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Abstract. We present a calculation of the spectrum of charmonia, bottomonia and Bc-meson states with
“ordinary” and exotic quantum numbers. We discuss the merits and limitations of a rainbow-ladder trun-
cation of Dyson-Schwinger and Bethe-Salpeter equations and explore the effects of different shapes of the
effective running coupling on ground and excited states in channels with quantum numbers J ≤ 3. We
furthermore discuss the status of the X(3872) as a potential (excited) quark-antiquark state and give
predictions for the masses of charmonia and bottomonia in the tensor channels with J = 2, 3.

1 Introduction

With the spectacular success of Belle, Babar, BES and the
LHC experiments and their discovery of an ever-increasing
and largely unexplained number of XY Z-states, hadron
spectroscopy in the heavy quark region became a fascinat-
ing topic in the past years. Many of the newly discovered
states are surprisingly narrow, with some of these states
electrically charged and therefore not accounted for by the
conventional quark model picture of quark-antiquark me-
son bound states. Certainly, the potential of these states
to guide us in our understanding of the underlying physics
of the strong interaction is enormous, as detailed, e.g., in
refs. [1–4] and references therein.

From a theoretical QCD perspective charmonia (and,
to a perhaps lesser degree, bottomonia) are extremely in-
teresting since they combine effects of non-perturbative
QCD with perturbative concepts in the heavy quark
regime. In general, the charm quark is not heavy enough to
be considered as non-relativistic. Thus especially excited
states in the charmonium spectrum have to be considered
in a framework that is genuinely relativistic or, at least,
incorporates relativistic corrections. Model calculations in
terms of relativistic quasipotentials reproduce many fea-
tures of the spectrum [5–8] and provide important guid-
ance on the structure of the spectrum. However, in order
to gain a more systematic understanding of the underlying
physics of the strong interaction it is mandatory to em-
ploy approaches that are directly rooted within QCD. At
least two different strategies have been employed in this
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direction. On the one hand, lattice gauge theory as well
as non-relativistic QCD (NRQCD) and potential NRQCD
have made substantial progress in determining the details
of the heavy quark potential from QCD [9–11].

On the other hand, the heavy quarkonia states can be
directly calculated from the underlying QCD Lagrangian
without the need to resort to expansions in terms of quark
velocities or heavy quark masses. Such approaches have
the obvious advantage that the heavy and the light quark
sectors can be treated in the same framework. In the char-
monium sector, lattice gauge theory has made an ever in-
creasing effort to determine the spectrum of ground and
excited states as well as exotics in dynamical calculations,
see, e.g., [12–16] and references therein as well as [19, 20]
for short reviews.

An alternative approach based on QCD is the relativis-
tic functional framework employing the Dyson-Schwinger
and Bethe-Salpeter equations. Within the rainbow-ladder
approximation first studies of the quarkonium spec-
trum [21–24] as well as exotic states like tetraquarks [25] in
the heavy quark region have been performed, accompanied
by systematic studies in the limit of static quarks [26–28].

In this work we refine and extend these calculations
in two directions. On the one hand we include states with
higher angular momentum up to J = 3. On the other hand
we perform a systematic study of the influence of details
in the momentum dependence of the underlying effective
running coupling on the spectrum of ground and excited
states in these channels. We extend our analysis of [29] to
the heavy c̄c, b̄b and b̄c mesons. In the process, we gener-
alize the frequently used the Maris-Tandy interaction in
order to explore the impact of the shape of the interac-
tion, with an emphasis on the resultant splitting between
different meson channels and their excited states.
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The paper is organized as follows. In sect. 2 we sum-
marize the framework of the DSE and BSEs, together with
a discussion of the rainbow-ladder interaction employed.
Our results are presented and discussed in sect. 3. We
conclude in sect. 4.

2 Framework

We work with the one-particle irreducible Green’s func-
tions of QCD in Euclidean space, obtained through so-
lutions of their corresponding Dyson-Schwinger equations
(DSEs).

