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Abstract. In this minireview, we outline the recent experimental and
theoretical progress in the creation, characterization and manipulation
of Majorana bound states (MBSs) in semiconductor-superconductor
(SC) hybrid structures. After an introductory overview of the broader
field we specifically focus on four of our recent projects in this direction.
We show that the emergence of Fano resonances in the differential con-
ductance in a normal lead-Majorana nanowire-quantum dot setup can
be exploited to determine if a single MBS is contacted by the normal
lead and the quantum dot providing an experimental test of the non-
locality of MBSs. In the second project, the tunnel-coupling to two
MBSs in an s-wave SC-Majorana nanowire Josephson junction (JJ)
leads to a finite contribution of the MBSs to the equilibrium Joseph-
son current probing directly the local spin-singlet contribution of the
Majorana pair. We then shift our focus from MBSs forming in nanowire
systems to MBSs forming in topological JJs. In a single sheet of buck-
led silicene with proximity induced superconductivity two local electric
fields can be used to tune the junction between a topologically trivial
and topologically non-trivial regime. In a Corbino geometry topologi-
cal Josephson junction two MBSs harbored in Josephson vortices can
rotate along the JJ and, in the course of this, will be exchanged peri-
odically in the phase difference of the JJ. The tunneling current in a
metal tip coupled to the JJ is shown to exhibit signs of the anyonic
braiding phase of two MBSs.

1 Introduction

In this minireview, we give an overview of the current investigations towards the
creation, detection and manipulation of Majorana bound states (MBSs) appearing in
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superconducting hybrid junctions. We then discuss four projects where we propose
specific ways to characterize and manipulate MBSs in transport setups contributing
towards the goal of using such non-Abelian zero modes for qubits in topological
quantum computation (TQC). The potential interest of such MBSs lies in the ability
to store a single Dirac fermionic degree of freedom (DFDF) with annihilation operator
¢ in two MBSs v; and 75 via the relation ¢ = (71 + i72)/2 where 712 = 71,2 are
hermitian [1]. They can be spatially distant such that no local measurement can
access the quantum numbers associated with a single DFDF which is its occupation
cfc having eigenvalues 0 or 1 and that can be associated with a unit of information
(like in a qubit). The formal process to decompose the DFDF into two MBSs is
called fusion and they can be considered (loosely speaking) as the real and imaginary
part of that DFDF. To make topologically protected operations, the MBSs can be
pairwise braided [2-5]. The braiding statistics is that of Ising anyons which is neither
bosonic (relative phase 0) nor fermionic (relative phase 7) but has a relative braiding
phase of 7/2 [3,6,7].! Such particles which are neither fermions nor bosons are called
anyons [8]. It is the non-Abelian nature of the Ising anyons that allows for quantum
state changes by braiding of MBSs in a degenerate ground state manifold [6,9,10],
which we will explain in more details in Section 5.1.

MBSs have been predicted to exist in vortices of p-wave superconductors
(SCs) [11] which can be traced back to the winding in momentum space of the p-
wave pairing amplitude. Since time-reversal symmetry is broken in such materials,
the pairing potential is supposed to be vulnerable to disorder [12]. More recently, the
seminal paper by Fu and Kane suggested a more practical way to produce an effective
p-wave superconductor utilizing the proximity effect with an ordinary s-wave super-
conductor in contact with the surface of a 3D topological insulator [13] where the
necessary winding is now provided by the Dirac surface electrons (acquiring a Berry
phase of 7 in a closed loop in real space). MBSs would then appear in vortices or at
the boundaries with magnetic elements in such topological superconductors (TSCs).

Signatures of MBSs in such proximity structures were searched for early on the-
oretically and experimentally. Here, we only give a brief overview which also should
set the stage for the projects that we will discuss in the later section of this minire-
view. Excellent and more extensive reviews exist in the literature where one can find
further information and references [10,12,14-20].

