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Abstract. A major theoretical problem of the otherwise successful stan-
dard model (SM) is the presence of an arbitrary amount of CP violation
induced by the periodic vacuum structure of Quantum Chromodynam-
ics (known as the strong CP problem). While the most popular solution
to this problem is the Peccei-Quinn mechanism, it predicts a new super-
llight particle, the axion, which has not been found despite extensive
experimental searches. An alternative solution to this problem that
does not predict an axion is one based on a parity symmetric extension
of SM, which also provides a framework for understanding the neutrino
masses via the seesaw mechanism. In this mini-review, I describe how
minimal versions of the parity solution to strong CP require super-
symmetry and how a class of SO(10) theories provide a natural grand
unified (GUT) embedding of these models. These approaches have the
advantage that the observed CKM CP violation emerges in a simple
way in contrast to some other non-axion approaches. We discuss the
importance of a search for electric dipole moment of the neutron as a
way to probe these solutions.

1 Introduction

One of the major theoretical problems of the standard model is the arbitrary amount
of CP violation induced by the periodic vacuum structure of Quantum Chromody-
namics. This CP violation which conserves strangeness but violates parity and CP
(thereby leading to a large electric dipole moment of the neutron) is characterized by
a parameter θ which is bounded to be ≤10−10 from the electric dipole moment limits
on the neutron. The problem then is to understand why the θ parameter is so small.
A popular solution to this puzzle is the Peccei-Quinn theory [1] which assumes that
there be an extra global U(1) symmetry which is broken by the vacuum. Such theo-
ries predict the existence of a light pseudo-scalar particle, the axion [2,3], with model
dependent mass and couplings. The most widely discussed example is the so-called
invisible axion suggested in [4–10]. There have been numerous attempts to experi-
mentally discover the axion, and many new techniques have been proposed recently
to search for it. So far such attempts have been unsuccessful.
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Several alternative solutions to the θ problem that do not predict an axion were
discussed in the literature starting 1978, a year after the PQ solution was proposed.
The first set of models of this kind were based on parity symmetric extensions of
the standard model [11,12], which is the focus of this review. Another approach
suggested around 1984 is to assume that the desired theory is CP invariant [13,14]
leading to vanishing θ with CP invariance being spontaneously broken. However a
major challenge for the latter class of theories is to understand why θ so tiny whereas
the CKM phase responsible for CP violation in K-mesons and B-mesons is so large
[15,16]. As we discuss below, the former parity based no axion solutions do not suffer
from this difficulty. In the remainder of this review, we focus on parity based solutions
and the role of supersymmetry in them.

The parity based no axion solutions to strong CP [11,12] are based on the left-right
symmetric extensions of SM (called LRSM here) [17–20], which were suggested around
1974–75 to provide a framework for understanding the origin of parity violation in
weak interactions. The point was to explore whether nature is intrinsically mirror
asymmetric or the observed parity symmetry breaking of weak interactions is an
artifact of the energy at which all parity violating effects in weak processes have
been observed. Relevant to our discussion is the fact that the conservation of parity
(P ) prior to symmetry breaking, implies that the quark Yukawa coupling matrices
are hermitian when parity transformation P is defined in the obvious way i.e. as
QL → QR. This hermiticity implies that if after symmetry breaking, the vacuum
expectation values (vevs) of the Higgs fields that break the standard model gauge
symmetry are real, the resulting quark mass matrices will be hermitian, leading to
arg detMuMd ≡ θ = 0 at tree level. This is the first requirement of having a solution
to the strong CP problem while the CKM phase remains unconstrained. These models
however face the following challenges: (i) are the vacuum expectations of the Higgs
fields naturally real to enable the solution to work and (ii) secondly, since parity
symmetry must be broken at a scale higher than vwk to explain observed parity
violation in weak interactions, does a large θ reappear after parity breaking or to put
it another way, how large are the quantum loop corrections to θ? As we show below,
if the minimality of the matter fermion sector of SM is to be maintained, a natural
way to resolve both these challenges is to use supersymmetry [21–23]. Of course
Supersymmetry is not needed, if we allow the matter fermion sector to be extended
by the addition of vector like fermions [24]. (For further discussion of models with
vector-like fermions, see [25–28].) In this review, in view of length restriction, we
concentrate only on models with minimal matter content i.e. SM fermions plus a
right handed neutrino per generation for neutrino masses. The appearance of the
right handed neutrino is required by anomaly cancellation of the theory and hence
not an adhoc addition.

