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Abstract. Modern authors have identified a variety of striking eco-
nomic patterns, most importantly those involving the distribution of
incomes and profit rates. In recent times, the econophysics literature
has demonstrated that bottom incomes follow an exponential distribu-
tion, top incomes follow a Pareto, and profit rates display a tent-shaped
distribution. This paper is concerned with the theory underlying var-
ious explanations of these phenomena Traditional econophysics relies
on energy-conserving “particle collision” models in which simulation is
often used to derive a stationary distribution Those in the Jaynesian
tradition rely on entropy maximization, subject to certain constraints,
to infer the final distribution. This paper argues that economic phe-
nomena should be derived as results of explicit economic processes
For instance, the entry and exit process motivated by supply decisions
of firms underlies the drift-diffusion form of wage, interest and profit
rates arbitrage. These processes give rise to stationary distributions
that turn out to be also entropy maximizing. In the arbitrage ap-
proach, entropy maximization is a result. In the Jaynesian approach,
entropy maximization is the means.

1 Introduction

In what follows, I will concentrate on various different explanations of three key
observations in econophysics: The near-exponential distribution of the bottom 97
percent of incomes representing labor incomes: the Pareto distribution of the top 3
percent representing property incomes [21,24], and the tent-shaped distribution of
the profit rates of firms [1,16,17].

With mean-normalized incomes (r) on the horizontal axis and the cumulative
probability distribution from above C(r) on the vertical axis, an exponential distri-
bution will be a straight line on a log-linear scale, while that of a Pareto Distribution
will be a straight line on a log-log scale1. Figure 1 displays IRS adjusted gross income
data of individuals in 2011, with the bottom 97 percent in the left panel and the top
3 percent in the right panel. These patterns have been shown to hold in every year

a e-mail: shaikh@newschool.edu
1 For an exponential distribution with mean-normalized income (r), the cumulative prob-

ability distribution from above is C(r) = e−r so that lnC(r) = −r is a straight line in r.
For a power law, the cumulative distribution from above is C(r) ∝ r−α so lnC(r) = −αlnr
is a straight line in ln(r).

https://epjst.epj.org
https://doi.org/10.1140/epjst/e2020-900204-5
mailto:shaikh@newschool.edu


1676 The European Physical Journal Special Topics

Fig. 1. Cumulative distribution from above, bottom 97 % (log-linear) and top 3% (log-log).
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Fig. 2. Rate of return on assets.

in the US, as well as in other advanced countries [4,21,25]. Figure 2 depicts the third
striking pattern – the tentshaped distribution of profit rates2.

2 Economic arbitrage and the distribution of wages, property
incomes and profit rates

Arbitrage is a fundamental principle of economic analysis. In a growing economy,
the supply and demand for labor and capital are also growing. Then, if there is
a difference in real wage rates in two regions, the supply of labor will accelerate
relative to demand in the high wage region and bring the wage down. In the low wage
region, the supply will decelerate relative to demand and bring the wage up. Financial
capital flows do the same the work in the case of interest rates, and real capital do
it in the case of profit rates. In all instances, participants will experience unexpected
positive and negative shocks, and their intentions may or may not be realized. A
long-standing representation of turbulent arbitrage, as in CIR and related models [2]
is in terms of entry and exit movements induced by differences in variables (drift)
and the effects of ongoing shocks (diffusion). Drift alone leads to the equalization
of the variables to their means, but the additional presence of diffusion leads to
a persistent distribution. Because the means are changing over time, we normalize

2 See Figure 7.14 and Appendix 7.2 data tables.xlsx, tab = iropdataUSind from [18],
available on at http://realecon.org/data/.

http://realecon.org/data/


Maximum Entropy Economics: Foundations and Applications 1677

the variables by the appropriate mean, so that mean-normalized variables gravitate
around 1. This general approach can directly explain the observed patterns of wages,
property incomes and profit rates, as developed in Shaikh and Jacobo [19].

2.1 Labor income

There are many possible drift-diffusion models. Since labor incomes (alternately the
excess of labor incomes over some minimum wage) must be positive, all wage models
must reflect this constraint. The Cox-Ingersoll-Ross (CIR) model is the iconic one for
interest rate analysis, widely used in empirical work and the fount of many theoretical
extensions [5,11]. It posits a linear mean reverting process for the drift term and a
diffusion term that depends on the square root of the interest rate so that volatility
goes to zero as the interest rate goes to zero. The log-linear and log-log specifications
of the mean reverting process are nonlinear ones that keep the ith wage wi and rate
of return on assets ρi positive without any restrictions on the volatility because ln(x)
only exists for x > 0. Let θ = the strength of drift, σ = the standard deviation of
diffusion and Wt = a Wiener process. Then at time t,

d (lnwit)
dt

= −θi (wit
− 1) + σi

dWit

dt
[log-linear model] (1)

d (lnwit)
dt

= −θi (lnwit − ln 1) + σi
dWit

dt
= −θi lnwir + σi

dWit

dt
,

since ln 1 = 0 [log-log model]. (2)

