = 0. The impact of
adding this correction to the observables is shown at the
end of this paper, in sect. 7.

2.4 The Bethe-Heitler amplitude

The TCS process is accompanied by the BH process, in-
volving the two diagrams which are presented in fig. 3.

P' (p')P (p)

γ (q)

∗γ (q')

(k')+e

(k)-e

P' (p')P (p)

γ (q)

∗γ (q')

(k)-e

(k')+e

Fig. 3. The Bethe-Heitler diagrams.

Their amplitude reads

TBH = − e3

Δ2
ū(p′)Γ ν u(p) εμ(q)

×ū(k)

(

γμ

/k − /q

(k − q)2
γν + γν

/q − /k′

(q − k′)2
γμ

)

v(k′), (22)

with the virtual photon-proton electromagnetic vertex
matrix

Γ ν = γν F1(t) +
iσνρΔρ

2m
F2(t). (23)

The BH amplitude depends on the proton Dirac and Pauli
form factors F1(t) and F2(t). In this work, we take the
parametrizations issued from refs. [20,21]. We noticed that
other form factor parametrizations (for instance ref. [22])
can change the BH cross sections up to 5%. The effect on
the asymmetries is however negligible.

2.5 Cross section

At fixed beam energy Eγ or longitudinal momentum
transfer ξ, there are four independent kinematical vari-
ables for the process γ(q)P (p) → P ′(p′)e−(k)e+(k′). A
natural choice is to be taken: Q′2 and t = Δ2 that we al-
ready defined, and the two angles θ and φ of the electron
in the γ∗ center of mass (with the z′-axis along the direc-
tion of the γ∗ in the γ∗-P ′ center of mass). We illustrate
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Fig. 4. Top panel: scheme of the reaction plane γP → γ∗P ′

(for TCS) in the γP CM frame and illustration of some of the
kinematic variables. Red arrows show the polarization vectors
of the photon beam and proton target. Bottom panel: decay
angles in the e−e+ CM frame. φ and θ are respectively the
azimuthal and polar angles between the e− direction and the
virtual photon direction in the γ∗-P ′ CM frame.

in fig. 4 the different variables involved. In addition, we
display the polarization angle Ψ between the polarization
vector of the incoming photon and the scattering plane in
the γ∗-p C.M.

The 4-differential unpolarized cross section is then ex-
pressed as

d4σ

dQ′2dtdΩ
(γP → P ′e+e−) =

1
(2π)4

1
64

1
(2mEγ)2

|TBH + TTCS|2, (24)

where |TBH + TTCS|2 is averaged over the target proton
helicities and beam polarizations and summed over the
final proton helicities.

3 Experimental considerations

The only data for the process γP → P ′e−e+ which are
in the phase space of concern for our study, have been
collected and analyzed a few years ago by the CLAS
Collaboration using the ≈ 6GeV electron beam of Jef-
ferson Lab. The data were actually obtained in “quasi-
photoproduction” mode. This means that the scattered

electron from the beam is not detected in CLAS and is
considered to be in almost the same direction as the beam-
line. This results in very low Q2 electroproduction, i.e.
“quasi-photoproduction”. This pilot analysis can be found
in ref. [23]. The ≈ 6GeV beam energy, combined with the
≈ 1034 cm−2 s−1 luminosity, allowed to reach maximum
Q′2 values of 3GeV2, which corresponds to an invariant
mass of the e+e− system Me+e− of ≈ 1.8GeV. This is
close to the mass of several vector mesons decaying into
e+e−, in particular the broad ρ′(1700). In order to have
a TCS interpretation as clean as possible, it is of course
advisable to avoid such resonances which contribute to
the process γP → P ′e−e+. The data analysis of ref. [23]
is therefore difficult to interpret in terms of GPDs but it
nevertheless demonstrates that the process γP → P ′e−e+