The first systems that have been examined experimentally were the spin-orbit
coupled quantum wires in proximity with an s-wave SC and subject to a magnetic
Zeeman field [21-37]. In these wires, MBSs are predicted to appear at the wire’s
ends in the topological regime [38,39]. Other one-dimensional realizations contain the
magnetic adatoms arranged in a chain on top of an s-wave superconductor [40-50].

There are several ways to test the existence of such MBSs. The probably most
straightforward way is to couple normal leads as a local probe. The predicted trans-
port signature of a MBS at zero temperature is a zero-bias conductance resonance
with value 2¢?/h, independent on the tunneling strength [51-56]. When the SC is
floating, the charging energy starts to play a role at low temperatures and the signa-
ture of MBSs would be explicit in the Coulomb blockade peaks showing a period of
e and not 2e (e the elementary charge) as a function of gate voltage [58-60], which
has been observed experimentally [28]. Coupling the MBSs to normal metal leads is
certainly not the desired situation when the system should be topologically protected
since electron tunneling changes the parity of the system and thereby can lead to
dephasing [61]. However, the coupling to measuring leads can be used to inspect the
Majorana system. In the nanowires, the MBSs appear at the ends of the wire, however,
theoretical calculations show that the wave functions of the MBSs substantially leak

IThe exchange of two MBSs twice introduces a minus sign in both MBSs (71 — —v1, 72 — —72).
In that sense, the single exchange can be associated with a phase of /2.
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into the bulk of the wire [62,63]. When can we therefore consider two MBSs v, and 7,
as spatially separated such that the environment cannot couple to both MBSs simul-
taneously? In the desired case where parity is conserved, any perturbation coupling
to the MBSs has to be a product of two MBSs (which is proportional to the parity
operator P = iy, for the occupation of the DFDF defined by the two MBSs). Any
(parity-conserving) perturbation therefore would have to couple to both MBSs and
should be exponentially suppressed with the distance of the two MBSs for perturba-
tions acting locally [1,10]. If local perturbations can couple to both MBSs is therefore
an indispensable insight for practical purposes. A way to test this feature is to look
at (Fano)-resonances in a setup where a Majorana nanowire is in addition coupled to
a quantum dot [64] as we will explain in more details in Section 2. Although MBSs
are spinless particles, their electron-like (or hole-like) spinor components have finite
spin expectation values that depend on various system parameters [65,66]. Especially,
the spinors for MBSs in the nanowires have been analyzed in detail and proposals
for the detection of their form include scanning probe signals [67] and magnetic field
dependent spectroscopy using a quantum dot [68,69]. In Section 3, we will discuss
additional spin-properties in an s-wave SC-Majorana nanowire Josephson junction
(JJ) where the Josephson effect tests the spatial overlap of two MBSs in the singlet
channel [70].

Other decisive signatures are provided by the fractional Josephson effect, which
is predicted to exhibit a 4m-periodic phase dependence when two MBSs from differ-
ent SCs are coupled by electron tunneling [1,7,71-74]. The doubled period can be
explained by noting that the two MBSs connecting the two TSCs allow for transfer
of single electrons rather than Cooper pairs such that the phase difference of the JJ
is effectively only half the usual value so that the current phase relation assumes the
form I = I.sin(¢/2) where I.. is the critical current and ¢ is the SC phase difference
across the JJ. This seems like an easy-to-verify relation and a very characteristic
one as well. However, in reality the number parity which protects this result is chal-
lenged by quasiparticle poisoning [75,76]. In addition, the finite size of the TSCs
introduces two additional MBSs which leads to a gap opening at the parity cross-
ing [77-81]. Such fractional phase dependences have been studied in the frequency
domain (Shapiro effect [22,82-87] and Josephson emission/radiation [37,88]) where
the Josephson junction is brought out of equilibrium. Distinguishing signatures of
JJs in the topological regime were also predicted via dc-measurements in the long
junction regime (the length of the JJ is larger than the superconducting coherence
length) [89]. In the latter case, it was shown theoretically that the critical current of a
JJ (an equilibrium property) in the long junction regime is twice as large if it behaves
as a 4m-junction compared to the more common 27-junction. To compare the two
regimes, one would need to have a JJ that can be tuned between the two cases [90].
This we will discuss in Section 4. We also note that Josephson junctions in two
dimensional (2D) electron gases with spin-orbit coupling can lead to the emergence
of MBSs [91-98].

