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Abstract. This paper motivates the distinctive analytical usefulness
of socio-combinatorial characterizations of statistical equilibria in
economic systems. It does so by drawing on Gibbs’ approach to thermo-
dynamic ensembles and on Jaynes’ epistemic characterization of prob-
abilities, entropy, and associated concepts. The resulting approach is
contrasted with two classes of individualist-reductionist characteriza-
tions of statistical equilibria that are influential among economists and
physicists: Micro-econometric cross-sectional and drift-diffusion mod-
els. Two illustrative applications contrast the insights each approach
offers into the economic and social content of observed statistical equi-
libria, involving distributions of individual incomes and rates of return
for individual enterprises.

1 Introduction

“At the stage in development of a theory where we already have a formalism
successful in one domain, and we are trying to extend it to a wider one, some
kind of philosophy about what the formalism ‘means’ is absolutely essential
to provide us with a sense of direction.”

– E.T. Jaynes, “The Delaware Lecture,” 1967

Contributions from physicists and political economists over the past three decades
have established that the frequency distributions for many economic variables are
consistently well approximated by known functional forms [1–3]. This includes a
number of quantities that are central to the functioning of financial markets and
broader capitalist economies: changes in financial asset prices, their correlations over
different time horizons, and financial-market trading volumes [4–9]; individual income
and wealth [10–14]; corporate rates of growth and profitability [15–20]; the measure
of corporate security prices given by Tobin’s q [21,22]; and daily changes in foreign
exchange rates [23].

These findings are a promising development for political economy and economics.
Those fields confront complex social systems shaped by evolving interactions between
large numbers of non-linearly coupled individual members whose own characteristics
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and behavior are conditioned by their socio-economic relations [24]. Functional sta-
bility in frequency distributions for several important economic variables suggests
that despite the complex detail of individual economic behavior and interactions,
competition in decentralized, capitalist economies yields outcomes that may be use-
fully understood as statistical equilibria. The characteristics of such equilibria may
provide important clues about the economic and social content of market outcomes
in those economies.

An important difficulty arises in the pursuit of this potentially fruitful line of
inquiry. There are significant ambiguities and unresolved disagreements among physi-
cists concerning the phenomenological content of statistical equilibria and the evolu-
tion of physical systems toward them [25]. Making sense of the significance and nature
of statistical equilibria in economic and social systems requires a clear resolution of
those ambiguities and disagreements.

Some physicists favor kinetic characterizations of statistical equilibria, emphasiz-
ing detailed descriptions of the microscopic dynamics and evolutions toward station-
ary states. Kinetic interpretations appeared very early in the development of sta-
tistical mechanics: Boltzmann’s “H-Theorem” effectively characterized the Second
Law of Thermodynamics (and thus the evolution of certain thermodynamic systems
toward and at statistical equilibria) as a consequence of a particular specification of
patterns of collisions between particles. They are also common in more recent work,
most often in uses of the Fokker–Planck equation to characterize statistical equilibria
and the disequilibrium paths toward them in terms of drift-diffusion micro-kinetic
models of the dynamic evolution of individual non- or weakly-interacting particles in
a system.

Others have more forcefully and deliberately emphasized the combinatorial con-
tent of statistical equilibria. Taking their cue from the work of Gibbs, they charac-
terize statistical equilibria simply as the combinatorially dominant states across the
phase spaces defined by the physical laws governing the system in question [26,27].
Under this view, statistical equilibria embody something significantly more general
than the particular kinetic paths or collisions experienced by particles in a system.
They are the systemic expression of the relevant laws or regularities governing the
functioning of the system.

It should be obvious that whenever our knowledge of the laws or regularities
bearing upon a system can yield reasonably successful descriptions of its microscopic
evolution, the conceptual differences between these two approaches will not always
have practical implications. But in systems where we lack such knowledge, those
conceptual differences will generally be a matter of great practical importance as
well.

This is particularly true in analysis of economic or social systems. We do not pos-
sess any significant behavioral postulates with the empirical success and generality of
the principles of conservation of energy and momenta in analysis of physical systems.
The nearest thing we have is the aggregate accounting identity between individual
expenditures and revenues over any given time period. While economic outcomes can
be shaped by that identity in interesting and paradoxical ways [28,29], they are also
shaped by a much broader range of other behavioral, institutional, and social factors
that remain poorly understood.

More significantly, the conceptual differences between the kinetic and combinato-
rial emphases of Boltzmann and Gibbs have important parallels with a fundamental
schism at the heart of economic analysis for more than a century.

Much of contemporary economic thought has settled on a very strong form of indi-
vidualist reductionism. It seeks to characterize the functioning of economic systems
on the basis of detailed descriptions of the behavior of “representative” individu-
als, or of similarly detailed game-theoretic representations of interactions between
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small numbers of agent types. This methodological approach has its roots in the
“marginalist revolution” of the 1870s [30–32], and took its contemporary form under
the influence of the “micro-foundations” revolution of the 1970s [33]. Like kinetic
characterizations of statistical equilibria, this approach conceives of observable eco-
nomic outcomes in terms of detailed descriptions of individual behavior and dynamic
evolutions.

A diverse range of contributions have offered a radically different conceptual
approach to economic analysis [34–39]. Despite very important theoretical and nor-
mative differences among them, these contributions have all effectively recognized
that discernible regularities in the functioning of competitive, decentralized economies
are not generally reducible to detailed descriptions of individual actions and evolu-
tions. Some of those contributions identify regularities in the functioning of economic
systems with forms of spontaneous self-organization, ensuring that competition and
price systems yield outcomes that can be understood as socially desirable, indepen-
dently of the objectives and knowledge animating individual actions. Others have
sought to show how the institutional framework and systems of property rights of
capitalist political economies ensure that interactions in markets for labor-power,
capital, and goods reproduce uneven, exploitative relationships between aggregate,
social groups. In all cases, these contributions suggest observable economic outcomes
are reduced-form, emergent results of the interplay between individual agencies, inter-
actions, and systemic realities and interdependences [40].

