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Abstract. A coherent statistical methodology is necessary for analyz-
ing and understanding complex economic systems characterized by
large degrees of freedom with non-trivial patterns of interaction and
aggregation across individual components. Such a methodology was
arguably present in Classical Political Economy, but was abandoned
in the late nineteenth century with a theoretical turn towards a purely
mechanical approach to understanding social and economic phenom-
ena. Recent advances in economic theory that draw from information
theory and statistical mechanics offers a compelling statistically based
approach to understanding economic systems based on a general prin-
ciple of maximum entropy for doing inference. We offer a brief overview
of what we consider the state of maximum entropy reasoning in eco-
nomic research.

1 Introduction

Economic theory considers systems with large numbers of degrees of freedom and
non-trivial patterns of interaction and aggregation across their individual members.
Successful capitalist economies are characterized by a complex self-organizing division
of labor around commodity production and exchange, and tend to produce stable,
recurrent observed macroscopic patterns over long periods despite observed disorder
at the microscopic scale. Organization of phenomenal observations in economic theory
inherently deals with problems of inductive inference due to the non-experimental and
incomplete nature of economic data. The maximum entropy principle (MEP) offers
a general, logical approach to inference for problems of incomplete information in
systems with many degrees of freedom. As such, it provides a useful tool in economic
analysis.

While a statistical understanding of the nature of economic processes and regu-
larities was central to 18th and 19th century Classical Political Economy, the modern
core of economic theory, embodied in Walrasian general equilibrium theory, is concep-
tually anchored in deterministic market equilibria. Modern econophysics has made
important empirical and methodological contributions in an effort at reconceptualiz-
ing economic systems along the lines of statistical physics, but has fallen short in its
aims and influence due to weak theoretical grounding and interpretive dependence
on physical analogies. In this paper, we briefly survey the importance of a statistical
methodology in the social sciences, discuss some of the modern applications of the
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MEP in economics, and define Maximum Entropy Economics as a broader field of
economic research based in the general principle of maximum entropy inference.

2 Background

2.1 The submerged and forgotten approach

Adam Smith was the first philosopher to systematically consider how economic sys-
tems comprised of many individual, decentralized decision makers can self-organize a
division of labor. Smith’s central abstraction was to consider the social and economic
outcomes that would emerge from the complex interactions among and between cap-
italist producers and wage-laborers when they were free to move between different
lines of production in pursuit of the greatest remuneration. Smith predicted that due
to the decentralized nature of capitalist production the migration of capital and labor
between lines of production would be a ceaseless and turbulent process. One obvious
reason for this persistent variation is that incomplete information is an unavoidable
consequence of large-scale decentralized decision making. Smith envisioned a nega-
tive feedback mechanism in the changes in the supply and price of commodities that
would give rise to centers of gravity for prices and the distribution of labor and capi-
tal among different lines of production. The central tendencies to which prices, profit
rates, and wages would continuously gravitate were an equally important component
to his theory as were the endogenous fluctuations around these tendencies.

While Karl Marx is famous for his critique of Adam Smith and Classical Political
Economy in general, he retained an essentially statistical understanding of price,
profit, and wage formation. As he argues in Volume III of Capital, the macroscopic
properties of the system, such as the average rate of profit, wages, and prices of
production, are statistical in nature:

“[The] sphere [of circulation] is the sphere of competition, which is subject
to accident in each individual case; i.e. where the inner law that prevails
through the accidents and governs them is visible only when these accidents are
combined in large numbers, so that it remains invisible and incomprehensible
to the individual agents of production themselves.” [46, Chap. XLVIII]

Marx emphasized that it was the competitive disposition of capital to seek out
the highest rate of profit and in doing so would perpetually re-distribute capital and
labor across various lines of production. These redistributions could be understood
to give rise to systems of “prices of production”, but only statistically. Dynamic,
statistical fluctuations around prices of production were understood as the very form
in which those prices were defined in a complex, self-organizing division of labor.
A capitalist economy in absence of these endogenous fluctuations would cease to
function altogether. Criticizing and synthesizing Classical thought, Marx offered a
far more developed theory of value based on the dynamic and statistical nature of
the rate of profit and it is regulatory role for the distribution of capital and social
labor.