The final goal, however, will be to show the non-Abelian statistics of MBSs since
this feature is probably the most exotic and also the most useful one thinking in
terms of using such states for TQC [6,99]. There are several proposals how to braid
Majorana fermions [7,100-102] in superconducting hybrid systems. In the network
of wires, this is not trivial since the nanowires are one-dimensional and one has to
think about effectively 2D systems like a T-junction [7,103—105]. In this sense, the 2D
versions of TSCs seem more feasible. Here, MBSs can be isolated in vortices, however
it is not straightforward to think about ways to move these vortices. In Section 5, we
will review our proposal to move two MBSs in a Corbino geometry JJ and to detect
their exchange phase via the current in a STM tip. We note that braiding alone can-
not provide universal quantum computation with MBSs as the rotation angles are
fixed and so not all single-particle rotations can be covered by braiding [106,107].
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Also, entanglement between qubits is inaccessible by braiding alone. For more infor-
mation on TQC, see the more extensive reviews on this topic [3,4]. We note that
braiding operations of MBSs can also be performed without physically moving the
MBSs in real space, but by a sequence of switching on and off the couplings between
Majoranas [108,109] or by making a sequence of projection measurements [110]. A
recent review of the possible ways to braid and fuse MBSs in superconducting hybrid
junctions is given in [111]. Generalized Majorana fermions, so called parafermions,
are more exhaustive in terms of possible braiding operations as compared to Majo-
rana fermions and could serve as building blocks for universal TQC [3,112]. Realistic
proposals for the creation of parafermions combine superconductivity with repulsive
electron—electron interactions (for a review see Ref. [113]). So far these fascinating
but also challenging ideas await experimental realizations.

We would like to end this introduction by elaborating briefly on the challenges
that remain in the identification of MBSs and what the experimental strategies are
to deal with them. Although some of the key predictions like tunneling-conductance
quantization [34] or the observation of missing odd Shapiro steps [22,82—84] have been
seen in experiments such features were predicted to occur also in non-topological
hybrid junctions. One of the main issues is the distinction of true isolated MBSs
from the conventional Andreev bound states that are Dirac fermions with Majorana
components that are not efficiently delocalized (e.g. by the length of a nanowire) and
can appear in trivial systems [114-126]. They are sometimes dubbed quasi-MBSs.
Despite this difference, they can mimic the essential features of true MBSs including
conductance quantization, the fractional Josephson effect and even braiding [115,
118,123]. This is possible e.g. by the scheme one uses to measure the MBSs features
— coupling measuring leads to the device results in an open quantum system. This
can lead to very different couplings to the two components of Andreev bound states
or quasi-MBSs and the measurement would appear as that of probing a TSC [119].
Experimental strategies to discriminate quasi-MBSs from true MBSs is to perform
non-local measurements [51,121,127] which seems one of the next steps that should
be feasible to do in the near future [128].

2 Fano resonances in hybrid Majorana systems

One of the first suggested signatures of an isolated MBS in one-dimensional
TSCs [1,38,39,41] is the quantization of the differential conductance when contact-
ing the MBS with a metallic lead [51-57]. And indeed several early experiments
reported a zero bias peak in the differential conductance [21,24,27,46,47], however
the quantization of this peak has been measured only recently [34]. This absence
of an unambiguous signature leads to the desire of extended experimental designs
with superior tunability. Setups where quantum dots are tunnel-coupled to super-
conductors have been investigated as versatile devices in the past using conventional
superconductors [129]. Such quantum dot-superconductor hybrid systems can now
also be considered in the case of topological superconductors, where MBSs hybridize
with a quantum dot in the normal state [68,130-136]. In addition, the coupling of a
quantum dot can lead to the emergence of Fano resonances in the differential con-
ductance [137-145]. First experiments using semiconductor-superconductor hybrid
structures have already suggested the coupling of a quantum dot with MBSs [29,36].

