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Abstract. Different methods to extract the temperature and density in heavy-ion collisions (HIC) are
compared using a statistical model tailored to reproduce many experimental features at low excitation
energy. The model assumes a sequential decay of an excited nucleus and a Fermi-gas entropy. We first
generate statistical events as a function of excitation energy but stopping the decay chain at the first step.
In such a condition the “exact” model temperature is determined from the Fermi-gas relation to the exci-
tation energy. From these events, using quantum fluctuation (QF) and classical fluctuation (CF) methods
for protons and neutrons, we derive temperature and density (quantum case only) of the system under
consideration. Additionally, the same quantities are also extracted using the double ratio (DR) method
for different particle combinations. A very good agreement between the “exact” model temperatures and
quantum fluctuation temperatures is obtained. The role of the density is discussed. Classical methods
give a reasonable estimate of the temperature when the density is very low, as expected. The effects of
secondary decays of the excited fragments are discussed as well.

1 Introduction

The investigation of the nuclear equation of state (NEOS)
is one of the most challenging open problems today, in
particular the access to the symmetry energy part which
carries relevant information, especially for the nuclear (as-
tro) physics domain [1–5]. A feasible way to experimen-
tally constrain the NEOS is through the heavy-ion colli-
sions (HIC) at intermediate energies involving nuclei with
a large range of N/A ratios. The systems created in such
conditions are dynamical and strongly influenced by the
Coulomb interaction, angular momentum and other ef-
fects, thus the determination of “quasi-equilibrium” con-
ditions is rather challenging. The NEOS can be deter-
mined if we are able to extract the temperature, density
and pressure, or free energy from the HIC data. Several
methods can be found in the literature to determine such
quantities from available experimental data. Classical ap-
proaches include slope temperature from the kinetic en-
ergy distribution of emitted ions [6–8], excited level en-
ergy distributions [9] and double isotopic ratios [6–15]. In
particular, the last method provides information on the
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density ρ of the system at the time when fragments are
emitted from a source at a given excitation energy per par-
ticle E∗

A . A coalescence approach [13–19] can also be used
to estimate the density of the system. Even though such
a method is derived from classical physics, the obtained
densities are higher than those from the double ratio (DR)
method [13–15, 20]. This might be due to the introduc-
tion of a new parameter (the coalescence radius P0) which
is determined from experimental data. Such a parameter
might in fact mimic important quantum effects [20] which
result in a generally higher density, for a given temper-
ature T , as compared to the one obtained from the DR
method. More recently, a different method to extract T
and ρ from the data has been proposed in [21–26] based
on fluctuations. The method was first used for quadrupole
fluctuations within a classical approach, in order to obtain
the temperature of the system. Later on this method was
applied to quantum systems for which the temperature is
naturally connected to the density. In such a scenario, par-
ticle multiplicity fluctuations are used in order to pin down
T and ρ from experimental data and modeling [22–30]. An
important first distinction between fermions and bosons is
necessary in order to evidence important quantum effects
such as the normalized multiplicity fluctuations 〈(ΔN)2〉

N̄
.
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For fermions they are always smaller than one, which is
fermion quenching (FQ), while for bosons they might di-
verge near the critical point for the Bose-Einstein Con-
densation (BEC). These phenomena have been observed
in trapped Fermi and Boson gases [31–34], and also in
heavy-ion collisions [30,35]. A correction due to Coulomb
effects for bosons and fermions was also introduced in
refs. [2, 25,26].

2 Methods

In order to distinguish among different approaches and
test their region of validity, we have applied the DR
method, the classical fluctuation (CF) and quantum fluc-
tuation (QF) methods to analyze “events” obtained from
a commonly used statistical model dubbed as GEM-
INI [36–43]. Similar studies using the slope temperature
have been reported in refs. [44, 45]. The model assumes a
sequential statistical decay of a hot source of mass (A) and
charge (Z), with E∗

A and a given total angular momentum
J , which we assume equal to zero for simplicity in this
work. We fix A = 80 and Z = 40 also in order to compare
to many calculations based on the Constrained Molecu-
lar Dynamical model (CoMD) which we have performed
before [22–28]. The statistical model assumes that a hot
source decays into a small fragment (A′, Z ′) and a daugh-
ter nucleus (A − A′, Z − Z ′). In general both fragments
can still be excited and decay again into other fragments
and so on until all excitation energy is transformed into
kinetic energy of fragments and the Q-value determined
from the initial source and the final fragments. At each
decay step, the probability of the process is determined
from the entropy which is assumed to be that of a Fermi
gas [46,47]:

S = 2aT, (1)

corresponding to an excitation energy

E∗ = aT 2. (2)

Both equations can be derived from a simple low tem-
perature approximation of a Fermi gas. The level density
parameter a in such approximation is given by

a =
A

k
, (3)

where k = 15( ρ
ρ0

)2/3 MeV. In order to take into account
experimental observations, i.e. particle spectra, the pa-
rameter

k0 = k, (4)

in the model, is adjusted to a smaller value which could
depend on excitation energy as well [36–43,48–50]. For our
purposes we will use two fixed k0 (we set k0 = kinfinity in
GEMINI to achieve this) values of 7.3MeV and 15MeV
since our goal is to test different methods to determine
T and ρ from the model data. In fact, in the model, the
temperature can be derived from eq. (2) if we stop the
simulation after the first decay step. The following steps

take into account a decreasing temperature due to particle
emissions in previous decays, thus the T determination
becomes “tricky” and we will discuss it later on in the
paper. The model does not explicitly assume any density,
even though one might simply think that the density of the
system is that of the excited nucleus in its ground state
density. This is not however correct since the Fermi-gas
relation is assumed.

From eq. (4), k0 = 15MeV implies a nuclear ground-
state density, while k0 = 7.3MeV results in ρ

ρ0
= 0.34.

We stress here that other effects can be invoked to justify
the smaller value of k0, such as an effective mass or mo-
mentum dependence of the NEOS [36–43]; however in the
simple Fermi-gas assumption used in the model, eq. (4)
is the natural explanation. This has an important conse-
quence and in fact, we would naively expect that the dif-
ferent approaches to determine the density will give values
compatible to the estimate above, at least asymptotically
(i.e. at high T where different effects, such as Coulomb
barriers and Q-values become less important). At low T ,
these effects are important and will determine the proba-
bility of decay into a given channel rather than another.
We anticipate that the decay probability at low T will ef-
fectively decrease the values of the densities obtained from
all methods, which might correspond to the fact discussed
in CoMD simulation, that the emitted particles at low T
are located in a low density region of the nuclear surface:
a low T will correspond to a lower ρ [22–26].

We also point out that the model assumes a barrier
penetration of particles at various excitation energies [36–
43]. An effective radius is assumed for the system: R =
(R0 +2.6) fm = (1.16A1/3 +2.6) fm. For a nucleus of mass
A = 80, this gives an effective radius R = 7.6 fm which is
equivalent to a system having a density less than one third
of the normal nuclear density. Of course this assumption
might be in contrast with the density value obtained from
the Fermi-gas relation. However our goal is not to modify
the model but to use it as a test bench, keeping in mind
that these assumptions might be justified at low excitation
energies (for which the model was proposed) and not at
higher ones where fragmentation will dominate.

Before we apply DR, CF and QF methods to GEMINI
data to extract temperature and density information, we
briefly recall these methods here. For the DR method, the
well known Saha equation gives the ratio of the density of
two different fragments from the ratio of their yields [10]:

Y1

Y2
=

(
A1

A2

) 3
2

(
λ3

T,N
2

)A1−A2
2s1 + 1
2s2 + 1

×ρZ1−Z2
p ρN1−N2

n exp
[
B1 − B2

T

]
, (5)

where λT,N = h√
2πm0T

is the thermal wavelength, λ3
T,N =

4.206 × 103(T/MeV)−
3
2 fm3, si are the spins and Bi are

the binding energies of the i-fragment. The ratio above
depends on the unknown densities of proton (p) and neu-
tron (n), as well as the temperature. We can write a similar
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ratio for other fragments, for instance,

Y3

Y4
=

(
A3

A4

) 3
2

(
λ3

T,N
2

)A3−A4
2s3 + 1
2s4 + 1

×ρZ3−Z4
p ρN3−N4

n exp
[
B3 − B4

T

]
. (6)

Now, we have two equations but still three unknowns. A
particular method to obtain the temperature was devised
by Rubbino and collaborators [10], and consists in taking
the ratio of eq. (5) and eq. (6):

ρDZ
p ρDN

n =
Y1Y4
Y2Y3(

A1A4
A2A3

) 3
2
(

λ3
T,N
2

)DA
(2s1+1)(2s4+1)
(2s2+1)(2s3+1) exp

[
DB
T

] ,

(7)
where Df = (f1+f4)−(f2+f3). By imposing DZ = (Z1+
Z4)−(Z2 +Z3) = 0 and DN = (N1 +N4)−(N2 +N3) = 0
we can eliminate the densities from eq. (7). The equation
can be inverted to obtain T , since the binding energies
of the fragments are well known. Once the T is obtained,
we can substitute it into eqs. (5) and (6) to calculate the
density if we choose the right combination of fragments. In
our case, we choose two combinations: d, t, 3He, α (dthα)
and p, n, t, 3He (pnth).

