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Abstract. We develop a specific quark-diquark constituent model for the study of the nucleon and its
excited states. A relativistic kinetic energy operator is used for both the quark and the diquark. Interaction
terms depending on the spin and angular momentum operators are introduced to describe in detail the
mass spectrum. Different values of the parameters in the interaction operators are taken for the scalar and
axial-vector diquark states. The tensor interaction is also considered in the present model. The baryon
spectrum is calculated up to resonance masses of 2 GeV.

1 Introduction

The study of hadronic systems by means of phenomenolog-
ical models represents a topic of high interest in particle
physics due to the difficulties that are found when de-
riving from Quantum Chromo-Dynamics (QCD) a truly
complete and detailed theoretical explanation of hadron
properties.

We recall that QCD, which is assumed to be the correct
underlying, fundamental, field theory, allows for a quan-
tum and relativistic study of the strong interactions. Fur-
thermore, the gauge character of this theory insures the
renormalizability for the physical observables. The study
of hadronic matter in deep inelastic scattering experiments
corroborated the QCD description of the hadrons in terms
of quarks and gluons and confirmed that QCD can be re-
ally considered as the correct theory of the hadronic in-
teractions.

The recent numerical studies performed by means of
lattice QCD have reached interesting results in order to
explain the hadron dynamics; see, for example, refs. [1–3].
Many nonperturbative field-theoretical approaches have
been developed to understand the quark dynamics in the
low-energy domain where confinement represents the most
relevant physical effect.

However, a detailed interpretation of the precise exper-
imental data of the hadronic spectra (that belong to this
low-energy domain ) still represents a theoretical challenge
that leaves open the possibility of using and developing
QCD inspired constituent models.

More precisely, different versions of Constituent-Quark
Models (CQM) have been developed in order to give a
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phenomenological description of hadronic bound states. In
this regard we cite here the historical work of ref. [4] and
some relevant review papers [5–10]. The CQM are con-
structed assuming the same global symmetries of QCD.
Although they do not represent a fundamental theory of
hadronic systems, the CQM can offer a phenomenological
description of these systems in terms of quark degrees of
freedom, allowing to correlate many experimental data of
hadron spectroscopy.

In general, CQM are based on a Hamiltonian opera-
tor for the hadronic system in which a specific effective
potential (or quasi-potential, in relativistic treatments) is
chosen to represent the quark interaction. In this way,
solving the eigenvalue equation for the Hamiltonian, it
is possible to calculate the main properties of hadrons,
in particular, their mass spectrum, their wave functions
and, in consequence, their electroweak response functions.
In more detail, many specific forms of CQM have been
proposed in order to represent quark-antiquark (qq̄) and
quark-quark (qq) interactions [11,12]. These models, using
a reasonable number of free parameters, reproduce with
satisfactory accuracy the hadronic mass spectra.

Focusing our attention on the baryon spectroscopy
(that will be studied in this work by means of our quark-
diquark model) we first mention the Hypercentral Con-
stituent Quark Model (HCQM). This model includes the
three-body quark interactions in the theoretical frame-
work of the CQM by introducing the spatial hyperspheri-
cal quark variables. The HCQM has also allowed to calcu-
late with high accuracy the electromagnetic elastic form
factors and the helicity transition amplitudes of the nu-
cleon [6,13–24].

Models based on the symmetry properties of the bary-
onic states have been developed [25].
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Furthermore, the possibility of introducing in the
CQM the continuum, or pair-creation effects has been ex-
plored in the so-called unquenched quark model [26–30],
also including strange (ss̄) pairs [31–33]. This model can
explain in a natural way the decays and the resonance
widths, also trying to solve the missing resonance problem
(to be discussed in the following) of the baryon spectrum.

Finally, we point out that the diquark hypothesis (on
which the present work is based) has also been introduced
for the study of the baryon spectroscopy. The concept of
diquark was first proposed by Gell-Mann and soon after-
ward constituent quark-diquark models for baryons were
developed by Ida and Kobayashi [34] and Lichtenberg et
al. [35–37] also studying, within the model, the electro-
magnetic properties of the baryons. This area of investiga-
tion grew rapidly and, at the moment, is extremely active.
We cite here only a small, and not exhaustive, sample of
the published articles [38–47]. We note that in the more
recent works this model has been studied in a relativistic
theoretical framework.