The differential conductance measured in these experiments revealed a hybridiza-
tion between the near zero energy modes and the electron- and hole-like states on
the quantum dot, but these hybridizations were different which does not fit with
hybridization with a single MBS. However, it can be explained considering a cou-
pling to the second more distant MBS [64,68,133,146]. Various quality factors which
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measure the “Majorananess” of the coupling to the low-energy states have been
proposed [68,69,133].

In this section, we want to report on our findings already investigated in refer-
ence [64], in which we considered a setup where two MBSs are contacted by a normal
conducting lead on one side and a quantum dot on the other side. By including not
only a coupling to the closest MBS we can tune the system between Majorana-like
(only coupling to one MBS) and Dirac-like (coupling to both MBSs with the same
amplitude) couplings. We show that pairs of Fano resonances arise as a function of
the quantum dot level energy and that in the case of pure Majorana-like coupling
these pairs are symmetric with respect to each other which reflects the electron-hole
symmetry of the MBS.

2.1 Model and cumulant generating function

We consider a finite size Kitaev chain, which is contacted with a normal conducting
lead at one side and a quantum dot on the other side. In the topologically non-trivial
regime the low energy sector of the Kitaev chain is comprised of two MBSs, described
by self-hermitian operators v; = %-T , localized mostly at the ends of the chain. Due
to the finite size of the chain these two MBSs experience a finite energy splitting
e o< e~ L/€ with the length of the chain L and the Majorana decay length & [1].
We approximate the lead using a linearized dispersion relation at the Fermi edge.
We describe the quantum dot as a single fermionic level with energy p. Because
we only consider a spinless system double occupation of the quantum dot is not
possible. The MBSs are not perfectly localized at the ends of the TSC, but rather
decay exponentially along it. For short chains or large decay lengths (i.e. L < ¢) this
implies that the wave function of a MBS reaches the other side of the TSC leading
to tunnel couplings to both MBSs as shown in Figure la. Because of the spatial
symmetry of the Kitaev chain we consider the ratios of coupling to the MBSs to be
the same for the tunneling to the lead and to the quantum dot. The corresponding
Hamiltonian is

H=Hy+Hy+ Hp + Hr, (1)
= —jhvp / dxz/ﬁ(x)é)zz/)(x) +iev172 +epd'd

— i1 [t1 cos(@)y + t1 cos(p)YT + ity sin(p)d — ito sin(cﬁ)dt]
— i [itl sin(g)y — ity sin(gﬁ)l/ﬁ + to cos(P)d + to cos(aﬁ)df] ,

where 1 () creates an electron in the lead at position x and df creates an electron
on the quantum dot. The point-like tunneling to the two MBSs is described with the
tunneling amplitudes ¢;, vr is the Fermi velocity in the lead and ¢ parametrizes the
ratio of the tunnel couplings. ¢ = 0 corresponds to the case where lead and quantum
dot only couple to one MBS (Majorana-like coupling) while ¢ = 7/4 corresponds
to a situation where both MBSs couple with the same magnitude to quantum dot
and lead, respectively (Dirac-like coupling). The chosen parametrization reflects the
spatial symmetry of the Kitaev chain and leads to the same degree of Majorana-like
couplings to both lead and dot.

Our method of choice for calculating the transport characteristics in this setup
is the full counting statistics [147]. Its central element is the cumulant generating
function (CGF) which is basically the natural logarithm of the Fourier transform of
the probability density of N electrons being transferred through the junction during
a large measuring time 7. We use the Keldysh technique to calculate the CGF. The
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Fig. 1. (a) Sketch of the considered setup with tunnel-couplings to both MBSs. The param-
eter ¢ tunes the system between pure Majorana-like (¢ = 0) and pure Dirac-like (¢ = 7 /4)
coupling continuously. We choose these values for the couplings because of the spatial sym-
metry of the considered Kitaev chain. Figure taken from [64]. (b) Differential conductance
in the setup with nonlocal couplings as a function of dot level energy for various angles of
nonlocal couplings. Parameters are eV = 3T, [t2] =T, e = 0.4I". Figure adapted from [64].