In this paper, we first discuss on parity-based models that solve the strong CP
problem and why supersymmetry is needed and we then discuss embedding of these
models into renormalizable SO(10) GUT models, which have been discussed in the
literature in connection with neutrino mass predictions [31–45] and point out their
implications and tests. The SUSY SO(10) uses a class of recently discussed renor-
malizable SUSY SO(10) models with Yukawa-generating Higgs superfields belonging
to 10, 126 ⊕ 126 and 120 representations. The fact that models of this type have
the potential to solve the strong CP problem was noted in [46] where it was pointed
out that if CP symmetry is imposed on the model, the quark mass matrices in this
model become hermitian like in the left-right models. This is because SO(10) contains
a C-gauge symmetry as its subgroup, so additionally imposing CP makes the model
P-symmetric. A complete analysis of the model was presented recently in [47]. We
show that in these models, θ parameter is zero at the tree level and is calculable in
the loops. Again, in this model, the value of CKM phase is unconstrained as in the
minimal left-right SUSY and non-susy models.
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2 Minimal TeV-scale Left-Right model without SUSY

To show how parity symmetry leads to vanishing tree level θ without an axion,
we first present the field content of the model. The LR model [17–20] extends the
SM gauge group GSM ≡ SU(3)c × SU(2)L × U(1)Y to GLR ≡ SU(3)c × SU(2)L ×
SU(2)R ×U(1)B−L. The quarks and leptons are assigned to the following irreducible
representations of GLR:

QL,i =

(
uL
dL

)
i

:

(
3,2,1,

1

3

)
, QR,i =

(
uR
dR

)
i

:

(
3,1,2,

1

3

)
, (1)

ψL,i =

(
νL
eL

)
i

: (1,2,1,−1) , ψR,i =

(
NR
eR

)
i

: (1,1,2,−1) , (2)

where i = 1, 2, 3 represents the family index, and the subscripts L,R denote the left-
and right-handed chiral projection operators PL,R = (1∓ γ5)/2, respectively.

In the minimal version of LR model, the Higgs sector consists of the following
multiplets:

Φ =

(
φ0

1 φ
+
2

φ−1 φ0
2

)
: (1,2,2, 0), ∆R =

(
∆+
R/
√

2 ∆++
R

∆0
R −∆+

R/
√

2

)
: (1,1,3, 2). (3)

Under parity, the fields transform as follows: QL ↔ QR, ψL ↔ ψR; As for the Higgs
fields, φ ↔ φ† and ∆L ↔ ∆R. The gauge symmetry SU(2)R × U(1)B−L is broken
by the VEV of the neutral component of the SU(2)R triplet, 〈∆0

R〉 ≡ vR, to the SM
group U(1)Y .

2.1 Fermion masses

To see how the fermions get their masses and how seesaw mechanism arises in this
model, we write down the Yukawa Lagrangian:

LY = haq,ijQ̄L,iΦaQR,j + h̃aq,ijQ̄L,iΦ̃aQR,j + ha`,ijψ̄L,iΦaψR,j + h̃a`,ijψ̄L,iΦ̃aψR,j

+fijψ
T
R,iCiτ2∆RψR,j + H.c. (4)

where a is for labeling the Higgs bi-doublets, Φ̃ = σ2Φ∗σ2 (σ2 being the second
Pauli matrix) and C = iγ2γ0 is the charge conjugation operator (γµ being the Dirac
matrices). After symmetry breaking, we have diag〈φa〉 = (κa, κ

′
a) and 〈∆0

R〉 = vR,
〈∆0

L〉 = vL, with κ, κ′ complex in general. By a gauge rotation, one can make κ real
leaving κ′ = |κ′|eiα as the only complex vev.The quark and charged lepton masses

are given by the generic formulae Mu = haqκa + h̃aqκ
′∗
a for up-type quarks, Md =

haqκ
′
a + h̃aqκ

∗ for down-type quarks, (dropping the family index) and similarly for the
charged leptons. The above Yukawa Lagrangian leads to the Dirac mass matrix for
neutrinos mD = h`κ+ h̃`κ

′∗
a and the Majorana mass matrix MN = fvR for the RH

neutrinos, which via the seesaw mechanism lead to neutrino masses and mixings. Note
that if κ, κ′ are real, the quark mass matrices are hermitian and lead to θtree = 0,
providing the first requirement for solving the strong CP problem without the axion.
A full solution requires that the quantum corrections to θ are small enough to satisfy
the neutron edm bound, a challenge which can be met, as shown below. This model
therefore provide an unified approach to the neutrino masses as well as strong CP
problem.