While unequipped with the modern methods of statistical physics, Classical and
Marxian theory was essentially a statistical account of the formation of equilibrium
prices, profit rates, and wages. All saw the importance of the centers of gravity
as revealing the underlying mechanisms of price formation and distribution, but
also emphasized the statistical variations around this center as a reflection of the
underlying system dynamics that gave rise to natural prices, wages, and profit rates.
While twentieth century research in Classical Political Economy generally adopted
a “long-period” interpretation of Smith, Ricardo, and Marx, where profit rates and
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wages are treated as equalized in the abstract long-run it did so by jettisoning any
ambition of reconciling the Classical vision with a coherent statistical methodology
[1]. It did, of course, illuminate many important implications of Classical thought
particularly with respect to production [2] and value theory [3], but it may have had
the unfortunate effect of putting statistical thinking on the back burner of theory
development.

It is easy to read Classical Political Economy anachronistically with the benefit
of two centuries of theoretical development in physics and at least half a century
of complex systems theory [4]. But, while it is fanciful to think Smith and Marx
conceptualized economic phenomena in the same terms of modern statistical physics,
the abstract vision of economic processes presented by them appears to integrate
many of the same insights. Classical Political Economy tended to argue in terms of
economic variables that did not scale with the size of the system, such as the rate
of profit and prices rather than variables like endowments, capital stock, or land,
which do scale with the size of the system. Though these “intensive” variables were
subject to continual change arising from the reorganization of production through
technological change and class conflict, the dynamics that governed the formation
of natural prices and average profit rates made the evolution of these variables an
essentially “quasi-static” process. Underlying the complex evolutionary and dynamic
process of production and exchange was a common organizing logic of competition
that keep these intensive variables in a “statistical” equilibrium.

Marx’s theory of historical materialism which concerns the laws of social repro-
duction as well as the contradictions that inevitably give rise to change emphasizes
the importance of institutional constraints that shape social reality over long periods
of time. The elemental institution of competition may lead to the statistical equilibra-
tion of profit rates and the ratio of labor effort to wages so long as social reproduction
is organized around capitalist production. But class conflict, technical change, and
the dynamic adaptive nature of capitalism may only change the parameters of the
equilibrium distributions and not the functional form, which arises from the overar-
ching institutional constraints. For example, a falling rate of profit leads only to a
translation of the profit rate distribution [5,6], or growing inequality through tax leg-
islation, dismantling of labor unions, financialization, etc. may lead only to a change
in the shape parameter of an otherwise stable distribution of incomes [7–9]. While it
may at times be difficult to distinguish between a parametric and functional change
in an evolutionary adaptive system like capitalism, there is good reason to believe
that the underlying organizing logic of competition will lead to robust statistical
regularities over significant periods of time.

2.2 The neoclassical utopian vision

The essentially statistical nature of Classical Political Economic thought was entirely
abandoned in the late 19th and early 20th century when the marginalist vision of
Stanley Jevons, Carl Menger, and Leon Walras, pushed forward the subjectivist the-
ory that commodities sell at whatever price someone is willing to pay for them on
the market. The marginalists, ignoring the deeper forces that tended to organize and
regulate prices, stressed the arbitrary and subjective nature of value where prices
determined at the market level are decoupled from any determination at the level of
production. Theoretical focus shifted to market prices as reflecting an efficient allo-
cation of privately owned scare resources where Say’s law holds by virtue of barter
exchange.

The principles of marginalist economics maintained an explicit mathematical
vision equivalent to the mid-18th century physics of Hermann von Helmholtz [10].
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The historical curiosity being that neoclassical economists embraced the theoretical
isomorphism of economics and physics in the late 19th century, but despite the rev-
olutionary statistical thinking of Maxwell, Boltzmann, and Gibbs, neoclassical the-
ory espoused an antiquated theory of mechanics. Couched in a completely specified
mechanical system, neoclassical theory was liberated from the theoretical difficulties
of fully conceptualizing the complex and statistical nature of commodity production
and exchange [11].