can be measured at JLab.
The forthcoming JLab energy upgrade to 11GeV al-

lows to explore a Q′2 region between 4 and 9GeV2 which
corresponds to a Me+e− region between 2 and 3GeV, i.e.
a vector meson resonance-free region between the ρ′ and
the J/Ψ . In the case of CLAS12, the upgraded CLAS
detector associated to the JLab energy increase, there
is also a luminosity gain of a factor 10. These upgrades
have led to the first dedicated TCS accepted proposal at
JLAB [24]. It will use a similar “quasi-photoproduction”
technique as used in the pioneer 6GeV analysis. In ad-
dition, there will be the improvement of the detection
of the low Q2 scattered electron via a dedicated tagging
equipement, supplementing CLAS12. This allows, besides
the measurement of unpolarized cross sections, to obtain
linearly polarized photons observables, by measuring the
azimuthal dependence of the scattered electron. Finally,
with a polarized electron beam, which is available at JLab,
one can access circularly polarized photons observables. It
is therefore expected that in the next few years, numerous
γP → P ′e−e+ data which can lend to GPD interpretation
will be available.

We show in fig. 5 the kinematical domain which can be
accessed with the upgraded JLab. We display in blue the
(ξ, Q′2) phase space accessible for TCS with an 11GeV
electron beam, assuming that the real photon is pro-
vided by bremsstrahlung of the electron and that its en-
ergy is in Eγ ∈ [5, 11]GeV. We have applied two cuts:
Q′2 ∈ [4, 9]GeV2 and −t ∈ [0, 1]GeV2. The motivations
are respectively to stay in the region free of vector mesons
resonances and minimize higher twist corrections to the
TCS formalism, which grow with t

Q′2 . We overlap in red
in this same figure the (ξ,Q2) phase space accessible with
an 11GeV beam for DVCS. We have applied the cuts:
−t ∈ [0, 1]GeV2, for the same reason as for TCS, and
s > 4GeV2 in order to stay above the baryon resonance
region.

One notes the large intersection between the DVCS
and the TCS phase spaces. Measurements of observables
sensitive to GPDs in the common (ξ,Q2) region by both
processes should bring strong constraints on the extraction
of GPDs and tests of factorization and universality.

We now present our results for the calculations of
the unpolarized cross sections, single-spin asymmetries



Page 6 of 14 Eur. Phys. J. A (2015) 51: 103

Fig. 5. Kinematical domain accessible as a function of ξ and
Q2 for DVCS (red plain surface) and in ξ and Q′2 for TCS (blue
dotted surface) with an 11 GeV electron beam. For DVCS,
the cuts −t ∈ [0, 1] GeV2 and s > 4 GeV2 have been applied
and for TCS, the cuts Eγ ∈ [5, 11] GeV, −t ∈ [0, 1] GeV2 and
Q′2 ∈ [4, 9] GeV2 have been applied.

and double-spin asymmetries, respectively in sects. 4, 5
and 6. In these sections, all calculations will be done in
the Bjorken limit and at leading order (we refer the reader
to refs. [25–27] for works on next-to-leading-order correc-
tions in αs to the TCS amplitude). In sect. 7, we will
study the effect of keeping the exact kinematics presented
in sect. 2.1 and of the gauge invariance restoration pre-
scription described in sect. 2.3.

4 Unpolarized cross section

We discuss in this section the unpolarized cross section of
the γP → P ′e+e− process, which therefore includes the
BH and TCS processes. The upper panel of fig. 6 shows our
calculation of the φ-dependence of the 4-fold differential
cross section dσBH

dQ′2 dt dφ d(cos θ) at ξ = 0.2, −t = 0.4GeV2,

Q′2 = 7GeV2 and for different θ values. The φ-shape is
strongly dependent on the θ value. As θ tends to 0◦, the
φ distribution peaks towards φ = 180◦ and as θ tends to
180◦, the φ-distribution peaks towards φ = 0◦ (or 360◦).
There is a smooth transition between these two singulari-
ties for the intermediate θ values. For instance, at θ = 90◦,
the calculation shows only two small “bumps” at φ = 0◦
and φ = 180◦.