3232 The European Physical Journal Special Topics

3 Higgs potential and Higgs vev in the minimal LR model

In order to discuss whether the Higgs vevs are real, we need to write down the Higgs
potential of the parity-symmetric theory involving the bi-doublet and triplet Higgs
fields. The most general gauge invariant renormalizable scalar potential for the Φ and
∆R fields, is given by

V = −µ2
1 Tr(Φ†Φ)− µ2

2

[
Tr(Φ̃Φ†) + Tr(Φ̃†Φ)

]
− µ2

3 Tr(∆R∆†R)

+λ1

[
Tr(Φ†Φ)

]2
+ λ2

{[
Tr(Φ̃Φ†)

]2
+
[
Tr(Φ̃†Φ)

]2}
+λ3 Tr(Φ̃Φ†)Tr(Φ̃†Φ) + λ4 Tr(Φ†Φ)

[
Tr(Φ̃Φ†) + Tr(Φ̃†Φ)

]
(5)

+ρ1

[
Tr(∆R∆†R)

]2
+ ρ2 Tr(∆R∆R)Tr(∆†R∆†R)

+α1 Tr(Φ†Φ)Tr(∆R∆†R) +
[
α2e

iδ2Tr(Φ̃†Φ)Tr(∆R∆†R) + H.c.
]

+α3 Tr(Φ†Φ∆R∆†R) .

Note that due to parity symmetry, all 12 parameters µ2
1,2,3, λ1,2,3,4, ρ1,2, α1,2,3 are

real. However, note the CP-violating phase δ2 associated with the coupling α2, Due to
the presence of this phase, minimizing the potential with respect to the three VEVs κ,
κ′, vR and the phase α associated with the VEV κ′, we see that the phase parameter
α 6= 0 at the potential minimum. Substituting this in the Yukawa Lagrangian shows
that even though the Yukawa couplings matrices are hermitian, the resulting quark
mass matrices are not and therefore they lead to an arbitrary non-vanishing θ and
do not solve the strong CP problem. It is then clear that we must go beyond this
minimal non-supersymmetric LR model.

At this stage, one can either add extra global or gauge symmetries on the model.
We however found in 1994 [21–23] that supersymmetry can also make the vevs at the
potential minimum real, as required to solve strong CP. We follow this path in this
review.

4 Strong CP with SUSY LRSM

In this section we show how embedding the minimal LRSM into a supersymmetric
framework solves the vev phase problem. To see this, we first introduce the particle
content of the model using the chiral field notation used in supersymmetry i.e. left-
handed fields will denoted without any subscript L and right handed ones will have a
superscript c instead of subscript R. The field content is: Q,Qc; L,Lc, Φ1,2, ∆, ∆̄ and

∆c,∆c. Under parity, we assume that Q↔ Qc∗, L↔ Lc∗, Φa ↔ Φ†a, ∆↔ ∆c∗, ∆↔
∆c∗. We assume also that the supersymmetric coordinate θsusy goes to its complex
conjugate under parity helping to keep the superpotential part of the action parity
invariant. The Yukawa superpotential of the model is given by (written symbolically
without showing the needed Pauli matrices)

W = Y (a)
q QTΦaQ

c + Y
(a)
L LTΦaL

c + (fLTL∆ + fcL
cTLc∆c) (6)

+µabTr(Φ
T
aΦb) + µcTr(∆∆̄) + µc

′
Tr(∆c∆̄c).
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Fig. 1. Typical one loop diagram that contributes to θ at the one loop level.