With the quark propagator decomposed as

S−1(p) = Z−1
f (p2)

(
i/p + M(p2)

)
, (1)

where Zf (p2) is the quark wave function and M(p2) its
mass function, we solve its DSE

S−1(p) = Z2S
−1
0 (p)

+g2Z1fCF

∫

k

γμS(k + p)Γ ν(k + p, p)Dμν(k).

(2)

For brevity, we write
∫

k
=

∫
d4k/(2π)4. The bare propaga-

tor, S−1
0 (p) is obtained from eq. (1) by setting Zf (p2) = 1

and M(p2) = m0, with m0 related to the renormalized
quark mass mq by m0 = Zm mq. The renormalized cou-
pling of QCD is denoted by α = g2/(4π) and Z2, Zm and
Z1f are the renormalisation factors of the quark wave func-
tion the quark mass and the quark-gluon vertex. Colour
traces yield the Casimir factor CF = 4/3.

The non-trivial inputs into the quark DSE are the
gluon propagator Dμν(k), and the dressed quark-gluon
vertex Γ ν(k, p). Since we work in Landau gauge the gluon
propagator is transverse and given by

Dμν(k) = Tμν(k)
Z(k2)

k2
, (3)

where Tμν(k) = δμν −kμkν/k2 is the transverse projector.
We will discuss the quark-gluon vertex and the details of
our truncation below.

Bound states of a quark and an antiquark are described
by the (homogeneous) Bethe-Salpeter equation for the cor-
responding Bethe-Salpeter amplitude Γ (p;P )

[Γ (p;P )]tu = λ(P 2
i )

∫

k

K
(2)
tr;su(p, k;P ) [S+Γ (k;P )S−]rs ,

(4)
with a discrete spectrum of solutions found at P 2 = −M2

i
for eigenvalues λ

(
P 2

i

)
= 1. The quarks S± = S(k±) carry

momentum k± = k + (ξ − 1/2 ± 1/2)P with momentum
partitioning ξ. Since the equation is manifestly covariant,
all solutions are independent of ξ. The quantum numbers
of the bound state under consideration follow from the
tensor structure of Γ (p;P ). The two-particle irreducible
quark anti-quark interaction kernel K

(2)
tr;su(p, k;P ) is cho-

sen to be consistent with eq. (2) and the axial-vector

Ward-Takahashi identity such that the chiral properties
of the pion are preserved: the pion is both a bound state
of a quark and an antiquark and a massless Goldstone
boson in the chiral limit.

2.1 The rainbow-ladder approximation

In the rainbow-ladder truncation scheme one replaces
the combined effects of the dressed gluon propagator
and dressed quark-gluon vertex by a one-gluon–exchange
model with effective coupling and bare vertex. In the light
quark sector the most important merit of the rainbow-
ladder scheme is its compliance with chiral symmetry such
that the (pseudo-)Goldstone boson nature of the pseu-
doscalar mesons and the associated Gell-Mann–Oakes–
Renner relation are satisfied. In the opposite limit of very
heavy quarks it has the (perhaps surprising) tendency to
become exact [26–28]. For realistic masses of the charm
and bottom quarks the static limit is relevant in the sense
that potentials using the vector structure of one-gluon ex-
change only are able to reproduce global features. Nev-
ertheless, when it comes to the quantitative details such
as the spin-orbit splitting, sizeable corrections occur. On
the other hand, it has been argued in [30] that the con-
straints of chiral symmetry still play an important role
in the heavy quark region. We conclude from this that
systematic studies of the feasibility of the rainbow-ladder
scheme in the heavy quark region provide an important
systematic link between the chiral and the static limit of
QCD. We will see that our study nicely complements our
ref. [29] where we have elucidated the assets and short-
comings of the rainbow-ladder scheme for the spectrum of
light quarks. Here we provide a similar analysis for heavy
quarks.

In the rainbow-ladder scheme the quark-gluon inter-
action appearing in the quark DSE is combined into an
effective interaction αeff(q2)

Z1f g2 Dμν(k)Γν(k + p, p) → 4πZ2
2 Tμν(k)

αeff(k2)
k2

γν ,

(5)
with the appearance of Z2

2 following from the Slavnov-
Taylor identities to maintain multiplicative renormaliz-
ability.