These particular shapes are due to the BH process and
its singularities. Indeed, in the BH diagrams of fig. 3, when
the electron (positron) is emitted in the direction of the
initial photon, i.e. θ = 0◦ (θ = 180◦), the propagator
of the positron (electron) becomes singular and creates
a peak in the φ distribution at φ = 180◦ (φ = 0◦). In-
tuitively, θ = 0◦ (θ = 180◦) forces all particles to be in
the same plane, i.e. φ = 180◦ (φ = 0◦). The kinematics
θ = 0◦, i.e. the electron is in the direction of the photon
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Fig. 6. Top panel: unpolarized cross section dσ
dQ′2 dt dφ d(cos θ)

for the process γP → P ′e+e−, for BH alone and TCS alone as a
function of φ, at ξ = 0.2, −t = 0.4 GeV2, Q′2 = 7GeV2 for dif-
ferent fixed θ values: 10◦, 90◦, 170◦. Bottom panel: unpolarized
cross section dσ

dQ′2 dt dφ d(cos θ)
for the process γP → P ′e+e−,

for BH alone and for BH+TCS as a function of φ, at ξ = 0.2,
−t = 0.4 GeV2, Q′2 = 7 GeV2 for θ = 90◦ and for θ integrated
over [π/4, 3π/4].

beam, corresponds to φ = 180◦ because the virtual photon
is emitted by the positron, not the electron (see fig. 6).

We display also in the upper panel of fig. 6 the con-
tribution of TCS alone. In this calculation, we have used
only the GPD H. The inclusion of the other GPDs barely
changes the curves. In contrast to the BH, the TCS is al-
most flat in φ for all θ values. It is clear that the process
γP → P ′e+e− is largely dominated by the BH. There is
never less than an order of magnitude between BH and
TCS.

In the lower panel of fig. 6, we compare our calculations
for BH+TCS and for BH alone at θ = 90◦. This is the
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have been integrated over φ ∈ [0, 2π] and θ ∈ [π

4
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4
]. The

solid curves are our calculations while the dashed curves are
from ref. [5]. Bottom panel: ratio of our calculations to those of
ref. [5]. For the TCS process, the blue dotted curve contains the
nucleon mass term in the phase space factor in the calculation
of ref. [5] while the red dashed curve does not.

value of the θ angle for which one is far from the two BH
singularities and for which the difference between the two
calculations and therefore the sensitivity to TCS should
be the most pronounced. The ratio between the two curves
is of the order of 30% at φ = 180◦. As one gets closer to
one of the two BH singularities, the two curves BH and
BH+TCS are essentially indistinguishable and there is no
sensitivity to TCS.

Also, we show in the lower panel of fig. 6 our calcula-
tions of BH+TCS (and of BH alone) for θ integrated over
the range [π/4, 3π/4]. In order to maximize count rates,
from an experimental point of view, it is interesting to in-
tegrate over θ. We still have a sensitivity to TCS, however
it is of the order of 5%, i.e. lesser than at fixed θ = 90◦:
the integration over θ dilutes the sensitivity to TCS.

We display in the top panel of fig. 7 the Q′2-depend-
ence, at ξ = 0.2 and −t = 0.4GeV2, of dσ/dQ′2dt for
the BH and TCS processes. The 2-fold cross section has
been integrated over the decay angles: φ ∈ [0, 2π] and
θ ∈ [π

4 , 3π
4 ]. We also display in this figure the results of

the analytical formulaes of ref. [5]. For TCS, we have of
course used the same GPD parameterization for both cal-
culations (only H in this case).
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In order to better appreciate the comparison, we dis-
play in the bottom panel of fig. 7 the ratios of our calcu-
lations to those of ref. [5]. The agreement is excellent for
the BH process, as it should, since there was no approx-
imation done in the derivation of the analytical formula
for this process in ref. [5]. For TCS, we show two curves
for the ratio. Indeed, in ref. [5], in the analytical formula
for the TCS process, the nucleon mass was neglected in
the phase space factor, i.e. the cross section is propor-
tional to 1