Drawing on these latter traditions of economic analysis, and on the combinatorial
emphasis of Gibbs, a number of recent contributions have shown how observed sta-
tistical equilibria in socio-economic systems can be usefully understood as emergent,
systemic regularities [24,41–43]. Those regularities can inform work grappling with
the economic processes generating the observed data and with their social content.

This brief paper outlines and motivates the approach underlying those contribu-
tions. It also contrasts the conceptual and practical merits of that approach in anal-
ysis of economic systems to those of two important micro-individualist frameworks
used widely in economics and physics: Micro-econometric models used in empirical
work based on cross-sectional economic data, and micro-kinetic, drift-diffusion char-
acterizations of statistical equilibria used in recent work in economics. The paper
does this in four substantive parts. Section 2 offers a positive exposition of the socio-
combinatorial approach taken by these contributions; Section 3 takes on the diffi-
culties posed by conventional micro-econometric approaches to cross-sectional data;
Section 4 offers a critical discussion of drift-diffusion characterizations of statistical
equilibria in socio-economic systems; Section 5 offers two illustrative comparisons of
what may or may not be learned from observed statistical equilibria by taking each
approach; and a brief Section 6 concludes.

2 A systemic, Gibbs–Jaynes approach to statistical equilibria

The approach to statistical ensembles and phase spaces developed by Gibbs can be
adapted to assist quantitative, observational inquiry into economic and social sys-
tems. Invariances or regularities in the functioning of those systems rule out some
conceivable micro-level configurations of individual states. Inquiry starts by draw-
ing on prior knowledge and observation to identify those regularities, which appear
mathematically as constraints on the system’s phase space. Robustly and formally
identified regularities then set the observational burden that must be met by any
successful theory of the economic nature and social significance of the processes gen-
erating what we observe.
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2.1 Micro-level phase spaces, macroscopic states, and entropy measures

Consider an economic or social system as composed of a large number N of mem-
bers, which may be actual individuals or functional units. At any given point in time,
each of those members has an individual state defined over a set of v = 1, 2, . . ., d
degrees of freedom, Xv = {X0, X1, . . ., Xd} that exhaustively describes their eco-
nomic situation. Individual degrees of freedom may describe quantifiable individual
characteristics – contemporaneous or past – as well as macroscopic quantities that
take the same value across a large number of individuals in the system. They may
also describe qualitative or categorical individual characteristics, including descrip-
tions of an individual’s institutional or relational situations. Coding schemes mapping
the latter characteristics onto distinct real numbers allow individual states to be rep-
resented by vectors xv = {x0, x1, . . ., xd}, with the set of all such individual states
denoted by T ⊆ Rd.

In all practical social inquiry involving measurement of individual states, the space
T is effectively “coarse grained.” Consider a coarse graining into i = 1, 2, . . ., sv bins
or effective individual states, defining a total of sNv mathematically conceivable micro-
level configurations for the system. The system’s phase space Γv contains all of the
N × d matrices γ describing micro-level configurations that are phenomenologically
possible – i.e., those generated by the functioning of the system. A deterministic
and fully reductionist understanding of the functioning of the system would be given
mathematically by a full characterization of γ (t). Seeking such an understanding of
socio-economic systems is impractical. It is also unnecessary and besides the point in
social inquiry.

The task of micro-level quantitative social inquiry can be understood as the iden-
tification of the relevant phase space Γv defined by the economic or social system
in question. The existence of invariances, laws, or regularities in the system allows
description of its phase state in term of statements involving functions of the system’s
micro-configurations. Formally, each of these may be indexed by j and expressed as,

Hj (γ) ≤ 0. (1)

The set of m regularities in the functioning of the system yield a formal representation
of its phase space,

Γv = {γ | Hj (γ) ≤ 0, j = 1, 2, . . .,m} . (2)

Micro-level quantitative social inquiry seeks to identify and find mathematical expres-
sions for those regularities so as to inform theorization about their economic or social
content – that is, to inform phenomenological characterizations of the economic or
social laws and regularities in the system.

Regularities can involve any Hj (γ) establishing functional relationships between
any set of elements in the matrix γ and equalities or inequalities in relation to κj . In
a complex economic system with large numbers of interactions between dynamically
evolving members, regularities are generally systemic, involving relationships between
the states of large numbers of individuals. Important examples involve technologically
necessary input-output relationships between enterprises or industries [44], or the
presence of other networks of interaction between individual agents in the economy.

A particular, common type of systemic regularity has traditionally been associ-
ated with statistical equilibria – those defined by sums of functions gj : T → R of
individual states and scalars κj ,

Hj (γ) =
N∑
n=1

gj (xn) = κj . (3)
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These include simple regularities like
∑
n xc = κ, which may reflect a basic scarcity in

the total quantity of a good Xc, a basic accounting identity if Xc denotes changes in
individual net monetary positions, or, as discussed below, the fact that competition
ensures Xc is in fact a “socially scaled” measure of another individual degree of
freedom [24]. As will be clear below, regularities like (3) also include the presence
of given values for variances and covariances for the system’s individual degrees of
freedom. These regularities embody irreducibly systemic interdependences between
individual states.

It is often more convenient and effective to take a macro-level approach to social
inquiry. Since Xv is by definition an exhaustive description of all individual char-
acteristics relevant to economic and social interactions in question, it is possible to
consider that the functioning of the system is entirely indifferent between individ-
uals with the same xi. They are indistinguishable. The only thing that matters to
systemic functioning is the total number of members or occupancy ni in each of the
sv bins in T . It is thus possible to represent the macroscopic state of the system as
a frequency function f = f (xi) describing the normalized occupancy of each bin.

The functioning of a system defines a space Φv containing all macroscopic states
f (xi) the system may occupy. The macroscopic laws and regularities that define a
system can be understood to be expressed in the shape of Φv.