The corresponding symmetry-preserving two-body
kernel is given by

K
(2)
tr;su = 4π Z2

2

αeff(k2)
k2

Tμν(k) [γμ]tr [γν ]su . (6)

One of the most frequently used examples of an
effective quark-gluon interaction is that of Maris and
Tandy [31]. It consists of a term which guarantees the
correct ultraviolet behaviour of the quark-DSE according
to one-loop resummed perturbation theory and a term
which is only active in the infrared and supplies enough
interaction strength to trigger chiral symmetry breaking.
The interaction can be represented by

αeff(q2) = αIR(q2) + αUV(q2), (7)
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where

αIR(q2) = πη7P(x)e−η2x, (8)

αUV(q2) =
2πγm (1 − e−y)

ln [e2 − 1 + (1 + z)2]
, (9)

with momenta x = q2/Λ2, y = q2/Λ2
t , z = q2/Λ2

QCD. Here
P(x) is a general polynomial that is equal to x2 in the
original Maris-Tandy model. Below we will also discuss
modifications of P(x). Typically Λ is constrained in the
light quark sector to be equal to 0.72GeV by matching
this scale to the known value of the pion leptonic decay
constant. Some results for ground states are then found to
be insensitive to the dimensionless parameter η, whereas
the masses of the excited states in general depend much
more strongly on this parameter.

In addition, this setup ignores the flavour dependence
of the quark-gluon interaction. For heavy quarks, recent
results on the quark-gluon vertex suggest a considerable
decrease in the dressing effects when the quark mass be-
comes heavy [32], a result in accordance with the general
considerations from the beginning of this subsection. As a
consequence, one would expect Λ and η to differ in the ef-
fective interaction for light and heavy hadron states. More
generally one could expect the shape of the interaction to
change, hence the generalization in eq. (8) to feature P(x).
Below we therefore employ the polynomial form,

P(x) =
n∑

i=1

aix
i, (10)

and investigate its impact on the heavy meson spectrum
restricting ourselves to terms with n ≤ 4.

2.2 Numerical methods

Our numerical methods have been explained in ref. [29]
and we refer the reader to this work for details. For the
quark-DSE we use a version where the complex momen-
tum is flowing through the internal quark propagator,
leaving the momentum in the Maris-Tandy interaction
real. This way we avoid the sizable numerical errors that
may occur when evaluating the effective interaction in the
complex plane. Furthermore we use a Pauli-Villars–type
regulator to avoid cut-off effects in the quark-DSE.

In general, when evaluating bound state in channels
with large angular momentum J or radially excited states
the problem arises that the Bethe-Salpeter equation eval-
uates the internal quark propagators at large time-like
momenta. With increasing mass of the state in question
at some point one probes the analytic structure of the
quark propagators, which in rainbow-ladder approxima-
tion is given by pairs of complex conjugate poles [33–35].
Since the numerical treatment of the quark-DSE at and
beyond these poles is extremely hard we refrain from a
brute force treatment of the problem and resort to the
extrapolation techniques for the eigenvalue of the BSE
described in ref. [29]. There we compared two different

extrapolation techniques and estimated thereby the asso-
ciated error. For ground states with masses not too far be-
yond the calculable domain, these errors are generically on
the level of 1%. For excited states and states with larger
masses the accumulated error of extrapolation is larger.
We accepted extrapolations up to errors on the 5% level
for the exploratory study presented here.

3 Results

3.1 Charmonia

3.1.1 Vanilla Maris-Tandy

We start our study with what we term the vanilla Maris-
Tandy interaction, i.e. we keep the scale Λ = 0.72GeV
from the light meson sector and explore the dependence
of the spectrum on η. Furthermore, for the polynomial
P(x) in eq. (8) we use the Maris-Tandy form (a2 = 1,
remaining ai = 0). This original form of the Maris-Tandy
(MT) interaction has been employed in the heavy meson
sector already in ref. [22]. It therefore provides a conve-
nient starting point. In the subsects. 3.1.2, 3.1.3 and 3.1.4
below, we will also discuss deviations from this form in a1,
a4 or the scale Λ.