s2 rather than 1
s−m22 (this is not the case for

the BH process where the phase space factor is exact in
ref. [5]). In the bottom panel of fig. 7, we plot the TCS
cross section of ref. [5] with (blue dotted curve) and with-
out (red dashed curve) the nucleon mass term in the phase
space factor. In this way, one can distinguish the differ-
ences between the two calculations originating from the
trivial phase space factor from those, more subtle, com-
ing from the TCS amplitude. It is seen in this figure that
at the lowest Q′2 values and at the presently considered
kinematics, the difference in the cross section calculations
depending on the prescription taken for the phase space
factor can reach more than 10%. In both cases, it is also
seen that the difference between the Berger et al.’s calcu-
lations and ours diminishes as Q′2 increases, as expected
since terms of the order of m2

Q′2 were dropped in the TCS
analytical formula of ref. [5].

To end this section concerning the unpolarized cross
section, we show in fig. 8 the influence of the D-term on
the three-fold differential cross section dσ/dQ′2dtdφ, cal-
culated for ξ = 0.2, −t = 0.4GeV2 and with θ integrated
over [π

4 , 3π
4 ]. It modifies the amplitude of the cross section

at φ = 0◦ and φ = 180◦ by about 10%.

5 Single-spin asymmetries

We now turn to the single-spin asymmetries: beam or tar-
get. Photons beams can be polarized linearly or circularly.
Target polarization vectors can be oriented along the x-,
y- or z-axis in the γP → γ∗P ′ plane (see fig. 4). For
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0.4 GeV2, Q′2 = 7 GeV2 and for different sets of θ and φ angles.

polarization observables, we will calculate spin asymme-
tries and, following notations used for DVCS, we will tag
them Aij , i.e. with two indices i and j. The first index i
refers to the polarization type of the beam: U for an unpo-
larized beam, � for a circularly polarized beam and � for a
linearly polarized beam. The second index j refers to the
polarization of the target and can take the values U , x, y
or z, with obvious meanings. In this section, dedicated to
single-polarization observables, we will therefore consider
successively the five independent asymmetries A�U , A�U ,
AUx, AUy and AUz.

In this section, as well as in the following one on
double-spin asymmetries, our calculations are carried out
for 100% polarisation. Circularly polarized photons, lin-
early polarized photons and proton polarized targets with
high degrees of polarization (between 60% and 90%) have
been obtained and used these past years almost routinely
at JLab (see for instance ref. [28]).

5.1 Linearly polarized photons

We introduce the angle Ψ between the polarization vector
of the photon and the plane spanned by the photon beam
and the (e+e−) system, which contains the x-axis (see
fig. 4). Then, we define

A�U (Ψ) =
σ(Ψ) − σ(Ψ + π/2)
σ(Ψ) + σ(Ψ + π/2)

, (25)

where the σ’s stand for the 4-fold differential cross sections
dσ

dQ′2 dt dφ d(cos θ) .
We display in fig. 9 the Ψ -dependence of A�U for

ξ = 0.2, −t = 0.2GeV2, Q′2 = 7GeV2 for θ = 45◦,
θ = 90◦ and θ integrated over [π/4, 3π/4] and φ = 0◦
and φ = 10◦. The approximate shape of the asymmetry
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Fig. 10. A�U asymmetry as a function of t for ξ = 0.2, Q′2 =
7 GeV2, Ψ = 0◦, φ = 0◦ and θ = 45◦, θ = 90◦ and θ ∈
[π/4, 3π/4].

is a cos(2Ψ) which is reminiscent of the modulation which
is predicted for the so-called Σ asymmetry in single me-
son photoproduction. This cos(2Ψ) modulation appears
explicitely in the analytical expressions of ref. [6].

We note that the BH alone produces an asymmetry.
It is actually the dominant contribution. The TCS pro-
duces only variations of the amplitude at the percent level
around the BH, making this observable not very favorable
to study TCS and GPDs. The amplitude and phase of the
asymmetry depend strongly on the decay angles: it is the
strongest as θ approaches 90◦ and the phase increases as
φ increases. This phase shift due to φ is also apparent in
ref. [6].