While not all regularities can be simply represented both at the micro and macro-
scopic level, micro-level regularities of the form (3) have very simple macroscopic
expressions,

N∑
n=1

gj (xn) = N

sv∑
i=1

f (xi) gj (xi)⇒ 〈gj (x)〉f = κj . (4)

They are moment constraints on the system’s macroscopic state f .
Entropy measures can be most usefully understood in socio-economic inquiry in

terms of the relationship between a system’s micro-level phase-space Γv and its set Φv
of possible macroscopic states. Clearly every γ ∈ Γv supports a unique macroscopic
state f ∈ Φv. But in general, each macroscopic state f is supported by a multiplicity
of micro-level configurations γ. Entropy functionals offer informational measures of
those multiplicities or phase-space volumes supporting specific macroscopic states.

Entropy is useful in analysis of systems with large N � sv. In those systems
the combinatorial dominance of the distribution f∗ (xi) achieving maximum entropy
over all other macroscopic states in Φv is overwhelming. This conclusion can guide
the iterative process of observational inquiry into the functioning of such systems. If
we have a set of knowledge, beliefs, or hypotheses K suggesting that the functioning
of the system keeps it within a phase-space ΓK and a corresponding set ΦK of
macroscopic states, we should expect to observe macroscopic behavior in line with the
state f∗ (x|K) that maximizes entropy over that set. Why? Because that distribution
is the most common macroscopic state across all possible micro-level configurations
in ΓK. This is the Principle of Maximum Entropy (PME).

It is important to note that the PME is not a behavioral hypothesis and is entirely
independent of the elements in set K. In fact, if we observe macroscopic behavior
at variance with f∗ (x|K), the PME tells us that K is either incomplete or wrong,
informing subsequent inquiry [45]. What the Principle offers is a distinctive and
logically robust way to link knowledge we may have about the micro-level functioning
of a system and what basic combinatorial considerations lead us to conclude about
its observable macroscopic states. This is a very different conceptualization of the
relationship between micro- and macro-level functioning than that which grounds
most contemporary economic thinking.
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2.2 Observational inquiry and statistical equilibria

The preceding considerations allow a formal statement of the kind of inverse, ill-posed
problem typically faced by observational social inquiry. It is possible to observe indi-
vidual values taken by o� d individual degrees of freedom across a large number
No ≤ N of members of the system. Coarse graining the observable individual state
space Tw ⊂ T into k = 1, 2, . . ., sw bins allows the construction of frequency his-
tograms f (xk) over the values taken by the vector xk of observed individual states.
Social scientists have limited knowledge about the micro-level interactions driving
the functioning of the system. Even the full set of relevant degrees of freedom Xv is
not known.

Observational social inquiry seeks to draw on observed cross sections f (xk) to
infer as much as possible about regularities in the functioning of the social or eco-
nomic system at hand. Those distributions reflect the accumulated results of repeated
interactions between evolving economic agents over the period of time defining the
quantities observed. They do not reflect the full detail of those interactions and indi-
vidual evolutions, much of which is lost between the annual, quarterly, or at best
monthly observations available to economists. The regularities they may embody
are reduced-form, systemic results of competitive interactions. Information theory
offers robust concepts and tools allowing a general approach to emergent systemic
associations between individual degrees of freedom. Measures of mutual, joint, and
incremental or conditional information between those degrees of freedom provide
valuable, non-parametric tools in economic analysis [40].

Sometimes an observed cross-sectional frequency f (xk) is persistently and ubiq-
uitously well described by known, closed-form functional forms. Such observations
suggest those frequencies are the most common macroscopic state across all possi-
ble micro-level configurations of individuals across all coarse-grained values of xk.
That is, they suggest the observed cross sections are entropy maxima. This opens
interesting possibilities for inquiry into the functioning of economic systems.

In some instances it is possible to identify the moment constraints 〈gj (x)〉f = κj
defining the sets Φw over which a persistently observed distributional form maxi-
mizes entropy. This allows a converse application of the PME [17,18,21,41,46,47]. It
is possible to infer that those moment constraints offer good systemic descriptions
of laws or regularities present in the processes conditioning values of xk. They give
mathematical expression to the outcomes of interactions involving all observed and
non-observed degrees of freedom in Xv that shape Φw and the corresponding subset
Γw ∈ Γv of the system’s overall phase space.

Those constraints can provide important formal clues about the macroscopic or
social content of the micro-processes at hand. They define the observational bur-
den on any successful economic or social theories of the nature and content of the
processes shaping measures of xk [24,41,42]. The kinds of observationally grounded
theorizations and distinctive systemic insights this approach enables are illustrated
in Section 5.

3 Parametric micro-econometric models

The approach outlined above offers a distinctive, critical perspective on the relative
usefulness of parametric micro-econometric models to guide inference from aggre-
gate or systemic patterns of statistical organization present in cross sections of eco-
nomic data, including statistical equilibria observed over certain domains of individ-
ual degrees of freedom.

While not widely understood as such, micro-econometric models are statistical-
equilibrium models, founded on the supposition that regularities in economic systems
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are individual. Individual regularities involve stable relationships between individual
degrees of freedom holding homogeneously across all individuals in a system (up
to a set of possible parametric variations across small numbers of sub-groups of
individual members of the system in question). They are generally more restrictive
than the broader range of possible systemic regularities depicted in (1). Each of
them imposes N constraints on the phase space of the economic system in question,
thus embodying a far stronger restriction on the system’s phase space than a single
systemic constraint.

Despite their practical usefulness across a variety of settings, micro-econometric
models founded on individual regularities generally offer a poor conceptual foun-
dation for grappling with the economic or social significance of statistical regulari-
ties involving all moments of observed distributions – like statistical equilibria over
marginal distributions of certain individual degrees of freedom. In the estimation
exercises defined by such models, observed statistical regularities are only relevant
inasmuch as they condition the estimation of values taken by the parameters of statis-
tical equilibria defined by individual regularities supposed by researchers. Inasmuch
as regularities in economic data are generally systemic or social, as was argued in
the previous section, this approach makes a category error. It also considers what is
known (the data) only in terms of what is conjectured (the individualist model) –
a striking and persistent instance of what E.T. Jaynes termed the “mind projection
fallacy” common in scientific inquiry [26]. This section discusses these difficulties in
turn.