In ref. [22] a general fit has been performed of ground
state masses in the vanilla MT model to experimental
values. Here we employ a different strategy. We utilise
an observation made in [29], namely that the channels
1−−, 2++, 3−−, etc., are particularly well represented in
the rainbow-ladder framework. Within the realms of po-
tential quark models these states share the property that
the spin-spin tensor forces do not play an important role.
Since these states are well represented in the vanilla MT
interaction in the light meson sector, we first concentrate
on the ground and first excited state in the 1−−-channel
(J/Ψ , Ψ(2s)) and the ground state in the 2++-channel
(χc2). We minimize the deviations of our calculated masses
with the experimental values under variation of the charm
quark mass and the η-parameter in the MT interaction.
We obtained good agreement with experiment using a
charm quark mass of m(19GeV) = 0.870GeV and a value
η = 1.157.

Our results for all presently available channels are
shown in fig. 1, the explicit values are all collected in ta-
ble 1 at the end of the results section. Since we have fixed
the two input parameters from J/Ψ , Ψ(2s) and χc2, all
other states can be viewed as model predictions. In the
pseudoscalar channel we find a mass of the ηc which is
slightly too low, but still within 3% of the experimental
value. In the language of potential models, this may in-
dicate an overestimation of the spin-spin contact term in
the effective interaction. Very good agreement with exper-
iment is obtained for the ground state in the 1++-channel,
whereas the masses of the scalar 0++ and the axialvector
1+− ground states are further off but still within five per-
cent of the experimental value. Similar results have been
obtained already in refs. [22, 23]. The new element here
is the calculation of states with J = 3 and the excited
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Fig. 1. Spectrum of ground and excited charmonium states for vanilla MT–rainbow-ladder interaction. The three rightmost
states are exotic in the quark-model.

Table 1. Calculated masses for ground and excited charmonium, bottomonium and charm-bottom states.

JPC cc̄ bb̄ bc̄

n = 0 n = 1 n = 2 n = 0 n = 1 n = 2 JP n = 0

0−+ 2925 3684 9414 9987 0+ 6714+67.1
−67.1

0−− 3348 9642 0− 6354+23.5
−23.5

0++ 3323 3833 9815 10254 1+

0+− 3674 10014 1− 6498+64.9
−64.9

1−+ 3524 9788

1−− 3113 3676 3803 9490 10089 10327

1++ 3489 3672 3912 9842 10120 10303

1+− 3433 3747 9806 10154

2−+ 3806 10194

2−− 3739 10145

2++ 3550 9906

3−− 3896 10232

3++ 3999 10302

3+− 4037 10319

states. In ref. [29] we already observed in the light quark
sector, that the rainbow-ladder interaction is well suited
to reproduce states in the sequence 1−−, 2++, 3−−, . . . ,
which are located on the same Regge-trajectory. Since we
reproduce the experimental results for the J/Ψ and the
χc2 with an error below 1%, we therefore expect our re-
sult for the mass of the 3−−-state of

m3−− = 3896GeV (11)

to be also accurate on this level due to uncertainties
in the interaction alone. Since this state is a ground

state beyond but still close to the boundary of calcu-
lable states (the dashed line in the plot) it is not sub-
ject to a large extrapolation error (see [29] for a discus-
sion of the extrapolation procedure). We therefore expect
our prediction for the mass of this state to be quite ro-
bust, with a guesstimate of the overall error on the 3%
level. Within these errors, we agree with the quark model
prediction [7] and the lattice QCD results [13, 14]. For
the other tensor ground states with J = 2 and J = 3
we expect our results to be much less accurate, with
a guesstimate of total systematic errors on the 5–10%
level.
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Similar to the light quark sector [29] we also find, that
the sequence 1−−, 2++, 3−− lies on a Regge trajectory
with an accuracy that is even better than in the potential
model of ref. [7]. For J = αM2 + α0 we find α = 0.36
and α0 = −2.55, which is also somewhat steeper than
the result of [7]. For the heavy quark sector this confirms
a result found in ref. [29] for light quarks, that Regge-
type behaviour in the spectrum may be found without
any direct connection to an underlying string picture.