In fig. 9, we have used only the contribution of the H
GPD for TCS. In fig. 10, we show the t-dependence of
the A�U asymmetry for BH alone, BH+TCS (with only
H) and BH+TCS (with H + H̃). Calculations have been
done for ξ = 0.2, Q′2 = 7GeV2, φ = 0◦, Ψ = 180◦ and
for θ = 45◦, θ = 90◦ and θ integrated over [π/4, 3π/4].
Depending on t, we notice some sensitivity of the A�U

observable to the GPDs H and H̃.
In fig. 11, we show the peculiar φ-dependence of A�U

at Ψ = 0◦ at our standard kinematics. We also show the
(small) influence of the D-term.

We finally note that the φ and Ψ -dependences are not
completely independent. As Ψ is defined along the incom-
ing real photon direction and φ along the outgoing virtual
photon direction, the polar angle between the outgoing
and incoming photons intervene in the relation between
these two dependencies. We have shown the two depen-
dencies which, according to the particular experimental
needs and/or kinematics, might be both useful.
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5.2 Circularly polarized photons

We define:

A�U =
σ+ − σ−

σ+ + σ− , (26)

where σ± stand for the 4-fold differential cross sections
dσ

dQ′2 dt dφ d(cos θ) for the two photon spin states, right and
left polarized.

We display in fig. 12 (top panel) our results for A�U as
a function of φ at Q′2 = 7GeV2, ξ = 0.2, −t = 0.4GeV2

for θ = 45◦, 90◦ and θ integrated over [45◦, 135◦]. The TCS
is calculated here with only the H GPD. In all kinematics,
we obtain a sin(φ) shape with a significant amplitude, up
to ≈ 25%. We observe that the BH does not produce any
asymmetry. Any signal therefore reflects a contribution
from TCS. This is due to the fact that, as was shown in
ref. [5], this observable is sensitive to the imaginary part of
the amplitude and that the BH amplitude is purely real.
The amplitude of the asymmetry depends on θ. It is max-
imal for θ = 90◦, where BH is minimal and it decreases
as θ tends to θ = 0◦ (or 180◦). Since the BH does not
produce on its own an asymmetry, one sees that the inte-
gration over θ does not strongly reduce the signal. Such
integration allows to maximize count rates.

In fig. 12 (top panel), we also compare our results to
those of ref. [5]. In all cases, our calculations produce am-
plitudes a few percents larger. This might be attributed to
some mass correction terms to the TCS amplitude which
are present in our calculation and not in ref. [5].

Figure 12 (bottom panel) shows the A�U asymme-
try for θ integrated over [45◦, 135◦] using different GPDs
parametrizations for TCS.

In fig. 13, we show for ξ = 0.2, Q′2 = 7GeV2, φ = 90◦
and θ integrated over [45◦, 135◦], the t-dependence of A�U

and its sensitivity to different GPDs. We notice that the
magnitude of A�U increases with |t| and that there is a
sensitivity of this observable to all four GPDs, especially
at large |t|. We also display in this figure our calculation
with the factorized ansatz for the t-dependence of the H
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Fig. 12. Top panel: The A�U asymmetry as a function of φ
for θ = 45◦, θ = 90◦ and θ ∈ [45◦, 135◦]. The TCS is calculated
here with only the H GPD. We compare our calculations to
those of ref. [5]. Bottom panel: The A�U for θ ∈ [45◦, 135◦]
using differents GPDs parametrizations for TCS. The calcula-
tions are done for Q′2 = 7 GeV2, ξ = 0.2, −t = 0.4 GeV2.

GPD in order to illustrate the model-dependence of our
results.

5.3 Polarized targets

We define

AUi =
σ+ − σ−

σ+ + σ− , (27)

where σ± stands for the four-fold differential cross sections
dσ

dQ′2 dt dφ d(cos θ) for the two target spin orientations + and
− along the axis i = x, y or z.