The development of the marginalist vision into modern general equilibrium theory
[12] maintains that many rational households which are simultaneously consumers
and producers interact through universal perfectly competitive markets as price tak-
ers with costless and perfect information. The equilibrium concept is a simultaneous
determination of all equilibrium prices (such that aggregate excess demand is zero)
via a fictional “Auctioneer” (an analog to Maxwell’s demon) that can generate all
relevant market information without expending any resources. The Walrasian con-
ceptualization of economic equilibrium is a balance of the gradients of utilities, much
like force balance in mechanics, leading to a unique, stable fixed-point equilibrium
price vector [11]. Walrasian general equilibrium theory requires every individual agent
to be in equilibrium in the sense that consumers maximize their utility subject to a
budget constraint and an equilibrium price system and firms maximize their profit
subject to a convex technology constraint and the same equilibrium price system.

A competitive market equilibrium implies that no exchange takes place before
equilibrium prices are discovered and “announced.” Because no out-of-equilibrium
exchange takes place individuals never move among different states and endogenous
statistical fluctuations are precluded from the theory altogether. The result is that
agents of the same type (same preferences and endowments) end up with the same
consumption bundle in the post-exchange allocation and the Walrasian competi-
tive equilibrium sustains a system of zero entropy. The welfare implications follow
directly from the construction of equilibrium prices that implement a Pareto-efficient
allocation.

Though modern general equilibrium theory is unable to account for such basic
phenomena like the division of labor and the social nature of production, its fail-
ures to account for real economic phenomena run far deeper. The constraints that
general equilibrium theory places on the state space configurations that maintain
zero entropy end up being too restrictive to ever predict the type of economic data
we actually see. In contrast to Classical Political Economy, neoclassical economic
theory does not identify any law-like regularities in prices, profits, or wages since
outcomes are predetermined by the model parameters. The statistical content of
general-equilibrium analysis is imposed ad hoc and ex post, by assuming stochas-
tic variation in the unobserved underlying preferences, technology, and endowments,
which have the (un)fortunate effect of making general equilibrium theory compatible
with virtually any empirical observation1.

The absence of a statistical methodology in general equilibrium theory is
partly behind the poor articulation between theory and measurement in economics.
Dynamic stochastic general equilibrium (DSGE) models attempted to make neo-
classical theory immune to such criticisms by reorienting macroeconomics towards
solving and calibrating models rather than evaluating them against data with formal
methods of statistical inference [14]. These models introduced statistical variation
through the back door as exogenous shocks to an otherwise stable system and unsur-
prisingly tended to perform poorly when confronting empirical data generated by a
complex system.

1 This point is discussed by dos Santos [13] in this special issue.
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Interestingly, even within the narrowly defined Walrasian pure exchange
economies we can find important qualitatively different conclusions by introducing a
statistical methodology. As Foley [15] demonstrates, by restructuring the Walrasian
system in terms of statistical mechanics and conceptualizing the market as a proba-
bility field over transactions, exchange at non-equilibrium prices become possible and
the maximum entropy exchange equilibrium results in identical agents with differ-
ent final consumption bundles. Markets endogenously generate horizontal inequality
among identical agents and the standard welfare implications no longer hold.

Walrasian equilibrium has had an unfortunately long-lasting impact on the way
modern economists conceptualize equilibrium. Any concept of non-Walrasian equi-
librium is typically understood as modeling disequilibrium dynamics. But, there is
good reason to believe as did Smith and Marx, that studying the statistical effects
of the collection of individual components in a system is fundamental to revealing
regularities in the data. The concept of statistical equilibrium requires thinking along
the lines of Classical Political Economy, that is, considering central tendencies as well
as endogenous variation as indivisible elements of equilibrium arising from specific
institutional constraints.