We also calculated the masses of ground states with
exotic quantum numbers that cannot be accounted for
as qq̄-states in quark models. Our results are displayed
in fig. 1. Note that within a genuinely relativistic frame-
work such as lattice QCD or the functional approach used
here, there is no problem representing these states with
bilinear operators. Therefore they naturally appear also
in the qq̄ spectrum. Of course, it is then an open question,
whether sizeable admixtures from states with a different
quark content than qq̄ (captured only in appropriate ex-
tensions of the quark-gluon interaction beyond rainbow
ladder) do exist. Furthermore, even within the qq̄ picture
large corrections beyond rainbow ladder may occur. Be-
cause of these possibilities our calculated masses should
be regarded with a lot of caution.

For the excited states we observe very good agree-
ment in the vector channel: our value for the mass of the
Ψ(2S) is very close to the experimental one, and even the
next radial excitation is nicely represented. In the pseu-
doscalar channel the splitting between the ground and the
excited state is slightly too large, making the agreement of
the (2S)-state with experiment even better than for the
ground-state ηc. It is interesting to observe that the re-
sulting fine structure splitting of the ground and excited
states show a qualitatively difference when compared with
experiment: whereas the ground-state splitting is too large
the splitting in the excited state is too low. Such an un-
correlated behaviour of the two splittings has also been
observed in lattice QCD [13].

In the “good” tensor channel 2++ potential radially
excited states like the X(3927) are not reproduced in our
framework. There is a considerable uncertainly due to the
extrapolation procedure needed in this mass region (see
the discussion in sect. 2.2), which is enhanced for excited
states. Taking our result at face value, however, the cur-
rent model would disregard the notion of the X(3927) to
be an ordinary meson state.

From an experimental point of view, the 1++-channel
is perhaps the most interesting one. There the fa-
mous X(3872)-state awaits its identification as a meson-
molecule, a tetraquark, or an ordinary quark-antiquark
bound state. The literature on this subject is enormous,
therefore we point the reader only to ref. [4] for a first
overview. The interesting question in this context is
whether a description on a quark-antiquark basis is possi-
ble at all for the X(3872). In the present rainbow-ladder
model we find a ground state in this channel that is only
slightly below the experimental state χc1. In addition,
we find an excited state at m = 3672MeV that cannot
be accounted for by experiment. A second excitation is
found at m = 3912MeV, close to the quark model pre-

diction for the first radial excitation. Indeed, we verified
by inspection that the Bethe-Salpeter wave function of
our second excitation corresponds to the first radial ex-
citation, have one zero crossing at finite relative momen-
tum between the quark-antiquark constituents. Thus we
agree with the quark-model result, that the splitting be-
tween ground state and first radial excitation in the 1++-
channel is too large to account for the X(3872) to be a
pure radially excited quark-antiquark state. This is true
for the vanilla MT interaction, but we will argue below
that modifications of the interaction within the rainbow-
ladder framework do not change this situation. What re-
mains to be clarified is the nature of the extra state that
we see at m = 3672MeV. We verified that the leading part
of its wave function has no zero crossing, thus ruling out
its interpretation as a radial excitation. It has well-defined
charge conjugation and parity properties, but it cannot be
accounted for by the naive quark model picture.

Currently, we do not have a good explanation for the
appearance of this state. In principle, it may or may not
be that this state is spurious in the sense that it only
appears in the rainbow-ladder framework and disappears
when corrections beyond rainbow ladder are taken into
account. Clearly, the present form of the rainbow-ladder
interaction is not sufficient to describe all structures of
the experimental spectrum. This is especially apparent in
the 0++- and 1+−-channels. We therefore expect sizeable
corrections when interactions beyond the rainbow-ladder
approximation are taken into account1. This is the sub-
ject of future work. Here, as a first step in this direction,
we would like to explore the extent to which the rainbow-
ladder interaction can be modified to improve the agree-
ment with experiment. To this end we systematically ex-
plore the variations of the spectrum once we go away from
the simple shape of the effective coupling eq. (7) with poly-
nomial P(x) = x2, i.e. a2 = 1 and all other ai = 0 in
eq. (10). This is the subject of the next two subsections.