In this respect, we previously proposed a nonrelativis-
tic version of model with relativistic corrections [48]. That
model has been deeply revised and generalized in the pre-
sent relativistic work.

Very recently, a parallel but independent investiga-
tion has been developed about a relativistic quark-diquark
model with spin-isospin transition amplitudes [49].

For completeness we also mention that many other dif-
ferent developments and applications of the quark-diquark
model and of the diquark hypothesis have been studied.

A simple hybrid three-quark and quark-diquark
model [50] has been proposed with the aim of analyzing in
detail the missing resonance problem of the baryon spec-
trum. A model in which the quark-diquark configurations
are immersed in a pion cloud has been also studied [51].

The quark-diquark model has been used to study the
nucleon elastic scattering [52,53].

On a more fundamental level, diquark condensates
have been studied by means of a Nambu-Jona-Lasinio–
type model [54,55].

Furthermore, for hadron spectroscopy, recent studies
have shown that the diquark can be very helpful for the de-
scription of the exotic mesons known as tetraquarks that
can be represented as bound-states of a diquark and an
antidiquark [56–61].

Finally, a nonconventional description of the meson
spectra in terms of quarks and flavor-antisymmetric di-
quarks has been also proposed [62,63].

We now direct our attention on the main goal of the
present work that is the construction of a quark-diquark
model for the nucleon and its resonances. To this aim,
we previously recall that the diquark is considered as a
strongly correlated quark pair, with frozen internal spa-
tial excitations. More exactly, these excitations are as-
sumed to occur at higher energies than the upper limit
of the resonance mass scale under examination. The two
quarks (of the diquark) are identical fermions that must
satisfy the exclusion Pauli principle. Since the intrinsic
spatial wave fuctions of the diquarks are considered to be

symmetric under quark interchange (recall that the di-
quarks are states with no spatial excitations) their color-
spin-flavor wave functions must be antisymmetric. In con-
sequence, the permitted color-spin-flavor representations
must be antisymmetric in color and symmetric in spin-
flavor (or, hypothetically, symmetric in color and anti-
symmetric in spin-flavor). In order to obtain a colorless
baryon, only the antisymmetric color representation is al-
lowed. Therefore we have scalar (s1 ≡ t1 = 0) and axial-
vector (s1 ≡ t1 = 1) diquarks, where s1 and t1 represent
the spin and isospin of the diquark, respectively. Here and
in the following, the index 1 is used for the diquark, while
the index 2 will identify the (other) quark of the baryon.

As it will discussed in the paper, a peculiar aspect of
the present model is that the two diquark states, namely
the scalar diquark and the axial-vector one, are assumed to
have different dynamical properties and, in consequence,
different interactions with the quark.

The use of the diquark model for baryons presents sev-
eral advantages. In particular, one has to face a two-body
problem that, in the Center of Mass (CM) of the baryon,
requires one spatial relative coordinate r, instead of the
two spatial relative coordinates (usually ρ and λ) of the
standard three-quark CQM. On a practical level, the solu-
tion of a two-body problem is mathematically much sim-
pler than the original three-body one. Furthermore, a rel-
evant improvement of the baryonic spectroscopy is also
obtained because the use of only one relative coordinate
allows to reduce the number of spatial excitations permit-
ted by the model and, in consequence, of the number of
the predicted baryon resonances. In this way, as antici-
pated above, a possible solution to the so-called missing
resonance problem can be found. Considering only the
nonstrange sector, we recall that, up to an excitation en-
ergy of 2.41GeV, about 45 nucleon states are predicted, in
general, by the standard three-quark CQM. On the other
hand, experimentally, only 12 established and 7 tentative
resonances are found. This discrepancy represents a major
failure of all the three-quark CQM, while it is not found
when quark-diquark models are used [49].

We note that, although the diquark hypothesis is very
interesting for the study of hadron spectroscopy, a com-
pletely satisfactory microscopic explanation of the diquark
is not yet available and its relationship with QCD remains
under examination. In this work, we only study the phe-
nomenological aspects of the quark-diquark model with-
out attempting to analyze its properties on a fundamental
level.