Two relevant points for strong CP is that (i) the parameters Y (a) are hermitian due to
parity invariance and (ii) The Higgs potential has all parameters real e.g. µab which
are real i.e. CP is an exact symmetry of the potential terms (including D-terms).
In such cases there are results in the literature [29,30] showing that for MSSM with
multiple Higgs doublets where CP is a good symmetry of the potential, there is no
CP violating phases in the vevs. This then leads to the important result that all vevs
(κa, κ

′
a) are real without any adjustment of parameters. The quark mass matrices

are then hermitian making tree level θtree = 0. One then has to look at the one loop
graphs which have to be computed with supersymmetry breaking terms included.
That will involve new parameters such as the gaugino masses and SUSY breaking A
terms. As has been shown in [21–23], the A terms are hermitian under the above
definition of parity and the gluino and B −L gaugino mass terms are real at the tree
level. The first i.e. reality of gaugino mass is relevant to the strong CP parameter
being zero at the tree level since in supersymmetric theories, θ is given by:

θ = Arg DetMuMd − 3ArgDetMg̃. (7)

However the gluino phase is induced at the one loop level and has been estimated
in [21–23] to be ∼10−8, which is close to the upper limit on θ from neutron edm.
In this model, the SU(2)L,R gaugino masses are also not real and contribute to θ at
the one-loop level (see Fig. 1). The magnitude of the dominant contribution depends
on the Yukawa couplings of quarks, the A parameter of supersymmetry breaking as
well as the SUSY breaking scale as A3/M3

SUSY . Adjusting all these parameters, it is
possible to make this contribution to θ small enough.

There is however another way to make these contributions small: these weak
gaugino mass terms to become naturally real, when the SUSY LR model is embedded
into the SO(10) GUT since both of them become part of one multiplet under SO(10)
symmetry. This provides a motivation to explore the SUSY SO(10) solutions to strong
CP using parity, which we do next.

4.1 Effects of higher dimensional terms and limit on SU(2)R scale

So far we have considered only renormalizable terms in the superpotential. One could
however include higher dimensional terms coming from e.g. Planck scale effects:

WNR =
αL
MP

Tr(ΦT1 τ2Φ2τ2)Tr(∆∆) +
αR
MP

Tr(ΦT1 τ2Φ2τ2)Tr(∆c∆c). (8)

The couplings associated with these terms are not real due to parity. As a result they

will induce phases in the 〈Φ1,2〉 of magnitude
v2R
MP

. Keeping these phases to less than

10−10 implies vR ≤ 109 GeV.
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5 SO(10) embedding

In this section, we discuss the SUSY SO(10) embedding of the left-right models
where one can resolve the θ problem with the help an extra discrete symmetry CP
and several extra discrete symmetries to prevent complex couplings appearing in the
superpotential including higher dimensional terms. One would like to avoid these
extra symmetries and this is currently under investigation. We believe the model
with the extra discrete symmetries is still interesting enough that we present this
here.

So(10) models come in many versions. We consider a class of SO(10) models,
where Yukawa couplings of SM fermions are generated by renormalizable Yukawa
couplings. These models are interesting due to their predictivity in the fermion sector.
Two classes of such models have been explored in the literature: (i) one which uses
only 10 and 126 Higgs multiplets [31–45] to generate fermion masses and (ii) a second
one where, one uses Higgs multiplets belonging to 10, 126 and 120 representations
(denoted in this case by H, ∆̄,Σ respectively) [46]. The fermions of the model belong
to the 16 dimensional spinor representation (denoted by ψ) in both cases. The first
class of models do not allow for parity solution to strong CP problem and therefore
we focus on the second class of models from now on.

The most general Yukawa superpotential in the second case can be written as

WY = hijψiψjH + fijψiψj∆̄ + g′ij
Zψ
Λ
ψiψjΣ, (9)

where h, f are symmetric matrices, g′ is an antisymmetric matrix, and Zψ is a spurion
singlet field.

The two key requirements are to have hermitian Yukawa couplings and real vevs
of Higgs fields. For this purpose, we require this theory to have an additional CP
symmetry under which ψ → ψ∗, H, ∆̄→ H∗, ∆̄∗, Zψ → Z∗ψ and Σ→ −Σ∗. Require-
ment of CP invariance then implies that h, f are symmetric and real matrices and
g′ is an imaginary antisymmetric matrix, i.e. g′ = ig′′ with g′′ real. We then define
g ≡ g′′〈Zψ〉/Λ. This leads to the effective quark Yukawa couplings at GUT scale to
be hermitian.