details of these calculations can be found in references [64,148]. At zero temperature,
the CGF is given by

eV
In x (A _7 / . ;Eh (14 p(E)(e 2 = 1)]. (2)

This CGF describes a binomial distribution. The only process which contributes to
transport is Andreev reflection which transfers two electrons through the junction
depicted by the two elementary charges e in front of the counting field A. These
Andreev reflections occur with probability p(E). The differential conductance is sim-
ply obtained by taking the derivative of the CGF with respect to the applied bias
voltage V' and the counting field and then setting the counting field to zero yielding

dr - 2¢e?
— = —p(eV). 3
v = 5 PEV) (3)
Also, the current noise and the Fano factor can be readily obtained with this formal-
ism [64]. The differential conductance has local maxima and minima which we call
resonances and antiresonances. The resonances in the differential conductance corre-
spond to the spectrum of the system without lead but which are broadened by the

tunneling to the lead. In the following, we will discuss the differential conductance in
more detail for different degrees of nonlocal couplings.

2.2 Fano resonances

Now, let us first consider a pure Majorana-like coupling (¢ = 0). A sketch of this
configuration can be seen in Figure 2a. Then the probability for an Andreev reflection
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Fig. 2. (a) Sketch of the setup under consideration in which a spinless normal conducting
lead contacts one of two MBSs 1. The other MBS ~» is contacted by a quantum dot with
energy level ep. The two MBSs experience a finite energy splitting €. Taken from [64]. (b)
Resonances (p = 1, blue) and antiresonances (p = 0, red) of the differential conductance
as a function of applied bias voltage energy eV and quantum dot level energy ep. The
resonances correspond to the spectrum of the system without the lead. The quantum dot
states hybridize with the MBS which leads to an avoided crossing. The areas with an orange
background show the parameter space in which no Fano resonances can be found. Figure
adapted from [64].

2 e 2
pleV) = AT7(eV) , (4)

< 162(c2 — (eV)?) - (eV)2> AT (V)2

41to]2 + €3 — (eV)
where T' = 2mpg|t1|?. Here, I'/h is the tunneling rate between the lead and ~; with
the density of states pg = (2rhvr)~!. The differential conductance shows resonances
which correspond to perfect Andreev reflection (p = 1) and antiresonances which
correspond to the blocking of transport (p = 0). As shown in Figure 2b the resonances
correspond to the spectrum of the system without the lead. The resonances at ep &~ 2¢
show an anticrossing which corresponds the hybridization of the quantum dot state
with the MBS.

It can be shown that the Fano-Beutler formula [149] can be used to describe the
differential conductance as function of quantum dot level energy at fixed bias in cer-
tain parameter regimes [64]. These Fano resonances (FR) emerge when a continuous
path interferes with a resonant path [150]. The first path corresponds to a direct
Andreev reflection of an electron or hole which is a continuous path with respect to
the quantum dot level energy ep. The second path includes an Andreev reflection
where the incoming electron or hole first passes through the two MBSs, then virtu-
ally occupies the quantum dot before entering the Cooper pair condensate. Here, the
second described path is of course resonant with the quantum dot level energy.

The differential conductance shows two FRs which are mirrored at ep = 0
(see Fig. 1b, ¢ = 0). The asymmetry parameter of a single FR ¢ = +((eV/2)? —
€2)/(T'(eV/2)) has a different sign for the resonance at negative ep than for the one
at positive ep. By tuning the applied voltage bias energy through the Majorana over-
lap energy the sign of the asymmetry parameter changes for both resonances. The
position of the FRs is mostly determined by the applied bias voltage. Furthermore,
we want to emphasize the relation between the two Fano resonances at fixed bias
voltage. They are completely symmetric with respect to each other which we directly
attribute to the Majorana nature of the state that the quantum dot is coupled to.
Because the MBS is an electron-hole symmetric particle, electron and hole degrees of
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freedom (positive and negative £p) of the quantum dot couple in the same way lead-
ing to the above mentioned symmetry. Fano resonances also appear due to interfering
transport channels in Cooper pair splitters [151,152]. However, in these conventional
hybrid systems, the above mentioned symmetry of Fano resonances is absent.