In [21] it was proposed to look at quadrupole fluc-
tuations in momentum space to determine the classical
temperature. The quadrupole momentum (Qxy) in the
transverse direction was defined in order to minimize non-
equilibrium effects:

Qxy = p2
x − p2

y, (8)

where px and py are the transverse components of a given
fragment’s momentum. In the classical case, i.e. Maxwell
distribution, the temperature and density are decoupled,
thus the quadrupole momentum fluctuation properly nor-
malized is only a function of T :

〈Q2
xy〉 = (2mT )2. (9)

Since 〈Q2
xy〉 can be calculated from data, we can derive

the temperature T from eq. (9). If we use the Fermi-Dirac
distribution for fermions to calculate the quadrupole mo-
mentum fluctuations, our results will depend on the chem-
ical potential μ as well. We need another condition which
we choose to be the multiplicity fluctuations. This choice
is dictated by the fact that multiplicity fluctuations are
equal to one for a classical ideal system, while for fermions
(bosons) are smaller (larger, near and above the critical
point for BEC) than one [31–34]. For fermions we get [23]

〈Q2
xy〉 = (2mT )2

[
0.2

(
T

εf

)−1.71

+ 1

]
, (10)

T

εf
= −0.442 +

0.442(
1 − 〈(ΔN)2〉

N̄

)0.656

+0.345
〈(ΔN)2〉

N̄
− 0.12

(
〈(ΔN)2〉

N̄

)2

. (11)
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Fig. 1. (Color online) Temperature (top panels) and scaled
density (bottom panels) as function of the excitation energy
per particle. Different values of k0 are used in the left and
right panels.

Since we can measure the normalized multiplicity fluctua-
tions 〈(ΔN)2〉

N̄
, then we can obtain T

εf
from eq. (11). Substi-

tuting T
εf

into eq. (10), we obtain the temperature T , then
the Fermi energy εf . The density can be determined with
the Fermi energy relation εf = 36( 4

g
ρ
ρ0

)2/3 MeV where g

is the degeneracy of the particle and ρ0 = 0.16 fm−3.

3 Results and discussions

Using the GEMINI code available in the literature [36–43],
we have generated one million events for each excitation
energy (or initial T ). First we discuss the results for the
simulations stopped at the first decay step where the rela-
tion of the excitation energy and temperature is given by
eq. (2). In fig. 1 we plot the temperature T (top panels)
and the scaled density ρ̃i0 = ρi

ρi0
, where i = p, n, p + n

and ρp0 = ρn0 = 0.08 fm−3, ρ0 = 0.16 fm−3, (bottom pan-
els) as function of the excitation energy per particle of the
initial hot system. Two different values of the k0 Fermi-
gas parameter are used in the left and right panels. The
“exact” value of T obtained from the Fermi-gas relation,
eq. (2), is given by the full (red) lines. Available experi-
mental data from the current literature are given by the
dashed (blue) lines [48–50] and open stars [29], which we
have reported for reference purposes only. The quantum
fluctuation (QF) method, both for neutron and proton,
agrees rather well with the exact result as expected since
the basic assumption in the method and in the GEMINI
model is the same, i.e. a nucleus made of fermions. The
classical fluctuation (CF) method agrees with the exact
method especially for the neutron case and at low ex-
citation energies for both protons and neutrons [44, 45].
The reason for this behavior could be explained from the
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Fig. 2. (Color online) Same as in fig. 1. The results are for
dthα DR and pnth DR.

bottom part of fig. 1. The densities estimated only from
the QF method (the CF does not determine a density
since the multiplicity fluctuation are equal to one clas-
sically) are very low especially for neutrons. We expect
that at low densities and relatively high T , classical and
quantum methods should give similar results. As we will
show the density obtained using the DR method is even
smaller than the one obtained from QF. In fig. 1, the pro-
ton scaled density is given by full circles and the neutron
scaled density by full squares, while the total scaled den-
sity is given by full triangle symbols. The reason for which
we have extended the model to such high excitation en-
ergies where it is not necessarily justified, is because we
wanted to show that the estimated total density tends
asymptotically to the value estimated from the Fermi-gas
relation, eq. (4), using the respective k0 values which are
given by the dotted horizontal lines in fig. 1. At low ex-
citation energies, different Q-values for particle emissions
and barrier penetrations modify the fluctuations given by
the Fermi-gas entropy, eq. (1), which results in lower den-
sities as displayed. If these effects would be turned off,
then fluctuations would arise from the Fermi-gas entropy
as for the QF method which is based on the same Fermi-
gas assumption [46].