In the present paper, as a first step, we construct a
Hamiltonian for our model of the nucleon, considered as
a bound state of quark-diquark. As shown in the next
sect. 2, the form of the model Hamiltonian is chosen in
order to reproduce the main quantum mechanical symme-
tries of the problem. For each term of this operator a pos-
sible phenomenological interpretation will be suggested.
Considering that for low constituent-mass values the rel-
ativistic effects may be important, the kinetic operators
for both quark and diquark are taken in relativistic form,
as shown in subsect. 2.1. This choice, as discussed in the
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following, allows for constructing a covariant model. At a
phenomenological level, it takes into account the relativis-
tic kinetic effects due to the motion of the quark and of
the diquark, improving the consistency of the model with
respect to the previous semirelativistic version [48].

The confining part of the interaction is represented by
a modified Cornell potential. In this concern, a prelimi-
nar analysis has shown that a standard Cornell potential
does not allow to reproduce accurately high excitation res-
onances. A better reproduction of the spectra may be ob-
tained with the modified Cornell potential that will be in-
troduced in subsect. 2.2. The modification to the Cornell
potential that is performed in the present work is purely
phenomenological. However, a more detailed investigation
on a (possibly) first-principle inspired quark interaction
should be performed by considering a simpler system, like
Charmonium (for which, a pure Cornell potential is also
insufficient).

Spin- and isospin-dependent interaction terms are
added in a conventional way in order to reproduce the
detailed structure of the spectrum. The form of the corre-
sponding operators will be given in subsect. 2.3.

In subsect. 2.4, an angular-momentum–dependent in-
teraction will be introduced in order to enhance the energy
difference of states with the same orbital angular momen-
tum. In the same subsect. 2.4, a tensor interaction term
will be also introduced. In this respect, we recall that an
interaction of this kind has given good results in the study
of meson spectra and it is interesting to analyze its effect
in the present nucleon model.

In order to determine the eigenvalues and the eigen-
functions of the Hamiltonian, a numerical method of diag-
onalization and minimization is implemented. The wave
functions of the variational basis will be introduced in
sect. 3 and the method for the numerical solution will be
briefly described in sect. 4. The mass spectrum is then ob-
tained by choosing, with a fit procedure, the appropriate
values for the free parameters of the Hamiltonian. This
point will be discussed in sect. 5 for the baryonic reso-
nances given by the scalar and by the axial-vector diquark
states.

Finally, in sect. 6, a discussion is performed comparing
the results of the present work with those given by other
approaches.

Before discussing the details of our Hamiltonian, we
make a brief comparison of the present model with that
of the work [49]. We notice that, at a fundamental level,
in that investigation, a spin-isospin transition interaction
has been introduced in order to mix scalar and axial-vector
diquark states. That transition interaction is not consid-
ered here. Furthermore, a different parametrization of the
quark-diquark interaction has been used. In ref. [49] a reg-
ularized Coulomb potential plus a linear confining term is
taken, while here the modified Cornell potential is used. As
for the spin-isospin–dependent interaction, ref. [49] con-
siders an exchange operator, while here only one term of
a spin-isospin dependent operator is used. Furthermore,
we have here an angular-momentum–dependent interac-
tion and a tensor interaction operator, inspired by the

reduction of a vector field theory. Finally, as stated be-
fore, here we take different interaction parameters for the
two diquark states.

As a very relevant remark, we refer the interested
reader to ref. [49] for a detailed discussion of the relativis-
tic transformation properties of the Hamiltonian eigen-
states. In both models, the CM Hamiltonian, or better,
mass operator, is obtained by adding to the free Hamil-
tonian the interaction operator specifically obtained by
means of the Bakamjian-Thomas construction [64]. In this
way, both models are invariant under the point form trans-
formations of the Poincaré group [43,65–68].

2 Hamiltonian of the model

The CM Hamiltonian (or mass operator) chosen for our
quark-diquark model can be written in the following form

H = E0 + T + Vc + Vst + Vlq . (1)

In the previous equation, E0 represents a zero point con-
stant energy that is customarily considered in quark-di-
quark models (see, for example, [39]). The other terms of
the Hamiltonian will be discussed in the following sub-
sections. The specific form of these terms gives rise to
a total operator H that is invariant under spatial trans-
lations, spatial rotations and “rotations” in the isospin
space. The use of relativistic kinetic energy operators and
the specific form of the interaction allow for Poincaré in-
variance, as discussed above. Formally, our Hamiltonian
does not depend on the color Gell-Mann matrices λ̂i of
the quarks. In more detail, for any quark pair i, j one has,
in the colorless, antisymmetric, state, 〈λ̂i · λ̂j〉 = −2/3
so that this constant mean value can be implicitly taken
into account by means of the effective coupling constants
of the phenomenological interaction operators that will be
introduced in the following subsections.