3 Statistical mechanics

Mechanics concerns systems that can be completely specified with respect to the
number and behavior of the (possibly interacting) components, including the state
of system at time t0 and its time evolution to t1 specified by Hamiltonian dynamics.
Statistical mechanics concerns systems with a large number of degrees of freedom for
which complete specification of the system is impractical due to incomplete informa-
tion. Predictions in incompletely specified systems are necessarily probabilistic. Such
systems may be a gas with a large number of particles, economic systems with many
competitive firms and households, or biological or ecological systems with many inter-
acting species. In any case, detailed dynamic predictions of individual trajectories are
infeasible due to the size and complexity of the system. The statistical mechanical
method addresses the indeterminacy of incompletely specified systems by substitut-
ing models based on probabilistic descriptions of a system constrained by whatever
information is known about the system for detailed dynamic predictions.

3.1 Entropy

As an example, consider a system with N individual components each with ν states
such that for the ith component a complete state space description would be Xi =
{x1

i , x
2
i , . . . , x

ν
i } for i = 1, . . . , N . In a social context we might think of N as the

population of an economy where each individual is characterized by their state of
income, education, age, sex, race, etc. or as a firm characterized by their capital stock,
operating income, number of employees, etc. We can characterize the distribution of
a particular state j across the system f(xj) by “coarse graining” or partitioning the
state space of xj . We can describe f(xj) as a histogram vector {nj1, n

j
2, . . . , n

j
K} where

K is the number of bins, nk is the number of individual components in bin k, and∑
k n

j
k = N is the total number of individual components distributed across state

j. The precise state j and identity of each individual component within each bin
is a description of the microstate of the system. The histogram f(xj) describes the
macrostate which is the distribution of state j over the N individual components.
The macrostate tells us nothing about the exact microscopic state of the system. It is
easy to see that many different configurations of individual components in state j will
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lead to the same distribution of individuals over K bins so that any macrostate will
correspond to many microstates. The number of ways a particular macrostate can
be realized is the multiplicity of the system which is measured by the multinomial
coefficient:

W =
(
N

njK

)
=

N !
nj1!nj2! · · ·njK !

·

Using Stirling’s approximation log(N !) ≈ N log(N) − N for N >> 1, the loga-
rithm of the multiplicity is expressed as the entropy of the system:

H = log(W ) = −N
K∑
k=1

pjk log(pjk),

where pjk = nj
k

N . If all N components had identical state j the macrostate of the
system can only be realized in one way since all components share the same bin. In
this case the multiplicity is W = 1 and the entropy is minimized at H = 0. When
nj1 = nj2 = . . . = njK individual components are partitioned equally across all lev-
els of state j and f(xj) = 1

K for all k and entropy is maximized at H = log(K).
As the system’s components become more spread out or evenly distributed across
the K bins the ways in which a particular histogram (macrostate) can be realized
or configured increases dramatically. In this sense entropy is a measure of the dis-
persion of components and is bounded by the degenerate distribution (minimum
entropy) and the uniform distribution (maximum entropy). Because entropy mea-
sures the dispersion of components across a state j, it has also been interpreted as
a measure of disorder. A highly organized system puts more individual components
in fewer bins. Disorder in this sense is equivalent to uncertainty about the system.
This combinatorial approach to entropy was first articulated by Boltzmann [16], but
endowed with the interpretation of uncertainty by Claude Shannon [17,18]. Concep-
tualizing and modeling incompletely specified systems has been done in at least three
ways: Gibbs’ macroscopic approach, Maxwell and Boltzman’s ergodic approach, and
Jaynes’ information theoretic approach.

The macroscopic approach to statistical mechanics [19] uses known microscopic
properties to study system level characteristics in systems with many (strictly speak-
ing infinite) degrees of freedom. In this approach well-specified mechanics at the
microscopic level are applied to many-body systems in order to derive the thermo-
dynamic and material properties of the system.

The ergodic view of statistical mechanics [16,20], studies systems by focusing on
infinite time averages of the system’s observable state variables. The evolution of a
system’s state space configuration through time is represented by a phase function
φ(xj). The time average is:

φ(xj) = lim
t→∞

1
t

∫ t

0

φ(xj(t))dt.

The ergodic theorems state that these infinite time averages will be equal (under
certain assumptions) to the ensemble averages:

φ(xj) =
〈
φ(xj)

〉
=

1
N

N∑
i=1

φ(xji (t)).