The symmetry breaking pattern is as follows: at GUT scale, both SO(10) and
parity symmetry break but SUSY is unbroken. SUSY breaking appears as soft scalar
and guino masses at the TeV scale. As we show below the vevs of fields that break
this symmetry are real. The MSSM doublets appear below the GUT scale as linear
combination of the ones contained in H, ∆̄,∆,Σ and the two up and down type MSSM
doublets will be kept at the weak scale by the fine tuning of the Higgs superpotential
parameters as is done in usual SUSY GUT theories. After substituting the vevs of
the resulting MSSM doublets, we have (see Ref. [46] for convention)

Mu = h̃+ r2f̃ + ir3g̃,

Md =
r1

tanβ
(h̃+ f̃ + ig̃),

Me =
r1

tanβ
(h̃− 3f̃ + iceg̃),

MνD = h̃− 3r2f̃ + icν g̃,

Mν = fvL −MνD (fvR)−1MT
νD , (10)
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where tanβ = vu/vd for vevs vu,d of the MSSM fields Hu,d. For λ = h, f, g, the

couplings λ̃ij are related to λij by [46]

h̃ ≡ V11h vu; f̃ ≡ U14fvu

r1

√
3

; g̃ ≡ U12 + U13/
√

3

r1
g vu (11)

where V,U are the MSSM Higgs doublet mixing matrices at the GUT scale [46].
If we can guarantee that the mixings U ,Vij and vevs vu,d and 〈Zψ〉 are real, the

quark and lepton mass matrices will be hermitian, i.e. Mq = M†q , which implies that
at tree level, θ = arg det(MuMd) = 0. At the same time, because of ig̃ term in the
quark mass matrices, the CKM phase is arbitrary.

If this model is to be a solution to the strong CP problem, we have to show the
following:

– the mixing parameters U ,Vij in MSSM doublets which result from various GUT
scales are real;

– the masses of all the GUT-scale colored fermions are real (e.g. arg detMC = 0
for colored-Higgs mass matrices MC);

– there are no higher order loop corrections to θ that are large; and

– the full superpotential is such that there are no dangerous sub-GUT-scale
multiplets that affect coupling unification.

We show all these below. Clearly the first two require that all the couplings in the
Higgs superpotential W are real. We show by an appropriate choice of the discrete
symmetry G and choice of CP properties of the superfields that this condition is
indeed satisfied in our model.

5.1 Superpotential

In addition to the above multiplets which play a role in generating fermion masses, we
add the following multiplets: 45, 54 and 210 (denoted by A, S and Φ respectively).
The CP transformations of the various field in the model are given in Table 1. In
column 3 of the Table, we give the transformation of the fields under a discrete group
G ≡ ZN1

× ZN2
× ZN3

. The purpose of the discrete group is to ensure that there are
no complex parameters in the superpotential so that there will be at least one vacuum
state which will have real vevs for the spurion fields forbidding any new contributions
to the θ parameter. We have also used some of the Yukawa couplings and masses as
spurion fields so that they have appropriate charges under G to make that desired
field term G-invariant. We will show that the spurions will acquire GUT scale vevs to
generate the Yukawa couplings and masses of the right order and discuss how those
vevs for the gauge singlet spurion fields arise.

In Table 1, we have assigned the charges to the couplings and masses so that

– The Higgs doublets mixed by HΣA, ∆̄ΣA terms with a vev of A, as well as
SAA, are allowed by the renormalizable coupling.

– The Yukawa coupling to Σ can be suppressed so the charge of Σ can be different
from H (we certainly want to write ψψH Yukawa coupling, which generates the
top mass, as a renormalizable term).

– The masses of ∆, A, and S, as well as some couplings such as SHH, are treated
as spurion singlet fields.
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Table 1. Charge assignment of the different superfields of the theory. It is understood that
complex conjugate superfields have opposite discrete quantum numbers.

Field CP transformation (ZN1 × ZN2 × ZN3) charges

Ψ(16) Ψ∗(16) (−1/2, 0, 0)
H(10) H∗(10) (1, 0, 0)
∆̄(126) ∆̄(126)

∗
(1, 0, 0)

∆(126) ∆(126)∗ (1, 1, 0)
Σ(120) −Σ(120)∗ (1, 0, 1)
A(45) −A(45)∗ (−2, 0,−1)
S(54) S(54)∗ (4, 0, 2)

X∆,Φ(210) X∗
∆,Φ(210)∗ (−2,−1, 0)

XΣ X∗
Σ (−2, 0,−2)