2.1 The kinetic energy

The first term, T , represents the kinetic energy operator of
the quark and diquark. Due to the presence of light quarks
(u, d), we take for this operator a relativistic expression.
Our aim is to improve the corresponding nonrelativistic
version of the model [48] in which the relativistic correc-
tions of the kinetic operators were treated perturbatively.
There, we showed that the kinetic relativistic effects are
numerically large, so that an exact calculation is preferred.

In the present work, we use the following standard ex-
pression:

T =
√

m2
1 + p2 +

√
m2

2 + p2 , (2)

where, in the CM, we have taken p1 = −p2 = p. This
relative momentum operator has canonical commutation
rules with the relative coordinate r. Furthermore, m1 and
m2 respectively represent the mass of the diquark and the
mass of the quark.
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2.2 The modified Cornell potential

A very well-known expression of the quark interaction,
widely used in the CQM, is given by the Cornell poten-
tial [69,70], in the following form:

VCorn.(r) = −τ

r
+ βr, (3)

where the first term represents a short-range Coulombic
interaction, inspired by the Fermi-Breit reduction for a
vector interaction [5,71]. We recall that this reduction also
gives the corresponding spin-spin and the tensor interac-
tion terms.

The second, linear, term gives rise to the quark confine-
ment. This term, originally introduced in a phenomeno-
logical way, has been also supported by lattice calcu-
lations. However, our preliminar numerical analysis and
other studies in the CQM framework have suggested that
the confining interaction term should not necessarily have
a linear behavior. For this reason, to obtain a better repro-
duction of the spectrum, we introduce a modified Cornell
potential in the following form:

Vc(r) = −τ

r
+ β1

( r

d

)k1

+ β2

( r

d

)k2

, (4)

where the dummy constant d ≡ 1 fm has been introduced.
In this way, it is possible to define the adimensional vari-
able x = r

d and the exponents k1 and k2 can take (with
no difficulty) any real, positive, value. Furthermore, the
coupling parameters β1 and β2 have the units of energy.
For clarity, we also recall that in the first term of the
previous equation a factor h̄c is understood, so that, as
customary, the parameter τ represents an adimensional
coupling constant, that, as discussed at the beginning of
the present section, also takes into account the mean value
of the Gell-Mann color matrices.

The modified Cornell potential of the previous equa-
tion is used in the eq. (1) for the present work.

2.3 Spin- and isospin- dependent interaction

Within the three-quark CQM, in order to reproduce the
baryonic spectrum and, in particular, the energy differ-
ence between the nucleon N(939) and Delta Δ(1232)
states, it is necessary to introduce the spin-spin inter-
action that, from a fundamental point of view, appears
in the Fermi-Breit reduction of a vector field theory. An
interaction of this kind is generalized to the case of the
quark-diquark models with the introduction of spin-spin–
and also isospin-isospin–dependent operators [39]. In the
present work, we take an operator of the following form:

Vst = Ust(r) · (s1 · s2)(t1 · t2), (5)

with
Ust(r) = ηe−ρ2r2

. (6)

In eq. (5) s1, s2 are the spin operators for the diquark and
for the quark, respectively. Analogously, t1, t2 represent
the corresponding isospin operators.

The coupling constant η and the spatial spread param-
eter ρ represent the free parameters of this interaction.

As it will be shown in the following, this isospin-
dependent interaction is important to fit accurately the
baryon mass spectrum.

2.4 Angular-momentum–dependent and tensor
interactions

The last term in the Hamiltonian of eq. (1), denoted as
Vlq, contains the interactions that explicitly depend on the
angular momentum. For clarity, we split this term into two
parts:

Vlq = Vl + Vq. (7)

The first operator is

Vl = (l2)
1
4 β3 ·

( r

d

)k3

, (8)

where l represents the orbital angular momentum of the
system. The second operator is

Vq =
σ

r2
S12, (9)

where S12 represents the standard tensor operator that,
written by means of spherical operators, has the form

S12 =

√
8π

15

2∑
m=−2

Y2,m(r̂)[s1 ⊗ s2]2,−m(−1)m; (10)

finally, the free parameters of these interaction terms are
the coupling constants β3 and σ and the exponent k3.