The implication of ergodic theory is that if the experiment on a (thermodynamic)
measurement coincides with ensemble averages derived from statistical equilibrium,
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this is because the individual system on which the experiment performs has been
drawn randomly from the infinite number of different systems in the ensembles.

One difficulty of the ergodic assumption, as Jaynes [21] pointed out, is that the
ergodic theorem is valid only when the time average is defined over infinite time.
Because the observed data from (natural) experiments are always measured over
finite times the ergodic approach substitutes the mathematical concept of the limit
for the non-existent infinite sample of mechanical observations. Thus, it is impossible
to determine whether or not the finite time averages in the experiment have actually
“sufficiently approximated their limits for infinite times.” The ergodic viewpoint thus
puts forward an unnecessary claim because what is at stake is not why ensemble
averages are equal to the time averages, but why ensemble averages are equal to
observed experimental values.

3.2 The information theoretic approach

Claude Shannon [17,18] working on problems of communication at Bell Labs in 1948
wanted certain intuitive conditions to be satisfied in constructing a consistent measure
of the amount of information (uncertainty) H associated with a random variable X
using only the probabilities pi(xi), x ∈ X. Shannon faced the practical problem of
efficiently engineering communication channels over which information (messages)
would travel. Because the communication system must be capable of operating for
any possible message, we must regard any specific message as a realization from a
set of all possible messages. Communication channels can be efficiently engineered if
messages are transmitted by encoding them in such a way that the more probable
a message is the fewer bits per second are required for transmission. In order to
reduce the average transmission time it is necessary to have a quantitative measure
of the uncertainty associated with the ensemble of messages. The conditions Shannon
specified for such a measure were (1) uncertainty should be a continuous function
of the probabilities pi in order to avoid large changes in the measure of uncertainty
from small changes in the probability distribution, (2) for a random variable with
uniform probabilities, uncertainty should be a monotonically increasing function of
the number of outcomes for the random variable X, which posits an association
between the measure of uncertainty and real numbers, and (3) If one splits an outcome
category into a hierarchy of functional equations then the uncertainty of the new
extended system should be the sum of the uncertainty of the old system plus the
uncertainty of the new sub-systems weighted by its probability. Shannon proved that
the only H satisfying these conditions was

H = −K
K∑
i=1

pi log(pi)

where K determines the unit of measurement, e.g. bits, nats, or digits. One dis-
cernible obstacle was how to derive the probabilities of messages based on frequency
measurements.

E.T. Jaynes [22] recognized the generality of Shannon’s result in information the-
ory and discovered Shannon’s situation for assigning probabilities to messages was not
that different from statistical mechanics, where the physicist must assign probabilities
to various quantum states due to the incomplete specification of the system under
analysis. He argued that the number of possible quantum states (messages) in either
case was so great that the frequency interpretation of probability would clearly be
absurd as a means for assigning probabilities due to the impossibility of ever realizing
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those states (messages) in a finite amount of time. Instead, he argued that the equa-
tion for entropy is a measure of information that is to be understood as a description
of a state of knowledge about the system2. Jaynes argued that imposing constraints
on systems that change the maximum entropy distribution are just instances of using
information for inference. Different probability assignments describe different states
of knowledge independent of the type of system (physical, biological, social, etc.).
From this perspective the connection between Shannon’s information theory and
statistical mechanics was that the former justifies the latter. As Jaynes argues, “We
can have our justification for the rules of statistical mechanics, in a way that is incom-
parably simpler than anyone had thought possible, if we are willing to pay the price.
The price is simply that we must loosen the connections between probability and
frequency.” [26]. The information theoretic approach to statistical mechanics empha-
sizes the inferential nature of studying any incompletely specified system with any
number of degrees of freedom. For this reason, the information theoretic viewpoint
is firmly in the tradition of Laplace.