The arithmetic mean is the appropriate one in the log-linear model, while the
geometric mean (the mean of the logs) is appropriate in the log-log model. Arbitrage
is meant to apply to the wages of given types of labor, so that partitions of the
overall distribution by race and gender, as well as consolidations by occupation, will
likely exhibit the same patterns [20]. The log-linear model of equation gives rise
to a stationary gamma distribution, while the log-log model of equation yields a
stationary lognormal distribution3 (see [19] for details). Figure 3 displays the fits of
both potential models to the labor income data in Figure 1. The log-linear model
provides a good fit, but the log-log model clearly does not.

2.2 Property income

Property income π ≡ ρa is the product of the stock of financial assets (a) and its
rate of return (ρ), both measured relative to their respective means. The rate of
return represents the average holding rate of return on portfolios of interest-bearing
and dividend-paying assets. It is therefore modeled as a positive return that like
labor income, is subject to arbitrage, so we can make use of the form of wage equa-
tions and as models for rates of return. For financial assets per person, it makes
sense to posit that when the rate of return of the ith portfolio is above the mean,
the portfolio will increase because its value will have gone up and/or because more
savings will flow into it. This gives us two possible expressions for the reaction of
property income to the rate of return: d (ln ait) /dt = −γi (ρit − 1) + σi

dWit

dt , or

3 Even though the variance of the lognormal distribution increases linearly in time, we
include it because it “is still widely used for fitting income distribution” and provides a
good fit to our data [24].
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Fig. 3. Cumulative probability from above, labor income and fitted log-linear and log-log
models.

d (ln ait
) /dt = −γi ln ρit

+ σi
dWit

dt . Because π ≡ ρa is an algebraic identity, we
can write d (lnπit

) /dt = d (ln ρit
) /dt + d (ln ait

) /dt. Combining these with the two
adjustment forms for the rate of return gives us two property income models (see
[19] for details).

Log-linear Property Income Model:

d (ln ρit
) /dt = −θi (ρit

− 1) + σi
dWit

dt
(3)

d (lnπit) /dt = d (ln ρit) /dt+ d (ln ait) /dt = (−θi + γi) (ρit − 1) + σi
dWit

dt
(4)

Log-log Property Income Model :

d (ln ρit)
dt

= −θi ln ρit + σi
dWit

dt
(5)

d (lnπit
) /dt = d (ln ρit

) /dt+ d (ln ait
) /dt = − (θi + γi) ln ρit

+ σi
dWit

dt
(6)

As previously noted, the rate of return (ρ) represents an average rate of interest
on income-paying assets, and hence is positive. Since only the top 1–3 percent of
the overall income distribution is dominated by property income with a power-law
distribution (see the second panel of Fig. 1). In references [6,7] Gabaix argues that the
top portion of a lognormal distribution is essentially a power-law, and suggests using
a lower reflecting barrier to restrict the domain in such cases. We therefore set the
reflecting barrier at 95 percent in order to restrict the property income distribution
in equations (5)–(6) to the top five percent.

In the log-linear model, equation has the same form as the wage equation, so
the rate of return (ρ) follows a gamma distribution. In equation, at ρit

≈ 1 the
growth rate of financial assets becomes a random growth process in which a lower
reflecting barrier yields an approximate Power Law in Figure 4. In the log-log model
the dynamics of asset returns in equation (6) are similar to those of wages in (3),
so that the stationary distribution of returns is log-normal (see [19], Appendix). As
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Fig. 4. Cumulative probability from above, property income and fitted log-linear and log-log
models, 2011.

noted, the signature of a power law is a straight-line plot of the log of the cumulative
distribution from above versus the log of income. Figure 4 shows that in both models
the top 95% of both theoretical distributions approximate power laws that provide
good fits to actual top income data, with the log-log being the better of the two since
its upper reaches are close to a power law [12].

2.3 Profit rates

Financial assets of a given type such as stocks and bonds have no vintages. A share
purchased 10 years ago will have the same current value as a share purchased yester-
day. This is not true of machines, buildings and other fixed capital: an older plant
embodies an older technology, and hence has a different capital value from a new
plant. More importantly, the older plants generally have higher costs per unit out
– precisely why new investment is embodied in newer plants. It follows that in the
case of real capital, it is the rate of return on new investment that motivates inter-
industrial capital flows. Let P = total profit, K = total capital stock, and I ≡ ∆K =
investment, all in real terms. Then the average rate of profit r = P

K while the rate of
return on new investment (the incremental rate of profit) is rI = ∆P

∆K ≈ ∆P
I , and it

is this rate that is equalized by competition between industries. Figure 5 shows these
rates for US manufacturing industries from 1988–2005 are indeed equalized in a tur-
bulent manner (see [18], Fig. 7.17), and Figure 6 depicts their empirical distribution
along with a fitted normal curve.