3.1 Individual regularities

Formally, parametric micro-econometric models assert that for each and every indi-
vidual in a system, a specific relationship exists between a “dependent” degree of
freedom x0; a vector xm of “independent” degrees of freedom m ∈ L, a set of mod-
elled degrees of freedom; and a sum of unspecified functions u involving the large
number of i /∈ L degrees of freedom not explicitly considered in the model,

g (xn) = x0 − h (xm, θ) +
∑
i/∈L

ui (xi) = 0, ∀n. (5)

The function h (xm, θ) may be linear or non-linear on the degrees of freedom xm. The
sum in (5) is understood as a compound, “disturbance” individual degree of freedom
ε, whose distribution across individuals is taken as well defined, with 〈ε〉 = 0 across
all individuals.

By focusing exclusively on a possible relationship between each individual’s own
degrees of freedom, models of this type offer individualist-reductionist accounts of the
processes generating observed data. They allow no scope for explicit consideration
of interactions between individuals that may define irreducibly systemic or macro-
level regularities. This is sometimes motivated with the claim that regularities like
(5) are reduced-form, average relationships. Other times a far stronger set of claims
is made: That individual regularities are defined by the intentions and actions of
“rational,” optimizing individuals; that it is possible to successfully characterize those
intentions and actions; and that equilibrium prices across all markets ensure that
observable individual outcomes reflect the successful pursuit of those intentions by
all individuals, as characterized in economists’ models.

In all cases, models predicate the value of an individual’s “dependent” degree
of freedom on functions of their other degrees of freedom exclusively. This tends
to present individual outcomes not as results of complex patterns of social interac-
tion, but as reflections of an individual’s own characteristics. Existing differential
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socioeconomic outcomes are presented as simple expressions of differentials in given
individual characteristics, and not as results of social interdependences conditioning
differences in “independent” individual degrees of freedom and in their effects on the
“dependent” degree of freedom in question.

To illustrate the difficulties arising as a result, consider the relationship between
the profitability of individual enterprises and their investment behavior. Many con-
tributions have developed and estimated models where investment is a positive func-
tion of profitability – either because higher measures of profitability make investment
more attractive, or because more profitable firms have more internal funds available
to sustain investment [48–50]. But in any setting where the cost of capital to enter-
prises reflects the expected rates of returns investors can access across all enterprises,
realized levels of investment will tend to respond not to absolute individual mea-
sures of profitability but comparative, social ones [41]. It is also well known that
the total measure of investment in an economy conditions total value added, which
includes total profits. The resulting systemic interdependences between all individual
measures of investment and profitability may give rise to irreducibly systemic regu-
larities that can shape the full distributions of the quantities involved. Approaching
analysis by assuming individual regularities will clearly yield limiting, and at times
entirely misleading results.

More generally, abstraction from explicit consideration of social interdependences
between individuals gives rise to models exhibiting the defining characteristic of
individualist-reductionist approaches in science: According to them, macroscopic reg-
ularities are nothing but scaled up versions of the specified regularities in individual
states. Put differently, they suppose that systemic averages obey the same relation-
ship specified for each individual. In this case,

〈x0〉 = 〈h (xm, θ)〉 . (6)

These are very strong and generally inappropriate suppositions for social systems.
This is especially so given the well-understood and formidable epistemological and
practical difficulties in grappling scientifically with details of ever-evolving individ-
ual intentions, actions, and agencies [36,40], and how limited economists’ knowledge
about them really is as a result.

3.2 Strongly specified statistical equilibria

Once the existence of homogeneous, individual regularities is accepted, it is straight-
forward to see how micro-econometric models along the lines of (5) are in fact
statistical-equilibrium accounts of the conditional distribution f (x0|xm; θ). They can
be understood as statements that two things are known or conjectured: That for
every given xm, x0 has an average value of h (xm; θ) across all individuals, and that
the influence of large numbers of unspecified individual degrees of freedom resolves
itself into a statistically regular distribution for ε, belonging to a family M (µ,Σ) of
distributions centered on µ and exhibiting a spread parametrized by a vector Σ.

Formally, this results in models of the conditional distribution of x0 of the form,

f∗ (x0|xm; θ) = M (h (xm; θ) ,Σ) . (7)

This is a statement of statistical equilibrium: No matter what happens in the inter-
actions shaping the degrees of freedom i /∈ L, researchers expect a distribution
M (h (xm; θ) ,Σ) to be observed. This supposes that distribution is the most common
macroscopic state across all possible micro-level configurations of individual across
values of all xi defining ε – that is, it maximizes entropy over the phase space defined
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by the processes shaping those degrees of freedom. All distributional forms used in
econometric analysis are special cases of the Lambert-W function, all of which can
be understood as entropy maxima representing statistical equilibria over well defined
phase spaces [51].

This framing of cross-sectional econometric models is not widely understood.
Yet it makes clear how economists have for a long time been effectively pointing
to the existence of very strongly (and implausibly) specified statistical-equilibria in
economic systems. It also helps identify a further set of difficulties in the accepted
approach taken to estimation of these models and its conventional use to sustain
inferences from cross-sectional economic data.

At the most fundamental level, the problem with that approach is that it does not
start with the identification of regularities in the frequencies of observed degrees of
freedom f (xk) = f (x0,xm). That is the correct, observational approach for any non-
experimental field of inquiry. Instead, work starts by assuming that all suppositions
conditioning maximum entropy models like (7) are true. This creates a series of
difficulties, which can be seen formally by considering the relationship between the
observed joint distribution f (x0,xm) and the observed marginal distribution f (xm)
implied by the assumed model,

f (x0,xm) = M (h (xm; θ) ,Σ) f (xm) . (8)

In estimation of the model in (7), the statistical properties of the observed distri-
bution f (x0,xm), which embody the statistical relationships between f (x0) , f (xm),
and f (x0,xm) established by the functioning of the system in question, are only con-
sidered inasmuch as they help shape parameter estimates θ̂ and their distributions.
But that is contingent on the model and on the estimation procedure, amounting
to a fundamental inversion of the correct logical ordering of observation and model
in observational inquiry. No attempts are generally made to establish whether it
is reasonable to suppose that individual regularities are in fact generated by the
functioning of the system; whether there are other, systemic regularities bearing on
the conditional distributions being estimates; or whether there are further regular-
ities involving all moments in the full observed frequencies of individual degrees of
freedom.