Maximum entropy distributions use information in the form of constraints. A con-
straint is anything that restricts the set of possible probability distributions. In an
economic context, examples of information we use to impose constraints are really no
different than the typical model closures necessary to make a theory well-determined.
They include, for example, a budget constraint, market clearing conditions, the
non-negativity of prices, stock-flow consistency, savings equal to investment, behav-
ioral constraints such as utility maximization, conservation of value in exchange, full
employment, functional distribution of income, equalization of the rate of profit, etc.
Mathematically, the maximum entropy formalism with m constraints on the expec-
tations of functions fh(xi) can be expressed as a constrained optimization problem:

max −
K∑
i=1

pi log(pi),

s. t.
K∑
i=1

pi = 1,

K∑
i=1

pifh(xi) = Fh h = 1, . . . ,m.

The resulting maximum entropy probability is:

pi =
1

Z(λ1, . . . , λm)
exp [−λ1f1(xi)− · · · − λmfm(xi)] ,

where

Z(λ1, . . . , λm) =
K∑
i=1

exp [−λ1f1(xi)− · · · − λhfh(xi)]

and λm is the Lagrangian multiplier for mth constraint. In this light, the Maximum
Entropy Principle is a framework for drawing rational inferences when faced with
incomplete information [27]. In principle any constraint can be incorporated in the
maximum entropy program. Formulating the relevant constraints in economic and
social systems, however, can be far from trivial.

2 See [23–25] for an explicit information theoretic treatment of concepts in statistical
mechanics.
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4 Econophysics

The influence of the physical sciences on economics appears in the genesis of Classi-
cal economic theory [28]. Newton’s Principia and Opticks had a deep impact on
European philosophies at the time and Adam Smith’s moral philosophy was no
exception. The formal mathematical influence of Newton’s system in economics, how-
ever, remained shelved for a century until its awkward appearance in the marginalist
school of thought [10]. While stochastic models, and concepts of scalability and self-
organization appear scattered throughout the mid-twentieth century [29–34], modern
econophysics [35] really developed in the last decade of the century and is defined by
“the activities of physicists who are working on economics problems to test a variety
of new conceptual approaches deriving from the physical sciences.” [35]. Note, this
definition is based on who is doing the work and not what problems and methods
define econophysics irrespective of disciplinary background.

Because of the conflictual history of physics in economics, modern econophysics
has had a mixed reception by economists [36–38]. Criticisms of conventional neoclas-
sical economic doctrine by physicists may be well founded, but claims of scientific
superiority and such statements as “The only scientific alternative [to economics] is
to approach markets as a physicist, and ask the market data what are the underly-
ing unstable dynamics” [39] will inevitably fall on economists’ deaf ears. Economists
embedded in the neoclassical “Citadel” tend to find a deep methodological disconnect
with the statistical methods of modern physics and rationally prefer not to overhaul
the canonical microfoundations of modern economic theory. Heterodox economists
working in the tradition of Keynes, Veblen, or the Classical Political Economy of
Smith, Ricardo, and Marx, share many of the same criticisms of neoclassical the-
ory as econophysicists, but will often make the opposite claim of [39], preferring
more inter-disciplinarity with history and the humanities3. The analogy of social and
physical systems here is often seen as the original sin of modern economics and the
idea of fixing the physics and not the economics is sensibly met with opposition [38].
Though it is claimed that “Econophysics does not mean lifting tools and models from
statistical physics and then applying them directly to economics” it can be difficult
for many economists to understand what exactly is meant by “Econophysics, simply
stated, means following the example of physics in observing and modeling markets”
[39].

5 Economists react

Perhaps the best known skeptic of “physicism” in economics was Paul A. Samuelson
who often lamented the “perpetual attempts to fabricate for economics concepts of
‘entropy’ imported from the physical sciences or constructed by analogy to Classius-
Boltzmann magnitudes. . . [or] grandiose schemes to replace the dollar as a unit of
value by energy or entropy units.” [40]. Though Samuelson was rightfully skeptical
of the alliance of “superficial knowledge of thermodynamics” and “ignorance of eco-
nomics” he is careful to narrow his reproof to exclude the indisputable “physicism”
of the marginalist vision that bridles his own Foundations of Economic Analysis. For
Samuelson, the origins of neoclassical economics in rational mechanics and the energy
concept were irrelevant and obsolete. For economic historians like Philip Mirowski,

3 The interesting exception being Farjoun and Machover’s [1] plea for introducing the
methodology of statistical mechanics in classical political economy.
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adopting and abusing potential isomorphisms between social sciences and other sci-
entific disciplines is the calling card of economists [10,41].