From a phenomenological point of view, the angular-
momentum–dependent term Vl is important in order to
enhance the mass difference between states with different
angular momentum [72]. Theoretically, terms of this kind
can be found in quantum field theory reductions [71]; in
this case, momentum-dependent operators give rise to a
dependence on l2. In the present work, to improve the fit
of the spectrum, we use the specific form shown in eq. (8).
On the other hand, the tensor term of eq. (9) has the
standard form given by the Fermi-Breit reduction for a
vector field interaction.

Finally, we note that for a scalar diquark state, i.e.
with s1 = 0, the spin-spin interaction of eq. (5) and the
tensor interaction of eq. (9), are vanishing.

3 The trial wave functions of the model

In general, the total wave functions for our model (that is
defined by the Hamiltonian of eq. (1)) are constructed by
means of the tensor products of spatial, spin, isospin and
color wave functions. Schematically one has

Ψtot = ψspatial ⊗ χspin ⊗ Φisospin ⊗ Ψcolor. (11)

We assume for Ψtot the same structure that is taken for the
case of the standard three-quark CQM. In particular, the
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total antisymmetry (with respect to quark interchange) is
given by the color factor Ψcolor. However, this color factor
gives no contribution to the matrix elements of the observ-
able quantities that will be calculated in the following and,
for this reason (as costumary in CQM) it will be always
omitted. Furthermore, considering the diquark as pair of
strongly correlated quarks, as discussed in the introduc-
tion, its spin and isospin intrinsic wave functions must
have the same symmetry. We recall that, in consequence,
we have s1 ≡ t1 = 0, 1.

For the spatial wave functions we factorize, as usual,
the radial wave functions and the spherical harmonics:

ψn,l,m(r) = Rn,l(r)Yl,m(r̂). (12)

As radial trial wave functions, for the variational calcula-
tion, we choose the well-known Harmonic Oscillator (HO)
wave functions [73]:

Rn,l(r) =
(

1
r̄

) 3
2

Cn,l · exp
[
−1

2

(r

r̄

)2
]

L
l+ 1

2
(n−l)

2

[(r

r̄

)2
]

,

(13)
where r̄ represents the (variational) dimensional parame-
ter. The possible values for n and l, in the previous equa-
tion, are:

n = 0, 1, 2, 3, . . . l = n, n − 2, n − 4, . . . (l ≥ 0). (14)

The normalization constant is

Cn,l =

⎡
⎣2

[
(n−l)

2

]
!

Γ (n+l+3
2 )

⎤
⎦

1
2

(15)

and the Laguerre polynomials have the standard form,

L
l+ 1

2
(n−l)

2

[(r

r̄

)2
]

=

(n−l)
2∑

m=0

(−1)m

m!

( n+l
2 + 1

2
n−l
2 − m

)(r

r̄

)2m

. (16)

We point out that the HO wave functions, whose prop-
erties are studied in a comprehensive textbook [73], have
been selected to perform the present calculations because
the corresponding radial wave functions in the momentum
space, that are denoted as R̂n,l(p), have the same analytic
form, apart from a phase factor, as the Rn,l(r). In the
same textbook [73] it is shown that those wave functions
can be successfully used to study many different bound-
state problems. As a side remark, we also note that the
Coulombic wave functions would not be suitable for the
present study. In fact, the asymptotic behavior of these
wave functions (at least in a nonrelativistic framework) is
not compatible with a confining potential.

We anticipate that, as will be shown in the next sect. 4,
the matrix elements of the relativistic kinetic energy op-
erators (that depend on p2) can be easily calculated in
the momentum space, while the matrix elements of the
interaction operators (that depend on r) are standardly
calculated in the coordinate space.

The spin (isospin) wave functions are obtained by cou-
pling the spinors (isospinors) of the diquark and of the
quark:

χs1,s2
S,Sz

= [χs1 ⊗ χs2 ]S,Sz
φt1,t2

T,Tz
= [φt1 ⊗ φt2 ]T,Tz

,

(17)
with s1 ≡ t1=0,1 and s2 ≡ t2 ≡ 1

2 . Finally, the total wave
functions are written as

Ψn,{ν} = Rn,l(r) · [Yl(r̂) ⊗ χs1,s2
S ]J,M · φt1,t2

T,Tz
, (18)

where, in the r.h.s., J, M represent the total angular mo-
mentum quantum numbers of the of the system; further-
more, in the l.h.s., the shorthand notation {ν} has been
introduced to denote all the quantum numbers of the wave
function, with the exception of n. Note that the quan-
tum numbers {ν} represent good quantum numbers for
the Hamiltonian of our model, introduced in eq. (1).