Practical work nevertheless proceeds to draw on cross-sectional data to obtain
estimates θ̂ of model parameters, and to use the cross-sample statistical properties of
particular estimates to consider pairs of mutually exclusive hypotheses about param-
eter values. The possibility that certain elements defining the statistical-equilibrium
being estimated may not be warranted is only considered ex post, implicitly, and
ad hoc: Not in relation to the strong restrictions on the system’s phase space result-
ing in models like (5), but only inasmuch as estimation of the model yields evidence
suggesting problems with the specification of h (xm; θ), “non-spherical” distributions
for “error terms,” [52], or associations between the “independent” variables.

Practitioners are trained in ways to adjust their models in light of this evidence,
and in the “problems” it creates for the statistical properties of some estimators.
The irony in some of this, of course, is that evidence of heteroscedasticity, omitted
variables, endogeneity, multicollinearity, etc. actually gives researchers information
about the processes generating the data we observe [53]. By considering observed data
only in terms defined by rather strong suppositions, parametric micro-econometric
inference often ignores this kind of information, going as far as considering it a
“problem” in estimation of postulated models.

Finally, it is important to note how some approaches have sought to relax some
of the strong constraints on phase spaces imposed by the supposition of simple
individual regularities. Approaches based on the Bayesian method of moments use
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non-parametric, information-theoretic tools to develop data-centred characterizations
of the moments of the distribution M [54,55]. While more general than the approach
outlined above, those efforts are still defined by an assumed functional form for
h (xm; θ), which fundamentally shapes all aspects of the ensuing exercises.

Multilevel models consider cases where the function h (xm, θ) contains parametric
variations θj across sub-groups of individuals in the system, where the elements of
θj are themselves understood as a dependent variable in higher-order regularities of
the kind described in (5) [56]. Models of that type are more general, making some
allowance for social or institutional categories that may influence economic outcomes,
and for possible interdependences between individuals in different groups in the form
of covariances between disturbance terms in specifications of elements of θj and θi
for different sub-groups.

But while richer and more general, those models are still founded on the sup-
position of individualist regularities, in this instance with group-level versions of
(5) (which can easily be represented as a single function h (xm; θ)) and (6). Their
estimation also involves consideration of the data and any regularities that may be
present in it within terms defined by the strong specifications defining the statistical-
equilibrium model, ensuring they will in general also provide poor bases to grapple
with observed statistical regularities and equilibria in distributions of economic data.

4 Micro-kinetic, drift-diffusion approaches

Kinetic characterizations of statistical equilibria in physical systems offer a different
kind of individualist approach in economic analysis. This involves dynamic drift-
diffusion models that characterize observed statistical regularities in distributions for
certain economic quantities as stationary states toward which economic systems con-
verge over time. While the analytical emphases are different from those of the micro-
econometric exercises just discussed, drift-diffusion characterizations are borne of the
same individualist analytical appetite to reduce observed macroscopic regularities to
homogeneous regularities holding at the individual level.

Micro-kinetic, drift-diffusion characterizations of statistical equilibria follow a
well-trod path. Consider the dynamic evolution of a single individual degree of free-
dom x for a member of a system. Suppose that evolution is Markovian: The future
evolution of x depends only on present values of all relevant covariates. This ensures
the process is “memoryless,” in the sense that past values of all relevant covariates
are irrelevant to the future evolution of x.

A particular Markovian process is often used in these models, Itô processes,
according to which, the evolution of x obeys,

dx = a (x, t) dt+ b (x, t) dz (9)

where z is a Weiner process continuously generating Gaussian diffusion increments
with mean zero and a given variance.

In these cases the Chapman–Kolmogorov equation is satisfied and ensures that
the frequency distribution f (x, t) describing the values of x taken by a large number
of individual members of a system evolving according to (9) evolves dynamically
according to,

∂

∂t
f (x, t) = − ∂

∂x
a (x, t) f (x, t) +

∂2

∂x2
D (x, t) f (x, t) (10)

where D (x, t) = 1
2b (x, t)2.
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For time-homogeneous drift and diffusion, a stationary state f∗ must obviously
solve,

∂

∂x
a (x) f∗ (x) =

∂2

∂x2
D (x) f∗ (x) . (11)

Drift-diffusion accounts of an observed, persistent distributional form f∗ (x) as
a stationary state can be constructed by identifying a (x) and D (x) satisfying this
condition.

This line of reasoning poses at least three deep problems in analysis of economic
systems. Those problems make it very difficult to attach economic or social sig-
nificance to particular pairs of drift and diffusion functions capable of generating
persistently observed distributional forms.

First, the supposition that the evolution of economic variables is Markovian is
excessively restrictive and generally wrong. The dynamic accumulation of stocks
of productive assets, financial assets, work-in-progress, inventories, and liabilities is
inherent to economic functioning in a capitalist economy. This creates important path
dependences. Even variables like market prices of financial assets whose evolution is
over many time horizons usually Markovian [37], often follow non-Markovian paths
as a result of stock (or balance-sheet) effects [57].

Second, drift-diffusion representations of given statistical equilibria are not gen-
erally unique. This is obvious from condition (11), which imposes only one equation
on the search for two functions a (x) and D (x) for a given f∗ (x). This search is an
underdetermined problem, introducing an important measure of arbitrariness in any
pair of drift and diffusion functions capable of generating observed distributions.

Third and most importantly, drift-diffusion characterizations consider that all
members of a system obey the same dynamic rule, as given in (9). This is a strong and
deeply unsatisfying individualist supposition. The “memoryless” nature of Markov
processes ensures that at the steady-state distribution, all individuals are indistin-
guishable. Information about differences in initial conditions will have been lost by
the time the system comes to statistical equilibrium.