We show in fig. 14 our results for the φ-dependence
of AUx, AUy and AUz for Q′2 = 7GeV2, ξ = 0.2, −t =
0.4GeV2 for θ integrated over [π

4 , 3π
4 ]. Like for A�U , it

is advantageous to integrate over θ, in order to maximize
count rates, since the signal is barely reduced. The TCS is
calculated with different GPD contributions. We observe
sin φ or cos φ shapes with amplitudes between 10 and 15%.
Like for A�U , the BH does not produce any asymmetry
and any non-zero asymmetry directly reflects the strength
of GPDs.
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[45◦, 135◦]. TCS is calculated with different GPD contribu-
tions.

We show in fig. 15 the t-dependence of AUx, AUy and
AUz at φ = 90◦, 0◦ and 90◦ respectively, for the kinemat-
ics ξ = 0.2, Q′2 = 7GeV2 and θ integrated over [π

4 , 3π
4 ].

In this figure, TCS is calculated with different GPDs. De-
pending on the value of t, the three asymmetries are sensi-
tive to the GPDs H, H̃ and E in various proportions. We
also display in this figure our calculation with the factor-
ized ansatz for the t-dependence of the H GPD in order
to illustrate the model-dependence of our results.

6 Double-spin asymmetries

We define the double-spin asymmetries,

Aij =
(σ++ + σ−−) − (σ+− + σ−+)

σ++ + σ−− + σ+− + σ−+
, (28)

where σ±± stand for the four-fold differential cross sec-
tions dσ

dQ′2 dt dφ d(cos θ) for the two photon beam spin states
+ and − (first index) and the two target spin orientations
+ and − (second index) along the target polarization axis.
The first index of A refers to the polarization nature of the
photon beam (i = � for a linear polarization and i = � for
a circular polarization) and the second index refers to the
axis polarization of the target j = x, y or z. We present
and discuss in the two following subsections our results
for A�j and A�j .

6.1 Circularly polarized photons and polarized target

Figure 16 shows our results for A�x, A�y and A�z, from
left to right, as a function of φ at the kinematics ξ =
0.2, −t = 0.4GeV2, Q′2 = 7GeV2. The top row shows
the result of our calculations for θ integrated over [π

4 , 3π
4 ]

with different GPD contributions to the TCS amplitude.
The bottom row shows the same observables with only the
GPD H contribution for different θ angle sets.

One notes that the BH process alone produces asym-
metries in all cases. The φ-shapes of the asymmetries are

complex and very dependent on θ. Also, in contrast to
the single-spin asymmetries that we studied in the pre-
vious section, the φ-shapes are also very dependent on
the specific GPDs entering the TCS process. One notes in
particular important sensitivities to the H, H̃, Ẽ GPDs
as well as to the D-term. Furthermore, one also notes the
sensitivity of these double-polarization observables to the
ansatz used for the t-dependence.

Figure 17 shows the t-dependence of the double-spin
asymmetries A�x, A�y and A�z at φ = 0◦, φ = 90◦
and φ = 0◦ respectively, at the kinematics ξ = 0.2,
Q′2 = 7GeV2 and θ integrated over [π/4, 3π/4]. We also
display in this figure our calculation with the factorized
ansatz for the t-dependence of the H GPD in order to il-
lustrate the model-dependence of our results. The change
of sign for A�y for the factorized ansatz compared to the
Reggeized ansatz is in particular remarkable. As can be
seen in the top panel of fig. 16, this is due to the fact that
the factorized model crosses the “zero” line before φ = 90◦
while the Reggeized model crosses it after, thus producing
respectively positive and negative A�y’s at φ = 90◦.

6.2 Linearly polarized photons and polarized target

Figure 18 shows our results for the double-spin asymme-
tries A�x, A�y and A�z, from left to right, as a function of
φ at the kinematics ξ = 0.2, −t = 0.4GeV2, Q′2 = 7GeV2

with θ integrated over [π
4 , 3π

4 ].

One notes that the BH process alone produces a null
asymmetry in all cases, making this double-spin asymme-
try particularly favorable to study TCS and GPDs. A�y

is mostly sensitive to the GPD H contribution while A�x

and A�z show a sensitivity to the GPD H̃ as well.