XS X∗
S (−8, 0,−4)

XA X∗
A (4, 0, 2)

XΦ X∗
Φ (4, 2, 0)

Zψ Z∗
ψ (0, 0,−1)

ZH Z∗
H (−6, 0,−2)

ZΦ Z∗
Φ (6, 3, 0)

λ(Gaugino) λ∗(Gaugino) (0, 0, 0)

The superpotential invariant under SO(10)×CP ×G (in addition to the Yukawa-
like terms in Eq. (1)) is given by:

W =
∑
ϕ

Xϕ ϕ
2 +X∆∆∆̄ + λ2 ΣAH

+λ4 ∆̄AΣ + λ5 S AA+ λ6H∆Φ + ZH S H H/Λ

+λ7 Φ∆∆̄ + α0ZΦΦ3/Λ, (12)

with ϕ = Σ, S,A,Φ. Note that in this superpotential, all the coupling parameters are
real due to CP invariance and the scale Λ, which is assumed to be the string scale, is
much larger than the unification scale MU . The reality of the couplings implies that all
the GUT scale vevs of Higgs fields and the spurions will be real, as will be the mixing
parameters U ,Vij . Moreover, all the colored Higgs fields will have real mass matrices
so that they will not contribute any new phase to the tree level θ parameter. This
establishes our condition (i) and (ii) above at the leading order in the superpotential.
Higher order non-renormalizable terms can still disturb the conditions (i) and (ii);
we will show that their contributions to theta are at or below the current bound.

Additionally, we choose the specific symmetry G = Z24 ×Z6 ×Z4 so that we can
add the following superpotential terms:

W ′ = α1
(X∆∆∆̄)2

Λ3
+ α2

S6

Λ3
+ α3X

3
S + α4

Z4
Φ

Λ

+α5
ZΦX

3
∆

Λ
+ α6

X6
A

Λ3
+ α7

Z4
ψ

Λ
+ α8

Z2
ψXAX

2
Σ

Λ2

+α9
Z3
HX

3
Σ

Λ3
+ α10

Z4
H

Λ
+ α11

X6
ΣZ

2
H

Λ5

+α12
X2
SZHXΣ

Λ
+ α13X

2
AXS + α14

X3
ΦZ

2
Φ

Λ2

+α15XΦX
2
∆ + α16

X6
Φ

Λ3

+(higher order terms in 1/Λ). (13)
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With very mild fine tuning of the αi couplings, the F-term minimization can give real
GUT scale vevs to all spurion fields as desired.

5.2 GUT symmetry breaking and particle spectra

In this section, we show by analyzing the superpotential that there are no undesirable
light particles below the GUT scale that could destroy coupling unification. First note
that the higher dimensional terms in equation (13), as well other terms, help to give
vevs to all the spurion fields. If we choose the cutoff scale Λ to be the reduced
Planck scale (2 × 1018 GeV), by appropriate choice of the coefficients of the higher
dimensional terms, we can keep the spurion vevs near the GUT scale (MU ∼ 2 ×
1016 GeV). This will lead to spurion masses below the GUT scale, but being gauge
neutral, they do not affect the running of gauge couplings. We have checked that with
a mild smallness of the coefficients of the higher dimensional operators, we can keep
all the singlet vevs near the GUT scale.

Next, due to the absence of A∆∆̄ term, the F-flatness conditions of ∆, ∆̄,Φ and
S,A are separated. The ∆ vev, which is at GUT scale along the SU(5)-singlet direction
i.e. 〈∆13579〉 = 〈∆̄13579〉 = vR 6= 0 (to get the D-terms to be zero), can be generated
by (Φ + X∆)∆∆̄ + Φ3 + XΦΦ2 term. The vevs of A can be generated by XAA

2 +
XSS

2 + SAA. For group theory of such models see [51–53].
Note that in the absence of the Φ∆∆̄ term, the superpotential is only a function of

the singlet contraction of ∆∆̄, which implies that the superpotential has a large global
symmetry, and thus the decomposed multiplets under SU(5) are massless. However,
the presence of Φ∆∆̄ term cures this problem and makes all submultiplets of ∆⊕ ∆̄
massive.