This symmetry ensures that at the steady-state distribution, the functional form
taken by the cross-sectional, macroscopic distribution of x is the same as the distri-
bution of values of x taken by each individual over sufficiently long periods of time.
In fact, under this kind of account of statistical equilibria, all individuals occupy all
allowed values of x at the same frequency over time as that with which those values
are instantaneously occupied by the entire population. There is no social significance
to different x outcomes for different individuals in this abstraction. Everybody even-
tually comes to occupy every state with the same frequencies as everybody else. As
in individualist micro-econometric models, macroscopic patterns of organization are
taken as nothing but scaled up versions of micro-level, individual regularities.

While formally capable of accounting for some observed distributional forms, this
approach cannot generally sustain social or economic theory, which concerns itself
precisely with the reasons and significance for differences in outcomes.

5 Two contrasting examples

This section considers two specific examples illustrating the importance of the dif-
ferences between the three approaches to statistical equilibrium outlined above. The
examples involve the persistent observation of Boltzmann–Gibbs exponential cross-
sectional frequencies for individual income over long ranges of income distributions
in a number of different national economies, and the persistent observation of double
power-exponential functions in cross-sectional frequencies for different measures of
rates of return. These are discussed in turn.
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5.1 Boltzmann–Gibbs exponentials and wage income

Observed cross-sectional frequencies of individual income have suggested income dis-
tributions follow Boltzmann–Gibbs exponential functions very closely for wide ranges
of income across a number of economies [24,58,59]. Formally, this may be conveniently
and approximately put as a statement that over a domain [0,∞), individual annual
income x follows the distribution,

f (x) = c e−cx, c > 0. (12)

This observation elicits very different conclusions from each of the three approaches.

5.1.1 Drift-diffusion models

Drift-diffusion characterizations would consider these observed distributions as the
steady state for a large number of individual evolutions of the type described in (9),
with the slight modification of a “reflective boundary” at x = 0 [60].

Considering for simplicity only processes with constant drift and diffusion coeffi-
cients a (x, t) = a and D (x, t) = D, a continuum of pairs (a,D), with D,−a ≥ 0 can
generate a statistical equilibrium at (12) with c = c (a,D). Even when considering
only a subset of possible drift-diffusion processes, there is no unique drift-diffusion
representation capable of generating the observed distribution. The multiplicity of
possible models makes it difficult to take inquiry further on these bases.

More generally, under statistical equilibria for individual incomes generated by a
drift-diffusion processes like (9), each individual is dynamically occupying each and
every income level over time at frequencies described by the cross sectional distri-
bution. This leaves analysis with no conceptualization of the determinants of differ-
ences in individual income levels, and consequently without any economic account
for inequalities of income or of their social significance or content.

5.1.2 Mincer equations

The observation of statistical equilibria in marginal distributions of income f (x)
highlights important limitations with individualist, micro-econometric approaches to
observational work. As already noted, those models are based on the supposition of
statistical equilibria elsewhere in the joint distribution of all observable individual
degrees of freedom. That strong supposition frames and constrains all empirical work.

Micro-econometric models of income determination were heavily influenced by
the early contributions of Jacob Mincer [61]. “Mincer equations” posit the existence
of a homogeneous relationship between an individual’s wage income x and a vector φ
of individual characteristics like years of education and potential years of work expe-
rience. In its most influential form, Mincer’s approach considers a linear relationship
or regularity between logarithmic measures of individual labor income and a vector
of logarithmic measures of individual characteristics. Formally, for x ≥ 0,

x|φ =
∏
i

φαi
i + η (13)

where η typically taken as a Gaussian with mean zero and a standard deviation σ,
by the Central Limit Theorem.

As noted above, individualist regularities of this kind cast an individual’s level of
income not as a result of complex patterns of social interaction, but as reducible to
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homogeneous functions of their own characteristics. They also result in very strongly
specified individualist, statistical-equilibrium models of labor income determination,

f (x|φ) = G

(∏
i

φαi
i , σ

)
. (14)

This conjectured statistical equilibrium defines the manner in which observed
statistical regularities in the marginal distribution of income are considered in most
practical micro-econometric work along these lines. The macroscopic regularities in
f (x) are considered not in terms of the clues about the reduced-form outcomes of
processes conditioning wage incomes they may provide, but only inasmuch as together
with the broader distribution of all observables f (x, φ), they help define the best-
fitting version of the postulated statistical-equilibrium model in (13).

To see this formally, note that under the assumed model, the observation that
(12) provides a good description of the observed distributions of wage income, it
follows that,

c e−cx = f (x) =
∑
φ

f (x|φ) f (φ) =
∑
φ

G

(∏
i

φαi
i , σ

)
f (φ) . (15)

The relationship between the observed f (x) and f (φ), and thus f (x, φ) is only
considered in relation to the supposed model, and to the extent that they help define
the set of α∗i the offer the best fit (by some specified criterion), under the assumed
functional specification.

While imposing a conjectured statistical equilibrium on those conditional distri-
butions, these approaches do not do anything with observed statistical equilibria in
marginal distributions of income. Yet those observed equilibria offer a rather unusual
opportunity to develop formal characterizations of the systemic, reduced-form results
of the complex processes determining individual incomes, despite the prohibitive
practical and conceptual difficulties faced in observing and adequately theorizing the
detailed actions and interactions involved. Those systemic characterizations can cast
new light on the social significance of the processes conditioning individual measures
of income.

5.1.3 First-moment constraints and social scaling

The socio-systemic approach developed in Section 2 offers a different route to the eco-
nomic and social significance of Boltzmann–Gibbs exponential statistical equilibria
(12) for cross sections of individual income.

As is well known, those distributions maximize entropy across all distributions
with support on R+, subject to a first-moment constraint. Physicists who first verified
the presence of these distributional form mooted the possibility of a “conservation
of money,” analogous to the way the conservation of energy results in a Boltzmann–
Gibbs exponential distribution for the energy levels of individual particles or systems
in the microcanonical and canonical ensembles. While recognizing the significance of
the empirical discovery made by those contributions, most economists engaging with
this literature did not find this argument convincing. After all, much economic anal-
ysis concerns itself precisely with variations in individual and aggregate fluctuations
in quantities like income.