But many contemporary economists, particularly those already critical of neo-
classical theory, seem genuinely open to and interested in mathematical models that
can account for the complex reality of economic systems. The tremendous success
of physics in dealing with problems of large hypothesis and state spaces and large
degrees of freedom certainly offers promise in this direction, but communicating the
ideas cogently to economists embedded in a considerably different tradition is no
trivial task. This difficulty is partly due to an unavoidable dissonance in theoretical
economics.

There may be notable disagreement in theoretical physics, but there is a gen-
erally agreed-upon core of methodological principles, experimental protocols, and
measurable fundamental physical quantities. While there is little disagreement on
the principles of conservation, the formulation of force as a field, or the wave-particle
duality of quantum entities, there is considerable disagreement in economics about
such elemental concepts as how to represent human behavior in an economic model,
the role of money in an exchange economy, or even how deal with economies of scale
in production.

Unlike physics, there is an inherently self-referential nature of economics that
makes the goal of an objective value-free explanation of social phenomena unobtain-
able. The same economic data are generally consistent with multiple models and
subject to multiple interpretations. Social scientists are always forced to combine the
objective information in the data with their own subjective judgment or communality
of beliefs in order to reach substantive conclusions [42]. Physicists may well recognize
this point, but without recognizing the alternative traditions in economic thought
they have overlooked critical features of economic systems. For example, by focus-
ing solely on exchange relations physicists are implicitly adopting the marginalist
tradition4. Because the economic questions econophysics raises tend to be narrowly
defined by mathematical analogies to those that arise in physics the interpretations of
the models are often unconvincing. For example, the idea that a dollar can be viewed
as energy and that observed Boltzmann-Gibbs exponential distributions for income
may reflect an underlying “conservation of money” [44] rather than the conservation
of value in exchange as was stressed by Marx [45,46].

Econophysics has the greatest potential to influence economists already outside
of the mainstream traditions who share the same fundamental criticisms of the neo-
classical paradigm [47]. Because physicists engaging with economics tend to have
little exposure to heterodox approaches the field has primarily engaged with the doc-
trines of neoclassical economic theory. The unfortunate effect is that econophysics has
struggled to make much of impact with mainstream economists due to their fidelity
to “The Citadel” or with the heterodoxy due to the limited engagement. As Gallegati
[48] has already emphasized in this journal “econophysics should avoid the deadly
kiss of mainstream economics and, at the same time, go beyond the boundaries of
physics to become a social discipline in which the non-ergodicity is the ‘norm’.” We
would add that econophysics can realize this potential by recognizing the inferential
nature of physical and social sciences and adopting the more general methods of
maximum entropy inference.

4 McCauley [43] argues “neo-classical models of production are no better than neo-classical
exchange models: there is inadequate or nonexisting empirical basis for any neo-classical
assumption.” This disregard to non-neoclassical theories of production reinforces the first
concern of [36] of “a lack of awareness of work which has been done within economics itself.”
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6 Maximum entropy economics

Entropy maximization enters naturally in the econophysics approach through the
study and application of stochastic processes as a means of modeling and understand-
ing economic phenomena. However, there is an alternative tradition in economics that
employs the principle of maximum entropy as a general principle for doing rational
inference when faced with any incomplete, underdetermined problem. A considerable
part of this work has been associated in some way with the Info-Metrics Institute
at American University, which offers a general interdisciplinary framework for doing
rational inference [27] of any kind. The wide range of applications of the MEP to eco-
nomic and econometric problems include information theoretic approaches to mod-
eling economies [49], econometrics [50–52], the foundations of asset pricing [53,54],
modeling income inequality [9,55,56] and industrial dynamics [5,57–61], and the deep
philosophical background of theory choice [62–64]. Maximum entropy methods have
also led to new insights in our understanding of human behavior and strategic inter-
actions [65–67] and have provided behavioral foundations for the type of aggregate
statistical fluctuations envisioned by Smith and Marx [6,68].