7 Corrections to the leading-twist calculations

We evaluate in this final section two types of higher-
twist corrections: keeping the exact kinematics presented
in sect. 2.1, i.e. |ξ̃| 	= |ξ| 	= |ξ̃′| 	= |ξ′|, and adding the
gauge correction term of sect. 2.3 to the TCS tensor.

Figure 19 shows the Q′2-dependence and the |t|-
dependence of the ratio of the 2-fold cross differential cross
sections dσ/dtdQ′2 for Bethe-Heitler and for TCS (inte-
grated over the decay angles: φ ∈ [0, 2π] and θ ∈ [π

4 , 3π
4 ])

calculated with the gauge invariance restoration term
(dot-dashed curve for TCS) and with the exact kinemat-
ics (dotted curve for TCS) to the asymptotic limit (i.e.
Bjorken limit) calculation that we have presented so far.
The calculation has been carried out for ξ = 0.1 and at
−t = 0.4GeV2 (left panel) or at Q′2 = 7GeV2 (right
panel). One sees that these ratios tend to 1 as Q′2 in-
creases and as |t| decreases, as expected. The effects of
these corrections in the domains of current interest, cov-
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]) calculated with the gauge

invariance restoration term (dot-dashed curve for TCS: gauge invariant/asymptotic) and with the exact kinematics (dotted
curve for TCS: “exact”/asympototic) to the asymptotic limit (i.e. Bjorken limit) calculation. The calculation has been carried
out for ξ = 0.1, θ is integrated over [π/4, 3π/4], φ is integrated over [0, 2π] and at −t = 0.4 GeV2 (left panel) or at Q′2 = 7GeV2

(right panel).

ered in this figure, are of the order of a few percents for
TCS. The exact kinematic corrections are more important
(always less than 6% though) than the gauge invariance
restoring corrections. We show in fig. 20 that the impact
of these corrections on the asymmetries that we discussed
earlier is of the order of 0.1% to 1% and do not affect the
conclusions that we drew earlier.

The kinematically higher twist corrections as well as
the higher-twist gauge correction terms considered here
are of course only a part of the higher-twist corrections
and can be improved upon. In particular, a next step
would involve a full treatment of target mass corrections
to twist-4 accuracy, as was done for the DVCS process in
ref. [29].
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Fig. 20. Difference of the single- and double-spin asymmetries (circularly polarized photon) as a function of |t| before and after
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8 Conclusion

In this work, we have studied the γP → P ′e+e− pro-
cess in terms of GPDs in a regime where one can ex-
pect to access them. We have presented our derivations
of the TCS and BH amplitudes both contributing to the
γP → P ′e+e− process and calculated all unpolarized,
single-beam, single-target and double-spin beam-target
observables.

We show that, since the TCS process is lower by several
factors in the unpolarized cross section compared to the
BH process, it is judicious to measure spin asymmetries
which reveal a more direct sensitivity to GPDs. In partic-
ular, the BH process alone does not produce any signal for
the target single-spin asymmetries, for the circularly po-
larized beam single-spin asymmetries and for the linearly
polarized photons and polarized target double-spin asym-
metries. These observables are therefore particularly fa-
vorable to directly measure GPD strength. We have shown
in general that the various single- and double-polarization
observables that we have calculated show different sensi-
tivities to the four GPDs, which should ultimately allow
to disentangle them with some adequate GPD fitting algo-
rithms. We also provided first estimations of higher-twist
contributions such as keeping the exact kinematics and
including a gauge invariance restoring term. The effects
are at the level of a few percent on cross sections and spin
asymmetries.

A rich new experimental TCS program can be envi-
sioned with the forthcoming JLab energy upgrade, which
would complement the DVCS program already approved
in order to access GPDs. All of the TCS observables that
we calculated in this work should be measurable and can
serve as a basis for developping experimental proposals.
This work might also find some applications at higher en-
ergies, like at hadron colliders, such as LHC and RHIC, in
ultraperipheral collisions [30] or at the projected electron-
ion collider EIC [31].
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