3.1.2 Effective interaction including a1

In order to study the variations of the charmonium spec-
trum with respect to changes in the general momentum
behaviour of the effective coupling we now introduce ad-
ditional structure in the polynomial P(x) in eq. (8). First
we vary a1 in the interval −0.5 ≤ a1 ≤ 0.5. For the effec-
tive running coupling the resulting variation is shown in
fig. 2. Clearly, the integrated strength, but also the fine
details of the coupling change: For negative a1 we even
obtain a zero crossing with the corresponding scale asso-
ciated with the relative strength between the a1- and a2-
terms (here we keep a2 = 1). Such an effective coupling
is unusual, but not unreasonable. Recent calculations of
the three-gluon vertex [36–38] suggest that the interplay
between ghost and gluon degrees of freedom in the cor-
responding Dyson-Schwinger equation for the vertex may
very well introduce such a zero crossing. This possibil-
ity is also seen in corresponding lattice calculations [39].

1 In addition, for states above the DD̄-threshold coupled-
channel effects may play an important role.
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Fig. 2. The shape of the effective coupling for the general-
ized Maris-Tandy interaction with varying a1 and a2 = 1 held
constant (see text for further explanations).

M
[G

eV
]

2.8
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3.2

3.4

3.6

3.8

a1

−0.5 −0.25 0 0.25 0.5

ψ(2S)
χc1*
χc1
χc0
J/ψ
ηc

Fig. 3. The response of masses of bound and excited states on
the variation of the shape of the effective interaction with a1.

Since the three-gluon vertex is an integral part of the non-
Abelian diagrams in the DSE for the quark-gluon vertex,
this behaviour may translate into a corresponding zero
crossing of the quark-gluon vertex [32] and subsequently
into the effective coupling.

The resulting changes in the meson spectrum are dis-
played in fig. 3. Adjusting the bare charm quark mass via
mJ/Ψ to accommodate for the changes in the integrated
interaction strength we observe only very small changes
in the resulting masses for the ground-state mesons. How-
ever, the excited states turn out to be sensitive to the
details of the interaction. This is particularly true for the
Ψ(2S) and the first excitation in the 1++-channel, which
we denoted by χ∗

c1 in order to distinguish it from the sec-
ond excited state in this channel which we identified with
the first radial excitation χ′

c1 as discussed above. In par-
ticular for negative values of a1, corresponding to the zero
crossing of the interaction discussed above, we find much
increased values for the mass of the χ∗

c1, which eventu-
ally may even hit the experimentally observed mass of
the X(3872). However, this comes at a price: the mass of
the Ψ(2S) reacts in a similar way and substantially moves
away from the experimental value, almost reproduced for
a1 = 0. In general we find that variations of the infrared

Fig. 4. The shape of the running coupling for the generalized
Maris-Tandy interaction with a2 = 1, a1 = a3 = 0 and varying
a4.

M
[G

eV
]

2.8

3

3.2

3.4

3.6

3.8

a4

0 0.2 0.4 0.6 0.8 1

ψ(2S)
χc1*
χc1
χc0
J/ψ
ηc

Fig. 5. The response of masses of bound and excited states on
the variation of the shape of the effective interaction with a4.

behaviour of our interaction via changes in a1 do not im-
prove the agreement of the calculated spectrum with the
experimental one.

3.1.3 Effective interaction including a4

Next we consider the generalized Maris-Tandy interaction,
eq. (8), given by a1 = 0, a2 = 1 but non-trivial compo-
nents a3 or a4. Both of these modify the interaction in
the intermediate momentum region, while keeping the in-
frared and ultraviolet behaviour untouched as can be seen
from fig. 4 for the example of variations in a4. Since varia-
tions of a3 act similarly on the effective coupling we keep
a3 = 0 fixed and restrict ourselves to variations of a4. Fur-
thermore, we keep a4 ≥ 0, since there are no indications
that the dressing of the quark-gluon vertex can induce a
negative effective interaction in the mid-momentum region
(in contrast to the infrared momentum region discussed in
sect. 3.1.2 above).