5.3 Proton decay from higher dimensional operators

As is well known grand unified theories predict proton decay with life times at the
level of 1032−34 years. Current limits for the SUSY mode i.e. p → K+ν̄ is: τp ≥
8 × 1033 yrs [54]. In discussing proton decay, there are two classes of contributions
that need to be considered: (i) contribution from the Yukawa sector and (ii) and
that from Planck suppressed higher dimensional operators. As far as the first class
of operators go, they have been analyzed for both classes of renormalizable SO(10)
models i.e. 10+126 Higgs [49] as well as 10+126+120 Higgs cases [50]. In the first
class of models, current proton decat lifetime limits imply that the SUSY breaking
scale must be larger than 100 TeV [49]. In the second class of models, the current
limits can be satisfied with SUSY scale of a few TeV [50].

Turning to the second class of operators, in view of the fact that we have chosen
Λ ∼ 2×1018 GeV in our discussion above, one might wonder whether the model leads
to rapid proton decay via higher dimensional operators scaled by Λ as in usual SUSY
GUT models. However, our model has a discrete symmetry Z24 × Z6 × Z4, which all
higher dimensional terms must also respect. As a result, the leading dangerous terms
(for proton decay) such as [ψ]4 are forbidden. The leading order term that contributes
to proton decay after symmetry breaking is λ[ψψ∆̄]2 and this is suppressed by Λ3

and as a result it quite is compatible with current limits on proton lifetime for λ ≤ 1.

6 Strong CP phase in SUSY SO(10) with parity

We just showed that θtree = 0 in these models. We now study possible generation of
the strong CP phase from (i) higher dimensional terms, (ii) loop correction to the
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gluino mass, (iii) renormalization contribution to the quark Yukawa coupling as we
extrapolate from GUT scale to the weak scale.

6.1 Higher dimensional terms

In general one could envision two types of non-renormalizable contribution to θ: (i)
one set which are invariant under the discrete symmetry CP ⊗ G and (ii) terms
induced by global symmetry-breaking, non-perturbative gravitational effects. We
ignore the latter since there seem to be different opinions on whether black holes
really break global symmetries.

Given the charge assignments in Table 1, we find that the leading operators which
can generate phases in the doublet Higgs mixings and the masses of colored Higgsinos
are of dimension-9:

A∆∆̄X∆ZHZψS
2/Λ5,

HΣΦ∆∆̄ZHZψXA/Λ
5,

AΦΦXΦZHZψX
2
A/Λ

5, (14)

and the suppression factor will be (MU/Λ)5, where MU is a GUT unification scale
∼2 × 1016 GeV. For Λ to be the reduced Planck mass, 2.4 × 1018 GeV, the bound
for |θ| <10−10 can be satisfied by these contributions to θ.

It is also the case that a ψψAH term can break the hermitian nature of the
Yukawa coupling matrices, but such a term is generated only by a dimension-10
operator under the above charge assignment, which leads to a θ below the current
bound.

Note that the hierarchy between the cutoff (string scale) and the GUT unification
is essential to suppress the θ parameter in the current model.

6.2 Loop corrections and gluino phase

Since phases in all colored fermion fields contribute to the θ parameter, we have to
track the phases in the gluino mass term in addition to the quark and GUT-scale
colored Higgsino mass matrices. At the tree level, gluino mass term is real due to
CP symmetry. However, since CP symmetry is broken, quantum loops induce non-
zero gluino phases. To estimate this, we assume a framework where supersymmetry
is broken by gravity mediation so that (i) Aq ∝ Mq and (ii) the squark masses are
flavor diagonal at the susy breaking scale. This assumption is crucial in what follows.
We have not examined what happens for other ways of supersymmetry breaking.

Under these assumptions, the loop contribution to gluino phase can be estimated.
At the one-loop level, the gluino mass is real due to hermiticity of the quark mass
matrices, since the contribution from quarks is of the form trM†qAq where Aq ∝Mq

if as just noted, we assume gravity mediated supersymmetry breaking, and all other
colored fermion fields have no phases.