The criticisms of Samuelson [40] and Georgescu-Roegen [69] on the limits of the
entropy concept in economics appear relevant only to the extent that we understand
economic systems are conceptually different from physical systems in some impor-
tant ways. Unlike particles, humans are purposive, complex, and adaptive, in their
individual and collective behavior. The existence of social institutions and historical
contingencies shape economic systems in complicated ways with hard to find paral-
lels in physics. Yet, upon closer examination the popular distinctions between natural
and social sciences become less convincing. The reciprocal influence of research and
methods across the disciplines reveals more similarities than differences5. Though
questions may be distinct to the disciplines, the increasing complexity of the prob-
lems addressed in physical and social sciences unveils the common features of natural
and social systems. Both systems can be configured in an astronomical number of
ways leading to large hypothesis and state spaces, but certain constraints and regular-
ities, such as principles of conservation in physics, or social institutions in economics,
make some configurations far more likely than others. Jaynes’ fundamental insight
was that Shannon’s information theory reveals the inferential nature of such prob-
lems independent of the nature of the system. The physicist, like the economist, must
reason as best they can about highly complex systems with limited information.

The use of Shannon’s information theory and Jaynes’ Principle of Maximum
Entropy Inference in economics has led to considerable advances in economics concep-
tually distinct from those problems addressed by physicists. The current scope of eco-
nomic research applying the MEP is too broad to be reduced to econophysics. Thus,
we consider Maximum Entropy Economics as a more encompassing term defined not
by who is doing the research, but by what research is being done. Maximum Entropy
Economics includes the work of economists across the theoretical spectrum as well
as those in the physical and mathematical sciences. The MEP can serve as theoret-
ical foundation for econophysics, as suggested by Rosser Jr. [70], and any economic
problem that requires drawing inferences from incomplete information.

7 Conclusion

Statistical thinking is necessary in economics as it is in physics. Classical Political
Economy evaluated the complex process of production and exchange in terms of the

5 As Foley [42] argues, perhaps their differences largely lie in the specific roles they play
in social reproduction.
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statistical regularities that emerge and are sustained at the system level. Statisti-
cal and combinatorial reasoning was conceptually fundamental in the determination
of natural prices, profit rates, and wages. Neoclassical economics abandoned the
methodological approach of the Classicals instead advocating a mechanical idealiza-
tion of capitalism by studying the pricing implications and abstract properties of
individuals as utility maximizers solving a resource allocation problem. The culmina-
tion of late nineteenth and early twentieth century economics in general equilibrium
theory codified and obscured this mechanic ideology in Bourbakian mathematics. The
associated problems in the articulation of theory and measurement eventually led to
a late introduction of statistical reasoning in twentieth century economics and a reori-
entation of the discipline towards applied econometric research. This turn towards
econometrics and “applied theory” largely dispensed with general equilibrium the-
ory and its heroic ambitions of a unified economic theory in favor of understanding
particular social and economic phenomena in an essentially fragmented system [71].
While applied econometric work has put statistics at the center of a significant part of
contemporary economic research it tends to do so on classical frequentist grounds and
absent of a statistically based theory, or independent of theory altogether. Thus, the
predictive and explanatory success of econometrics has often been in substantiating
primitive intuitions in specific areas rather than identifying or explaining social and
economic phenomena in general. Rodrik [72] perfectly captures this view in arguing
that, “the strength of economics lay precisely in small-scale theorizing. . . A modest
science practiced with humility. . . is more likely to be useful than a search for uni-
versal theories about how capitalist systems function or what determines wealth and
poverty.”

Econophysics has illuminated the potential for statistical thinking in economics
as a basis of theory with clear implications for the articulation with empirical mea-
surement. But it has failed to inspire economists in general due to the narrow use of
the entropy principle and tendency to adopt a neoclassical tradition for understand-
ing economic phenomena. The maximum entropy principle is so powerful precisely
because it is not limited to a pure physical and thermodynamic interpretation. It is a
basis for doing rational inference of any kind. Maximum entropy economics considers
a statistical viewpoint to be fundamental to theory development and the conceptual
link to empirical measurement.
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