4 Solution method

The eigenvalue equation for the Hamiltonian of eq. (1)
does not admit analytical solutions. Therefore, as cus-
tomary in hadronic bound-state problems, a numerical
method must be employed in order to find the approxi-
mate energy eigenvalues and eigenfunctions. In this work,
a procedure of diagonalization and minimization will be
implemented. This method consists in diagonalizing the
Hamiltonian matrix for each set of states identified by the
same good quantum numbers {ν}, that explicitly appear
in the r.h.s. of eq. (18). Furthermore, the energy of the
lower-lying state is minimized with respect to the dimen-
sional parameter r̄, on which the radial wave functions
depend, as shown in eq. (13). In this way, the approximate
eigenvalues and eigenstates of the Hamiltonian matrix are
obtained.

The method has been tested by reproducing, in the
nonrelativistic limit, the spectrum of a Coulombic po-
tential, for which the analytic form of the eigenvalues is
known. Also in this case (of a nonconfining potential) very
high numerical accuracy has been obtained.

We now give some more details about the calculation
of the Hamiltonian matrix elements. As stated above, for
each set of physical states, identified by their good quan-
tum numbers {ν}, we have to diagonalize the following
Hamiltonian matrix:

〈Ψn′,{ν}|H|Ψn,{ν}〉 = Hn′,n({ν}). (19)

These matrix elements obviously depend also on the good
quantum numbers {ν}.

We now discuss the explicit calculation of the different
terms of H in eq. (19). The terms of the relativistic kinetic
energy (see eq. (2)) are calculated numerically with the
HO radial wave functions in the momentum space. We
have:

〈Ψn′,{ν}|
√

p2 + m2
i |Ψn,{ν}〉 =

∫ ∞

0

dp p2R̂n′,l(p)
√

p2 + m2
i R̂n,l(p). (20)

These matrix elements depend on n, n′ and l.
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The Cornell modified potential matrix elements (see
eq. (4)) are calculated in the coordinate space, as follows:

〈Ψn′,{ν}|Vc(r)|Ψn,{ν}〉 =
∫ ∞

0

dr r2Rn′,l(r)Vc(r)Rn,l(r).

(21)
Also in this case the matrix elements depend on n, n′

and l.
As for the matrix elements of the spin- and isospin-

dependent operator Vst of sect. 2.3, we previously calcu-
late (with the coupled wave functions of sect. 3) the mean
values 〈s1 · s2〉 and 〈t1 · t2〉 by means of the standard
Landè formula:

〈s1 · s2〉 =
1
2
[S(S + 1) − s1(s1 + 1) − s2(s2 + 1)]. (22)

An analogous expression holds for the isospin term. Then,
the radial matrix elements of Ust(r) are calculated in the
same way as in eq. (21).

As for the interaction Vlq of subsect. 7, the matrix el-
ements of Vl are easily calculated replacing 〈l2〉 = l(l + 1)
and then performing the usual radial integration. The ma-
trix elements of the tensor interaction Vq are calculated by
means of the standard angular momentum algebra [74]. In
the present calculation, only the diagonal matrix elements
of the tensor interaction are considered, by taking, for the
Hamiltonian matrix elements, both bra and ket states with
l′ = l and S′ = S. The mixing terms are numerically negli-
gible. We finally recall that, for this interaction, the matrix
elements for the state with S = 1

2 are vanishing [74], so
that we only have the contribution of state S = 3

2 .

5 The mass spectrum

In order to obtain the specific mass spectrum of our quark-
diquark model, defined by the Hamiltonian of eq. (1), we
have to determine the values of the free parameters, na-
mely E0, m1, m2, τ , β1, β2, β3, k1, k2, η, ρ and σ. This
objective is reached by performing the best fit of the ex-
perimental data of the mass spectrum, by varying the free
parameters of the model.