A more recent contribution pointed to a different possibility – that the first-
moment constraints or zero-sum interactions implicit in the persistent observation
of distributions like (12) may reflect the presence of competitive processes of social
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scaling [24]. The basic concept of social scaling is simple. It follows from the hypoth-
esis that individual outcomes of many competitive, socio-economic processes depend
on the measure of certain individual characteristics relative to social or aggregate
measures of themselves. For example, suppose an individual’s valuation of their well
being wi is defined on average by a measure of their consumption level li and the
average measure of consumption in their community,

wi =
li
〈l〉

+ ηi (16)

where ηi has a population mean of zero.
It is trivial to see that in such a setting, the measure of well being is subject

to a first-moment constraint, 〈w〉 = 1. This does not reflect the presence of any
conservation principle. It simply reflects the socio-referential content of the measure
of well being in this example.

Under this account the observation of distributions like (12) for individual income
would suggest that individual income is the product of processes of competitive scal-
ing of this kind: Complex and unobservable competitive processes in labor and capital
markets generate individual wage outcomes reflecting the normalization of individ-
ual characteristics relative to social measures of themselves. One possibility is that
competition in labor and capital markets ensures individual wages reflect a social
scaling of the effective bargaining power workers across different labor-market seg-
ments defined by skill, experience, region, social identity, etc, have in securing shares
of trend measures of money value added by the enterprises employing them. Bar-
gaining power can be understood as a compound, effective measure of the ability of
a group of wage earners to move wages in their favor, conditioned by their economic
and broader socio-political characteristics.

An improvement in bargaining power by one group of wage earners leaving them
with a greater share of the value added by the enterprises employing them puts pres-
sure on earnings for those enterprises. Capital-market competition tends to spread the
resulting losses across all capitals. The generalized losses may induce all enterprises to
intensify bargaining pressure on all wage earners, resulting in dynamic income losses
for those not enjoying the same kind of improvement in bargaining power as the first
group of workers. Individual wage incomes under these condition can be understood
to be shaped by the social scaling of measures of bargaining power by wage earners
in each labor-market segment.

Under this account the observed statistical equilibria for individual incomes
betray how competition in capital markets not only shapes the distribution of income
across capitalist enterprises, but also creates competitive interdependences that have
been neglected by much political economy. Between wage earners, whose incomes
under this account depend on a socially scaled measure of their bargaining power.
The socio-combinatorial approach here leads inquiry into a more complete picture of
the inter- and intra-class conflicts over the market distribution of the social product.

5.2 Power-exponentials and rates of return

A number of recent contributions have identified persistent double power-exponential
functional forms in cross sections for realized and implicit expected rates of return
on assets. This includes Subbotin distributions for measures for returns on assets
for U.S. corporations [18,19]; double stretched-exponential distributions for returns
on assets for very large samples of corporate and private enterprises across twenty
European economies [20]; and Asymmetric Laplace distributions for cross sections
of the logarithm of “Tobin’s q” for U.S. non-financial corporations [41]. In all cases,
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cross sections are strongly and persistently organized around a modal value x̄ that
may be readily understood as a measure of the cost of capital.

These are truly remarkable findings given the complexity of the competitive inter-
dependences involved in the determination of realized and expected rates of return
on assets. Each of the approaches to statistical equilibria discussed above sustains
radically different conclusions from these observations.

5.2.1 The law of one price

While there is no standing micro-econometric literature trying to grapple with the
statistical distribution of profitability, an extensive literature has considered the dis-
tribution of the measure valuation of corporate securities given by Tobin’s q [62,63].
In a nutshell, Tobin’s q measures the rate of return investors expect a corporation to
generate on its assets, divided by the expected rate of return they demand to receive
on their holdings of that corporation’s liabilities. Any value different from one implies
an opportunity for managers to generate profits for incumbent shareholders, either
by investing or divesting in line with market valuations.

Salient contributions to economic theory have proposed this creates tendencies
keeping all individual measures of Tobin’s q close to one [64]. Work seeking to test this
instance of the “Law of One Price” has broadly taken two versions of the individual-
ist, micro-econometric approach outlined above. Some influential contributions have
sought to test the hypothesis that security valuations have an independent influence
on investment on the basis of posited individualist regularities involving valuations,
“fundamental” measures of profitability and liquidity, and investment [62]. Others
have taken an aggregate approach, estimating aggregate or average versions of those
regularities [63]. In both cases no attention is paid to the full distribution of Tobin’s
q. Given the formal stability and decidedly non-Gaussian form of those distributions,
this effectively ignores important information about the competitive regulation of
values of Tobin’s q.

5.2.2 A drift-diffusion approach

A recent contribution set out to consider the significance of Subbotin statistical
equilibria, proposing a drift-diffusion model of a “representative” evolution of the
profitability x of each enterprise [65],

dx = −D
2σ

sgn (x− x̄)
∣∣∣∣x− x̄σ

∣∣∣∣α−1

dt+
√
Ddz (17)

which for D,α, σ > 0,m ∈ R yields a Subbotin stationary distribution with expo-
nent α.

As discussed above, accounts of this type consider that all individual enterprises
follow the same dynamic evolution. They each occupy all possible levels of prof-
itability (or of logarithms of Tobin’s q) over time with the same frequency at which
those levels are contemporaneously occupied by different enterprises. This ensures
the model offers no room for consideration of competitive interactions, since the
distribution appears simply as a scaled up version of the micro-level evolution of
independent enterprises. This is a very poor conceptual basis for a theory of compet-
itive processes, which inherently involve complex interactions between large numbers
of heterogeneous enterprises. Even as a reduced-form relationship, it is very difficult
to associate any economic reasoning or significance to processes like (17).
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The authors also offered a model of the observed statistical equilibria based on a
systemic description of the phase space over which the observed distributions maxi-
mize entropy. That approach points to a much more fruitful line of inquiry.

5.2.3 Arbitrage and the spontaneous, competitive pricing of information

A more recent set of contributions has applied the socio-combinatorial approach of
Section 2 to the development of economic characterizations of the observed distribu-
tional forms for measures of profitability and the logarithm of Tobin’s q [41,42]. They
account for observed power-exponential statistical equilibria as an emergent result of
the actions of arbitrageurs acting in competitive capital-market systems.