Again, we study the variation of the charmonium spec-
trum while still readjusting the charm quark mass to
reproduce the vector ground-state J/Ψ . Our results are
given in fig. 5. Here we find a substantial increase in the
mass splitting between the pseudoscalar and the vector
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Fig. 6. The response of masses of bound and excited states on
the variation of the scale parameter Λ in the interaction.

channel due to the additional interaction strength in the
mid-momentum region. At the same time, the masses of
the excited states Ψ(2S) and χ∗

c1 increase slightly. This
moderate increase is, however, nowhere large enough to
bring the χ∗

c1 close to the observed X(3872)-state. In gen-
eral we find that variations of the mid-momentum be-
haviour of our interaction via changes in a4 do not im-
prove the agreement of the calculated spectrum with the
experimental one.

3.1.4 Vanilla Maris-Tandy with variation of Λ

Finally we studied the variation of the masses of the
ground and excited states with a change of the scale Λ
in the interaction. We varied the scale between 0.6GeV ≤
Λ ≤ 0.84GeV, keeping η = 1.157 fixed but readjusting
the charm quark mass such that the ground state in the
vector channel does not change. Our results are shown in
fig. 6. We find a substantial variation in particular of the
mass of the first excited state in the vector channel with
change of Λ. This variation is so steep, that the agreement
with the measured mass is only good in the vicinity of the
scale Λ = 0.72GeV inherited from the light meson sec-
tor in the first place. This justifies our original choice in
sect. 3.1.1.

3.2 Bottomonia

Our results for the spectrum of bottomonia are shown in
fig. 7. Compared to the charmonium spectrum in fig. 1
we had to change the shape of the interaction by adjust-
ing the η-parameter from η = 1.157 for the charm case to
η = 1.357 for the bottom quarks. This reflects part of the
underlying flavour dependence of the quark-gluon interac-
tion as noted in ref. [32]. Our corresponding mass of the
bottom quark is m(19GeV) = 3.790GeV. The resulting
spectrum of ground and excited states, however, has sim-
ilar features when compared with experimental values as
the charmonium one. Once again, the 0−+, 1−− and 2++

ground states are well represented. The necessary extrap-
olation needed for the 2++ is still under control, since the
state is not too far above the limit where everything can
be calculated (the dashed line in the plot). Surprisingly
good is also the negative parity tensor state, although the
extrapolation procedure in this mass region must be con-
sidered with a little more caution. The ground states in the
scalar and axial vector channels are further off their exper-
imental counterparts, although still within the 1% devia-
tion margin. Thus overall, the ground-state spectrum of
bottomonia is well represented in the rainbow-ladder ap-
proximation of the BSEs. Provided the good agreement in
the 2−−-channel can be seen as an indication that extrap-
olation even in this mass region works well, we can regard
the masses of the further tensor states with J = 2 and
J = 3 as more or less solid predictions on the level of one
percent. Compared to the quark-model predictions of [7]
we find only slight deviations of the order of 30–70MeV
for the 2−+ and the states with J = 3.

In contrast to the charm case, the lowest-lying excited
states in the bottomonium spectrum are already in a mass
region where we need to extrapolate the eigenvalue of the
BSE, as discussed above. Nevertheless, the extrapolation
procedure seems to work and the results are surprisingly
good and comparable with the corresponding ones in the
charmonium spectrum, where much less extrapolation was
needed. The first excited states in the pseudoscalar, vector
and even the scalar channel are quite accurate and even
the Ψ(3S) works reasonably well. In the 1++-channel we
make the same observation as in the charmonium spec-
trum: there is a first excited state which is not a radial
excitation, whereas the second excited state can be iden-
tified with the first radial excitation in the channel, i.e.
the χ′

b1. Again, it will be interesting to study corrections
beyond the rainbow-ladder framework.

Our results for exotic states are also given in the
plot, although, as already mentioned for the charmonia
spectrum, they should be regarded with some caution due
to potential mixing effects with non–qq̄-states in these
channels.