As anticipated in the Introduction, the two states of
the diquark (scalar and axial-vector) are assumed to have
different dynamical properties. In consequence, in the fit-
ting procedure, the corresponding interaction parameters
are allowed to take different numerical values. Obviously,
for the quark mass m2 the same value is taken in the two
cases. We also recall that in the present model no mixing
between the two states of diquark is considered.

5.1 States of the scalar diquark (s1 ≡ t1 = 0)

We point out that, for these states, the Vst interaction of
eq. (5) and the tensor interaction of eq. (9) are vanishing.

Table 1. Comparison between the experimental values [75] of
the masses of the nonstrange baryon resonances with s1 = 0
(up to 2GeV) and the theoretical ones. In the second column
the status of each resonance is reported according to the clas-
sification given by PDG [75].

Baryon Status Mexp JP lP S M th

(MeV) (MeV)

N(939) **** 938 1
2

+
0+ 1

2
938

N(1440) **** 1430–1470 1
2

+
0+ 1

2
1463

N(1520) **** 1515–1530 3
2

−
1− 1

2
1503

N(1535) **** 1520–1555 1
2

−
1− 1

2
1503

N(1680) **** 1675–1690 5
2

+
2+ 1

2
1690

N(1720) **** 1650–1750 3
2

+
2+ 1

2
1690

By using the following values for the parameters: E0 =
558.7MeV, m1 = 400MeV, m2 = 200MeV, τ = 1.42,
β1 = 1750MeV, β2 = 500MeV, β3 = 480MeV, k1 = 0.7,
k2 = 0.9 and k3 = 0.16, we obtain the result presented in
table 1.

As we can see, the results can be considered success-
ful for these states: the predicted masses belong to the
experimental uncertainty intervals.

5.2 States of the axial-vector diquark (s1 ≡ t1 = 1)

In the same way we use the complete Hamiltonian to fit
the states with s1 = 1. With the following values of the
free parameters: E0 = 718.6MeV, m1 = 450MeV, m2 =
200MeV, τ = 1.33, β1 = 1300MeV, β2 = 200MeV, β3 =
530MeV, k1 = 0.9, k2 = 1.3, k3 = 0.11, η = 270MeV, ρ =
0.304 fm−1, σ = 19.04MeV · fm2, we obtain the results
shown in table 2.

For Δ (T = 3/2) states some discrepancies are found,
suggesting that further investigations are needed for the
quark-diquark model of the baryonic spectrum. In any
case we highlight that the spin- and isospin-dependent in-
teraction plays a crucial role to reproduce the masses of
these states.

The final results are also shown graphically in figs. 1
and 2.

For completeness, we also discuss here the technical
point related to our definition of the quantity χ2 that is
minimized in the fit procedure. One has

χ2 =
∑

i

(M exp
i − M th

i )2
1

Δi
. (23)

The sum is performed over all the states which are be-
ing reproduced by the quark-diquark model. The M exp

i

and M th
i represent the experimental and the calculated

theoretical values of the i-th resonance mass, respectively.



Eur. Phys. J. A (2014) 50: 169 Page 7 of 9

Table 2. Comparison between the experimental values [75] of
the masses of the nonstrange baryon resonances with s1 = 1
(up to 2 GeV) and the theorerical ones. In the second column
the status of each resonance is reported according to the clas-
sification given by PDG [75].

Baryon Status Mexp JP lP S M th

(MeV) (MeV)

N(1650) **** 1640–1680 1
2

−
1− 3

2
1661

N(1675) **** 1670–1685 5
2

−
1− 3

2
1674

N(1700) *** 1650–1750 3
2

−
1− 3

2
1687

N(1710) *** 1680–1740 1
2

+
0+ 1

2
1688

Δ(1232) **** 1230–1234 3
2

+
0+ 3

2
1232

Δ(1600) *** 1550–1700 3
2

+
0+ 3

2
1577

Δ(1620) **** 1615–1675 1
2

−
1− 1

2
1677

Δ(1700) **** 1670–1770 3
2

−
1− 1

2
1677

Δ(1900) *** 1850–1950 1
2

−
1− 3

2
1792

Δ(1905) **** 1870–1920 5
2

+
2+ 3

2
1979

Δ(1910) **** 1870–1920 1
2

+
2+ 3

2
1977

Δ(1920) *** 1900–1970 3
2

+
2+ 3

2
1978

Δ(1930) *** 1920–1970 5
2

−
1− 3

2
1797

Δ(1950) **** 1940–1960 7
2

+
2+ 3

2
1978

Fig. 1. Comparison between the masses calculated (black
lines) and the experimental masses (blue intervals), for N
(T = 1/2) resonances.