The loop correction from the pure-imaginary Yukawa coupling g can induce a
phase for the gluino mass. At the two-loop level, however the contribution is always
proportional to TrY Y †, where Y is a Yukawa coupling to colored Higgs, and the
contribution is real. From the three-loop level diagram in which the doublet Higgs
also propagates (Fig. 2), the imaginary part of the gluino mass is given by

∑
a,b

g2
s

(16π2)3
Tr (YTa

Y ∗Db
YT̄a

Y ∗D̄b
)F

(
MHDb

MHTb

)
Atri, (15)
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Fig. 2. The 3-loop diagram which induces the phase of the gluino mass. There are also
diagrams in which ucec-q` and νcdc-`q propagate. In 126 and 120, there are other colored
components, e.g. (8,2, 1/2), which have bi-fermion couplings, and there are similar loop-
diagrams in which the other colored components propagate for the gluino mass correction.

where YT and YT̄ are Yukawa couplings to (diagonalized) colored Higgs fields (HT,T̄ ),
and YD and YD̄ are the Yukawa couplings to doublet Higgs fields (HD,D̄), and Atri is
the SUSY breaking scalar trilinear coupling, and F is a loop function. (We note that
the heavy Higgs doublets and the Higgs triplets with GUT scale mass propagate in
the loop diagram.) The Yukawa couplings are given by the linear combination of h,
f and g. Noting that Tr (gX) = 0 for symmetric matrix X, one finds that Tr (gh3),
Tr (ghfh), etc vanish, and Tr (ghhf) and Tr (gffh) etc can contribute.As a result,
the leading contribution can be estimated to be

Immg̃ ∼
g2
sg23f23h

2
33

(16π2)3
Atri. (16)

For Atri ∼ mg̃, we roughly estimate the contribution to θ as

∆θ ∼ 10−9

∣∣∣∣f23g23

10−3

∣∣∣∣ . (17)

This is on the borderline of satisfying the neutron EDM bounds, taking into account
that f and g are the original couplings and not multiplied by the Higgs mixing. Note
that f̃23 and g̃23 (which are f and g multiplied by Higgs mixings) can be estimated
to be as large as Vcb. If Atri � mg̃, the neutron EDM bounds can be safely satisfied;
in this sense, gauge-mediated SUSY breaking, rather than the gravity mediation, is
preferable to suppress the θ parameter. In any case, loop correction to the gluino mass
can generate a borderline value for the θ parameter, and therefore, the model would
predict an observable neutron EDM in current experiments. As for the squarks, their
mass matrices are chosen diagonal at the GUT scale and while RGEs will induce some
off-diagonal phases, they will not contribute to θ and any contribution to neutron
EDM will be suppressed.

6.3 Extrapolation of θ from GUT to weak scale

The hermiticity of the quark mass matrices holds at the GUT scale. This means that
the value of tree level θ is zero at that scale and a finite, non-zero θ will be induced
at the weak scale due to renormalization extrapolation of the various Yukawa. This
issue for a parity solution to strong CP has been considered in reference [48], and it
is shown that if the weak scale theory is MSSM with a soft breaking scalar masses
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MSUSY above 5 TeV, the corrections to θ are given by

δθ '
(

1

16π2
ln

MU

MSUSY

)4 [
c1ImTr[Y 2

u Y
4
d Y

4
u Y

2
d ]

+c2(u↔ d)]. (18)

This can be estimated to be δθ ∼ 10−26 (tanβ)6(c1 − c2), which is below the exper-
imental upper limit even for tanβ = 50. We note that one obtains c1 = c2 and δθ
vanishes without an electroweak gauge loop at the MSSM scale and any extrapolation
from there to the weak scale produces negligible change.

Finally, we note that since the discrete symmetries of our model break at the
GUT scale, domain walls associated with them will get “inflated away” as long as
the reheat temperature is below the GUT scale and will not lead to any anisotropy
in cosmic microwave background.

7 Conclusion

In conclusion, we have shown that it is possible to have a solution to the strong
CP problem without the need for the axion. The alternative solution uses the par-
ity symmetry which bypasses the need for the axion. We show that in the minimal
matter content version of the model, supersymmetry plays an essential role to keep θ
suppressed. We demonstrate this using the minimal supersymmetric left-right model
and its embedding in SUSY SO(10) grand unified theory for fermion masses. Unlike
some other no axion solutions to the strong CP problem, in parity symmetric models,
large CKM CP phase is easy to understand. These models have the additional virtue
that they provide a realization of the seesaw mechanism for neutrino masses while
giving a fit to the fermion masses and are therefore realistic models of particle inter-
actions. In particular, the SO(10) GUT model is predictive in the neutrino sector.
These models predict neutron electric dipole moment not far from the current upper
limits and neutron edm can therefore be used as a test of these models.
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