The discussion above can be extended to the DR
method [6–15] and is reported in fig. 2. Two DR parti-
cle combinations (dthα and pnth) are shown in the figure.
The celebrated plateau of the caloric curve is observed
in fig. 2 (top panels) especially for the dthα combination
mostly used in the literature [7, 51]. Notice the peculiar
and maybe surprising result obtained using the pnth DR
for which T goes down for increasing excitation energy
(top panels in fig. 2). A similar opposite behavior for the
two cases is obtained for the densities (bottom panels in
fig. 2). In particular the pnth densities decrease for in-
creasing excitation energy. All densities estimated from
DR are much smaller than those from QF (see fig. 1) and
do not asymptotically tend to the value obtained from the
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Fig. 3. (Color online) The total scaled densities (top panels)
and density differences between neutrons and protons (bottom
panels) as a function of the temperature.

Fermi-gas relation, eq. (4). Of course this is not surprising
since we are using classical physics to estimate quantities
obtained from a model based on a quantum (Fermi-gas)
system.

Another way to visualize the results is by plotting
scaled density (top panels) and the difference of neutron
and proton density (bottom panels) as function of T as
reported in fig. 3. Now the surprising differences in the
densities obtained from the dthα and pnth cases in fig. 2
are not observed: the two DR methods agree which sim-
ply tells us that the control parameter is T and not the
excitation energy as it should be in a statistical model.
The densities differ greatly in the QF and DR methods as
observed before. Equation (4) and the available data sup-
port higher densities [13–15, 20, 29]. In ref. [20] a similar
discussion is reported and it was concluded that QF and
coalescence methods are better justified because quantum
effects become more important with increasing densities
as expected. Furthermore the QF results tend asymptot-
ically to the value expected from the Fermi-gas and the
used k0 parameters. Notice the large difference between n
and p densities as obtained in different approaches (bot-
tom panels in fig. 3). In particular all different methods
fail to reproduce the initial source value of zero (N = Z)
which should be recovered at high T . This is however a
failure of the statistical model which we have pushed at
high excitation energies where it is not justified. We re-
call that in a two-component system phase transition, the
quantity plotted in the bottom part of fig. 3, could be
considered as an order parameter [52,53].

For completeness, in figs. 4 and 5, we display the re-
sults obtained when all steps in the statistical decay model
are taken into account. These figures should be compared
to figs. 1 and 2, respectively. We observe generally a de-
crease of T and an increase of ρ compared to the first step
results. This result implies that, if the general assumption
of a sequential decay is correct, then the derived T and
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Fig. 4. (Color online) Same as fig. 1 for all steps model simu-
lations.
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Fig. 5. (Color online) Same as fig. 2 for all steps model simu-
lations.

ρ estimated in the different methods are effective values
influenced by the secondary decay. Within the fluctuation
method, it seems that the initial T is somehow between
the classical and the quantum cases, while the DR method
fail in all cases. However, as we have seen in fig. 3, plots
of ρ and T as function of excitation energy might be mis-
leading as in the dthα and pnth cases. In fig. 6 we plot ρ
as function of T obtained from different assumptions both
at the first decay and all decay steps. As we see in the
figure, the results from the DR method roughly collapse
in a single curve, which suggests that indeed the values of
T might shift down due to the secondary decay, however
the corresponding density is also modified in such a way
to collapse in a single curve. This result should be com-
pared to similar calculations using CoMD, see fig. 26 in
ref. [2].
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Fig. 6. (Color online) Total scaled density for first step and
all steps model simulations vs. temperature.

4 Conclusions

In conclusion, in this paper we have compared different
proposed methods to extract density and temperature us-
ing a statistical sequential model. We have shown that the
model observables are better reproduced by the quantum
fluctuations method since the same physical ingredient,
the Fermi gas, is used. Double ratios fail because of the
classical assumptions as it should be. However, the feature
that different ratios give different T and ρ as function of
excitation energy is misleading. Notice that if different
particles are emitted at different times and/or from dif-
ferent sources, then one could obtain different densities
and/or temperatures. An agreement of the different par-
ticle ratios is observed when the temperature is used as a
control parameter as it should be in a statistical environ-
ment. Secondary decays support again the QF method as
compared to the DR and differences might be highlighted
by plotting densities as function of the control parame-
ter T .

We thank prof. J. Natowitz for stimulating discussions.
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