The goal here is to show that the observed tent-shaped distribution of profit
rates [10,16] can be derived from three distinct processes. Inter-industry mobility
of capital that turbulently equalizes the profit rates of firms having best-practice
(regulating) conditions of production (Fig. 5) yielding a roughly Gaussian distribution
(Fig. 6); intra-industry equalization of selling prices that leads to unequal profit rates
across firms within any given industry; and ongoing technical change that creates an
persistent spectrum of intra-industry conditions of production (Fig. 7). The object
is not to find the “best fit” to each of the observed distributions. Rather, it is to
show that the simplest analytical representation of each process is sufficient to derive
a tent-shaped distribution of regulating and non-regulating profit rates. This sort of
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Fig. 5. Incremental rates of profit in US industries, 1987–2005.

0.0

0.4

0.8

1.2

1.6

2.0

2.4

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Histogram Normal

D
e
n
s
it
y

Fig. 6. Distribution of regulating profit rates and fitted normal curve.

approach is standard in the econophysics literature (see [3], Figs. 4–5), and I would
argue that it is also the proper theoretical procedure in this case.

In each industry, the rate of return on new investment is the profit rate of the
capitals representing the best reproducible conditions of production for entering cap-
itals. Competition then equalizes the profit rates of these regulating capitals (r*)
across k industries [18]. Since these profit rates can range from negative to positive,
the linear Ornstein–Uhlenbeck (OU) process in equation applied to a cohort of N
industry regulating capitals, is a good representation of the inter-industry competi-
tive process. As is well known, the resulting stationary distribution is Gaussian [14]
– as is roughly the empirical case in Fig. 6. Since the distribution is stationary, it is
also the entropy maximizing one – derived here as the result of a turbulent dynamic
process.

dr∗k
dt

= −θk (r∗k − 1) + σk
dWit

dt
(7)
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Fig. 7. Cost-capital ratio and output-capital ratio.

In the theory of real competition, one must account not just for capitals with
the best reproducible conditions of production (regulating capitals), but also for
various vintages of non-regulating capitals. Ongoing cost-reducing technical change
constantly introduces new conditions and constantly removes ones that are longer
viable. This gives rise to a spectrum of production conditions existing any given
time. “Gross investment is the vehicle of new techniques” (65) and “the plants in
existence at any one time, are, in effect, a fossilized history of technology over the
period spanned by their construction dates – the capital stock represents a petrified
chronicle of the recent past” [15]. While it is legitimate to focus on regulating capitals
for the analysis of inter-industrial profit rate equalization, it is not legitimate to
leave out the others in the consideration of empirical evidence. For the kth capital
(including regulating ones) in an industry, let rk = the profit rate, Pk = the total
profit, Xk = total sales, Ck = total costs (materials, depreciation and wages), Kk =
total assets, ck = the ratio of firm’s costs to its assets, and xk = the ratio of firm’s
sales to its assets. Then

rk ≡
Pk

Kk
=
Xk − Ck

Kk
= xk − ck. (8)

Figure 7 shows that exponential pdfs can be used as first approximations to the
empirical distributions of the sales/capital and costs/capital ratios [18]. It follows
from equation that the distribution of the kth profit rate is the difference of two
roughly exponential pdfs, i.e. roughly a Laplacian tent-shaped distribution [10,16].
From this point of view, the persistent distribution of vintages is the key factor in
the empirical dispersion of profit rates shown in Figure 24.

3 Simulation approaches to the distribution of incomes

3.1 Economics

In reference [13] Ragab adopts an agent-based approach to labor incomes. The mean
wage is assumed to be determined by macroeconomic forces, and individual wages are
normalized relative to this mean, so that the sum of normalized wages is conserved.
Lower wageworkers challenge higher wage ones, subject to random factors. The former

4 The derivation of the distribution of vintages will be the subject of a separate paper.
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may succeed and move up, or stay where they are; the latter may hold on or move
down, perhaps all the way down to the zero wage (unemployment). The simulation
result of these interactions indicates a stationary exponential distribution. As in
the drift-diffusion approach, the stationary (entropy maximizing) distribution is the
result of an explicit economic process.