The quantity Δi is associated with the weight of each res-
onance. In the present work, it has been defined as

Δi =
√

(Δnat
i )2 + (Δexp

i )2, (24)

where Δnat
i is the Breit-Wigner natural width of the reso-

nance and Δexp
i is given by the experimental error on the

resonance mass value.

Fig. 2. Comparison between the masses calculated (black
lines) and the experimental masses (blue intervals), for Δ
(T = 3/2) resonances.

6 Results and discussion

We have developed a relativistic quark-diquark model for
the baryon spectrum using the Hamiltonian of eq. (1).

As for the numerical technique of calculation, we have
adopted a minimization-diagonalization procedure. The
use of HO basis as trial functions has been advantageous
to calculate the relativistic kinetic energy operator ma-
trix elements. We tested the convergence of the numerical
procedure obtaining a satisfactory result.

From a theoretical point of view, we recall that the
Hamiltonian of eq. (1) is invariant under the main physical
symmetries of the system. In particular, to this aim, the
relativistic kinetic energy operators for both the quark and
the diquark have been introduced.

The model reproduces the baryon spectrum with an
accuracy that is better than our previous semirelativistic
model [48] and of the same order of other nonrelativistic
models [39].

We have verified that, as in other quark-diquark mod-
els, the spin and isospin dependent interaction is strictly
necessary to fit the spectrum. We also highlight that the
introduction of the angular-momentum–dependent inter-
action is very important for the description of the mass
spectrum for N as well as for Δ resonances. In particu-
lar this interaction is very beneficial to obtain the correct
mass difference between the states N(939) and N(1440).
On the other hand, the tensor interaction gives only small
contributions.

The specific (original) hypothesis of this work consists
in considering, for the two diquark states (the scalar state
and the axial-vector one), different numerical values of the
parameters that appear in the interaction operators.

The model can be globally considered in agreement
with other similar approaches, even though a comparison
of the parameters of the various models cannot be easily
done in a sensible way, due to the different parametriza-
tions that are adopted for the Hamiltonian operators.
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Table 3. Comparison between some parameters of our work
with those of other similar models. The indices S and AV
denote the values for the scalar and axial-vector states, re-
spectively. Our parameter η is compared to ASI of the other
models. With the exception of τ , all the values are in MeV.

Parameter This model Ref. [43] Ref. [49]

E0S 558.7 154 826

E0AV 718.6 154 826

m2 200 200 140

m1S 400 600 150

m1AV 450 950 360

τS 1.42 1.25 1.23

τAV 1.33 1.25 1.23

η 270 375 350

However, to study this point in some more detail, we
show in table 3 the values of some parameters, compared
with the corresponding ones of other two similar models,
namely, refs. [43] and [49].

Particular interest is attributed to the diquark mass, in
the scalar and axial vector states, that is m1S and m1AV ,
respectively. A comparison of the values of this quantity,
obtained in other different models, is given in ref. [49]. We
note that in our model the axial-vector diquark mass is
greater than the scalar diquark mass, according to funda-
mental physical reasons. However we find a smaller dif-
ference (between the two masses) with respect to the ma-
jority of the other models. This behavior can be explained
taking into account that in our model we have two values,
E0S and E0AV , for the zero point energy constant, while
the other models use only one value for the two cases.

The comparison of τ is only tentative, due to the dif-
ference of the spatial parametrization of the Coulomb-like
terms in the different models.

Purely tentative is the comparison of our spin-isospin
parameter η with the ASI of the exchange interaction in
refs. [43] and [49].

Finally, as a possible development of the present study,
we recall that the wave functions obtained in this work
can be also used to study the electromagnetic response
functions of the nucleon, i.e., the elastic form factors and
the helicity amplitudes. In this way it would be possible
to test in more detail the physical accuracy of the model,
and, if necessary, to introduce new degrees of freedom,
beyond the quark and the diquark states [33].

In order to improve the Hamiltonian of the model, one
could use an interaction directly given by a relativistic
field model, requiring a numerical calculation in the mo-
mentum space to solve the corresponding integral equa-
tion [76].

One of us (CG) would like to thank the CAPES Brazilian
agency for partial support.
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