The account is based on an informational accounting of the effects of complex
competitive processes on distributions of realized or expected returns [66,67]. While
neither observers nor economic agents know what the effects of generic competitive
actions by heterogeneous enterprises, investors, and other agents in a decentralized,
market economy will be, it can be reasonably expected that those actions will gen-
erally disorganize or increase the entropy of those distributions. This follows from
simple combinatorial considerations in systems with large numbers of agents.

The only economic actions consistently capable of contributing to the organiza-
tion of those distributions involve the pursuit of profits latent in any heterogeneity
in rates of return. Those are the actions of arbitrageurs seeking to generate prof-
its in capital markets by moving capital value and competitive efforts away from
low-yielding and toward high-yielding allocations. By so doing, the actions of arbi-
trageurs tend to reduce heterogeneity in rates of return. As a result, it is possible to
understand the shape of distributions of profitability or of Tobin’s q as reflecting the
economic imperatives governing the outcome of the pursuit of arbitrage profits amid
the broader competitive process.

Along lines proposed by Austrian political economists [36,68,69], it is possible to
consider that quite apart from the actions, knowledge, and intentions of any given
individual, the price system in competitive capital markets tends to ensure that
resources are allocated to would-be arbitrageurs in ways that maximize the aggregate
net return their operations realize over any given period.

Aggregate gross arbitrage returns realized over a short period are falling on end-
of-period measure of foregone arbitrage returns, which is proportional to 〈|x− x̄|〉.
Aggregate costs incurred by arbitrageurs during the period can be understood as
rising on the gross entropy reductions their actions effect. Those reductions are, in
turn, falling on the end-of-period entropy of the relevant distribution of returns. The
competitive maximization of aggregate arbitrage returns creates a tradeoff between
these two observable features of that distribution. The observed distributions can
be understood to express this competitive tradeoff and to represent the emergent
pecuniary pricing of organization effected by competitive arbitrage in capital markets.

The model of aggregate arbitrage profit maximization has a dual entropy-
maximization problem, highlighting the fact that the observed distributions can be
understood as statistical equilibria over phase spaces defined by emergent, systemic
regularities created by the competitive pricing of information in capital markets. This
is the first explicitly economic account of competitive processes capable of generating
power-exponential distributions for realized or expected rates of return.

6 Some conclusions

Drawing on observed statistical equilibria in cross sections for important economic
quantities to cast light onto the functioning of socio-economic systems requires
addressing longstanding ambiguities in how those equilibria are characterized.
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Micro-kinetic or individualist-reductionist characterizations based on strong spec-
ifications of homogeneous individual regularities or dynamic evolutions of non-
or weakly-interacting individuals are deeply unsatisfactory. Whether in micro-
econometric or drift-diffusion guise, those approaches embrace the same error. The
contention that the macroscopic functioning of a social system is nothing but a scaled
up version of the functioning of more or less equivalent individual members that effec-
tively do not interact. This results in the rather patent category error of attributing to
individuals and their characteristics observed regularities that are generally the result
of the interplay between individual agencies and macroscopic or social interactions
and interdependences.

The inherent difficulties posed in trying to acquire detailed knowledge about all
aspects of individual economic behavior pose an additional, practical problem for
all individualist-reductionist approaches. Those difficulties will continue to ensure
economic and social analysis has many gaps in its ability to develop empirically
successful detailed characterizations of the behavior and specific economic evolution
of individuals. Without that kind of knowledge, detailed specifications of individual
behavior, actions, and patterns of interactions between individuals, are generally
arbitrary. Efforts to interpret observed statistical equilibria in relation to arbitrary
individualist models lacking in observational foundation commit a form of the “mind-
projection fallacy.” This includes the use of game-theoretic or agent-based models,
which offer potentially useful thought exercises about the consequences of certain
specified patterns of interaction between small numbers of individuals or individual
types, to develop interpretations of regularities detected in observed data.

The socio-combinatorial characterization of observed statistical equilibria and the
broader approach to observational inquiry with which it is associated offer a superior
approach, pointing inquiry to significantly more interesting, systemic directions.

Analysis starts from recognition of the significance of statistical equilibria over
parts of the observed joint frequency of individual states, not from the supposition of
statistical equilibria elsewhere in those frequencies. This allows inquiry to center not
on estimation of parameters in very strongly specified individualist models, but on
extracting as much information as possible from what is observed. In characterizing
those equilibria, the approach emphasizes the identification of formal statements of
emergent social regularities suggested by observation, not detailed kinetic character-
izations of “representative” evolutions or homogeneous individual regularities.

When applied to distributions of income, this approach suggests processes condi-
tioning measures of individual wage incomes are irreducibly social. They reflect not
individual characteristics in themselves, but their measures relative to social aver-
ages. When applied to distributions of returns on assets, the approach conceives of
the outcomes of capital-market competition not in terms of individual evolutions
or characteristics, but as an instance of spontaneous self-organization created by
the actions of arbitrageurs and by the operation of the capital-market price sys-
tem. Capital-market prices create competitive aggregate tradeoffs between costs and
returns to arbitrage, resulting in the pecuniary pricing of organization in distributions
of profitability, which is what we observe in those frequencies.

In both cases, the socio-combinatorial approach is founded on the recognition that
complex competitive interdependences can give rise to emergent systemic regulari-
ties in economic systems. Those regularities are irreducible to the detailed actions,
knowledge, or characteristics of individuals in the system. In some instances those
regularities define observable statistical equilibria, giving researchers the opportu-
nity to characterize them formally. This in turn informs further efforts to develop
observationally founded, systemic theorizations of the economic processes and social
significance behind the regularities in question.
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It is hoped that the discussion above and these two examples illustrate the greater
generality and usefulness to economic and social inquiry of socio-combinatorial char-
acterizations of observed statistical equilibria in economic systems. It is also hoped
this paper encourages new, creative uses of the approach to pressing questions in
economic and social inquiry.

I would like to thank Duncan Foley, Sanjay Reddy, Anwar Shaikh, and Ellis Sharfenaker
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