3.2 Physics

Just as arbitrage is a fundamental principle in economics, energy conservation is a
fundamental principle of physics. With a given amount of total energy and a given
number of particles interacting in a manner that conserves this total, the stationary
equilibrium distribution of energy corresponding to the maximum-entropy state is
Boltzmann–Gibbs. Yakovenko et al. adapt this particle-collision story to monetary
flows: they assume a closed economy with a fixed amount of money and a fixed
number of agents whose individual monetary transactions conserve total money, and
who always spend less than the possession so that money holdings are always positive.
In this base case, they derive the resulting stationary exponential distribution in one
of three ways: by simulation, by probability arguments from physics, and by means
of entropy maximization In subsequent extensions, they model production, sales and
debt, property incomes and wealth stocks, using simulations to identify the stationary
distributions [3,24]. Finally, diffusion models that only approximately conserve total
money or even have declining total money, as well as those in which negative shocks
are partitioned out among agents in a manner that keeps individual money stocks
positive, are shown through simulation to yield stationary exponential distributions
[8]. An important caveat is that these physics models treat money exchanges among
agents as income flows, which is not generally true. They also assume that the total
money stock, and hence total income, is essentially constant even though “there is
no fundamental reason why the sum of incomes . . . must be conserved” [4,23].

4 Entropy maximization approaches

In his book, Venkatasubramanian [22] derives an “ideal” distribution of income in
perfect capitalism. He operates within standard neoclassical economic theory, assum-
ing utility maximizing consumers, perfect markets and fully equalized wages and rates
of return on capital assets He defines the effective utility from work, which he calls
happiness, as utility from pay minus disutility from effort plus utility arising from a
sense of a fair opportunity (49–51). Entropy is re-interpreted as a measure of fair-
ness, and the entropy maximization is used to derive the ideal income distribution
in “utopia”. Under his particular specification of effective utility, the ideal income
is lognormal (49–51, 103–115). There is no process as in drift-diffusion or particle
collision models, only an entropy-maximizing specification of the ideal state.

In reference [16] Scharfenaker and Foley consider profit rate equalization within
the classical Smithian theory of competition. They note that while there is an observed
tent-shaped distribution of profit rates (see Fig. 2), the entry and exit decisions of
firms are not observed (4) They argue that “when observed variables depend non-
trivially on unobserved variables the joint distribution of profit rates and entry and
exit decisions is underdetermined due to incomplete information” (Abstract). In ref-
erence [9] Jaynes argues that “when we make inferences based on incomplete informa-
tion, we should draw them from that probability distribution that has the maximum
entropy permitted by the distribution we have”. Hence, Scharfenaker and Foley turn
to MaxEnt as the appropriate means to infer the underdetermined joint distribution,
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using constraints motivated by theoretical considerations. They argue that the unob-
served entry and exit of firms in response to profit rate differences can be represented
as “quantal entry and exit decisions” (8). Entropy maximization subject to quantal
constraints then yields a tent-shaped (Laplacian) distribution (16).

Two comments are in order here. First, unobserved decisions do not require
recourse to entropy maximization. They note that while we have data on the dis-
tribution of wage incomes, we generally do not on the movements of labor from low
wage regions to high wage ones. Yet the latter type arbitrage is an integral part of
economic theory and can be naturally represented as a dynamic adjustment process
– as in the drift-diffusion models of Section 2. Secondly, Scharfenaker and Foley make
no distinction between regulating and non-regulating capitals, so the well observed
cost variations among firms play no role in their analysis I have argued that real com-
petition only equalizes the profit rates of regulating capitals, and that it is precisely
the cost variations that give rise to the observed tent-shaped distribution of profit
rates (Sect. 2.3).

5 Summary and conclusions

Modern econophysicists have established that bottom individual incomes follow an
exponential distribution, top incomes follow a Pareto, and profit rates display a tent-
shaped distribution. This paper surveys three approaches to these patterns. First,
physics energy-conserving “particle collision” models applied to economics, in which
simulation is often used to derive a stationary distribution. Second, Jaynesian models
that invoke unobserved processes to justify the use of entropy maximization subject to
particular constraints in order to derive a stationary distribution. However, there is a
long-standing third tradition, as in the analysis of interest rates via the CIR and other
models, which derives the final distribution from an explicit treatment of the arbitrage
process. For instance, the unobserved entry and exit decisions of firms motivated by
arbitrage considerations can be sensibly modeled as drift-diffusion processes whose
mathematically derived stationary distributions match the observed ones of wage,
interest and profit rates. These derived distributions are also entropy maximizing. The
physics and arbitrage approaches formulate explicit models of unobserved processes,
while the Jaynesian approach uses the existence of unobserved processed to justify
entropy maximization. In the first two cases, the entropy maximizing distribution is
the result. In the Jaynesian approach, it is an assumption. The distinction between
these approaches is a methodological and philosophical one.

I am most grateful to Juan Esteban Jacobo for his great theoretical and empirical help on
this project. I am also grateful for the two referees whose insightful comments have led to
several revisions in this text.
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