3.3 Charm-bottom bound states

Finally, we present our results for selected channels of
Bc-mesons. Heavy-light systems in the Bethe-Salpeter ap-
proach are notoriously difficult to treat, since the problem
of probing the analytical structure of the internal quark
propagators already appears for ground states, see, e.g.,
refs. [40, 41] for recent studies of the problem. Our re-
sults for these states, shown in fig. 8 are therefore all ex-
trapolated and have a systematic error of about 5–10%.
In the plot we show values obtained using a variation of
the η-parameter in the interaction ranging approximately
between the ones used for the charmonia and bottomo-
nia. In this way we heuristically take into account the
varying strength of the interaction for the two different
quark flavours involved. The central value, given by the
red line, corresponds to η = 1.257. Given the inherent
uncertainties in the calculation, our value for the Bc in
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Fig. 7. Spectrum of ground and excited bottomonium states for the vanilla MT–rainbow-ladder interaction. The three rightmost
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Fig. 8. The calculated bc̄ spectrum compared to experiment.
The green bands correspond to the variation η = 1.257 ± 0.1.

the pseudoscalar channel is surprisingly close to the ex-
perimental one. Since this is the state with the lowest
mass, the extrapolation error is also smallest. Since the
rainbow-ladder approach works well in the vector chan-
nel we consider the existence and to some extent also
the mass of the vector state as a prediction of the ap-
proach, whereas the scalar channel has to be considered
with much more reservation. Despite these sources for er-
rors it is interesting to note that our results for all three
states agree qualitatively with the ones in the relativistic
quark model of ref. [7] with quantitative deviations of at
most 3%.

4 Summary and conclusions

In this work we presented a first calculation of ground and
excited states with angular momentum J ≤ 3 in the heavy
quark sector using the framework of Dyson-Schwinger and
Bethe-Salpeter equations. We have used a simple inter-
action model, the rainbow-ladder approximation, which
is known to represent only part of the complicated in-
teraction pattern of quarks and gluons even for heavy
quarks. Nevertheless, we obtained surprisingly good re-
sults, at least for selected quantum numbers. In general,
the systematics in the spectrum for charmonia and bot-
tomonia is very similar, although the underlying interac-
tion is not the same. Compared to the light quark sector,
where the rainbow-ladder approximation has clear defi-
ciencies [29], the agreement with the experimental states
is much improved. This is particularly true for the ground
and excited charmonia and bottomonia states in the vec-
tor channel, where even the second radial excitation is
well represented. For pseudoscalar states and tensor states
with quantum number 2++ we obtain reasonable results,
whereas for scalars and axialvectors some deviations oc-
cur. We also gave predictions for the other tensor states,
in particular for the 3−−, which should be a channel where
the rainbow-ladder approximation does particularly well.
For the bottomonia, our values for the tensor states may
be considered as solid predictions for experiment with a
systematic error due to extrapolations on the 1% level.
We also gave results for Bc states and quarkonia with ex-
otic quantum numbers, although the accumulated errors
in these channels due to deficiencies in the rainbow-ladder
interaction may be sizeable.

Furthermore, we studied variations of the shape of the
rainbow-ladder effective coupling with the aim to explore
whether the first or second excitation in the 1++-channel
can be linked to the X(3872) without destroying other
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parts of the spectrum. It turned out, that this is not possi-
ble, at least not within the constraints of the present study.
Given the inherent limitation of the rainbow-ladder frame-
work to pure vector-type interactions one may expect that
corrections beyond rainbow ladder play an important role
in this and other channels and may change this picture. Or
it may simply be that the X(3872) does indeed not have a
strong quark-antiquark component. From the perspective
of our framework, these questions remain open.

Clearly, the findings of this work should be corrobo-
rated by studies beyond the simple rainbow-ladder scheme
used in this work. Within the light meson sector several
approaches in this direction have been explored in the
past [43–48] and it remains to be seen whether these can
be transferred to the heavy quark sector. This will the
subject of future work.
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and the Austrian Science Fund (FWF) under project number
M1333-N16.
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