Next, we allow for a coupling to both MBSs. In Figure 1b, we show the resulting
differential conductance as function of e for various ¢. For ¢ = w/4, the coupling to
both MBSs is equivalent to coupling to a single Dirac fermion. This leads to a blocking
of Andreev reflection as this Dirac fermion has no superconducting properties.

In the parameter range 0 < ¢ < 7/4 there is a mixing between Majorana-like and
Dirac-like couplings, which destroys the signature of the electron-hole symmetry of
the MBS and leads to an asymmetric hybridization of the electron and hole states
on the quantum dot with the MBSs. Because of this the two arising FRs also loose
their symmetric property and, depending on the system parameters, the asymmetry
parameter of the two FRs can even have the same sign which is not the case for
¢ =0 (cf. Fig. 1, ¢ = 7/16). In general, this shows that not only the quantized
differential conductance of 2e?/h is a clear indicator of the MBS (it is not quantized
for ¢ # 0), but also the symmetry dI/dV(ep) = dI/dV(—ep) is a signature which
we can directly attribute to the nature of an isolated MBS.

So far, to the best of our knowledge, the proposed setup was not yet realized
experimentally. However, there have been reports on experiments that focus on the
coupling between a quantum dot and a Majorana nanowire [29,36]. In contrast to our
suggested setup the electronic lead in the experiments was coupled to the quantum
dot and not directly to the Majorana nanowire. The differential conductance mea-
surement in the first experiment [29] showed asymmetric hybridizations between the
dot states and the low energy in gap states. Several groups pointed out that this can
be explained with the coupling to two MBSs [64,68,133]. The second publication [36]
focused on the analysis of this coupling to a second MBS and these authors measured
a quality factor ¢ = 1 —n? = 1 —tan? ¢ which reflects the “Majorananess” of the cou-
pling [68,69,133]. They were able to achieve quality factors of up to ¢ = 0.97 which
corresponds to nearly isolated MBSs. The advantage of our proposed setup over the
experimentally realized setups [29,36] is that lead and dot couple to the nanowire on
different sides. This allows us to probe non-local properties.

3 s-wave-p-wave Josephson junction

In the previous section, we have shown that couplings due to the not completely
localized wave function of a MBS can be probed with a quantum dot and a nor-
mal conducting lead. In the following section, we analyze these couplings by using a
superconducting lead and focus on the resulting equilibrium Josephson current. The
equilibrium Josephson current is mediated by a phase bias between the two super-
conductors without any applied voltage bias. We therefore consider a JJ consisting
of an s-wave superconducting lead and a finite size semiconductor-superconductor
hybrid nanowire in the topologically non-trivial phase giving us access to both MBSs
via the finite decay length of their wave functions [68]. In contrast to a TSC-TSC JJ
the energy phase relation shows only a 27 periodicity.

Similar setups have been already considered by other authors, however, their
works either focus on non-equilibrium transport [153-157] or infinite size TSCs
[158-160]. It was suggested that for a pure s-wave-p-wave JJ the equilibrium
Josephson current is blocked [158]. However, for a nanowire system with semi-infinite
wires it was already shown that a residual s-wave pairing of the non-Majorana states
contribute a finite supercurrent [159,160]. Moreover, it was shown that a coupling
from an s-wave lead to two MBSs with non-parallel spins in two different TSCs [161]
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Fig. 3. Sketch of the considered s-wave-p-wave JJ with calculated wave functions of the
two MBSs «1 and 72. The arrows in the enlarged window correspond to the spin directions
of the corresponding MBS wave functions and rotate with the position within the wire. The
electron tunneling takes place between the two superconductors with tunneling amplitude ¢
creating overlaps with both MBSs. Figure taken from [70].

or the coupling to Majorana Kramers pairs in time reversal invariant TSCs [162] can
result in a finite supercurrent.

In contrast, we show that in a single finite size Majorana nanowire with bro-
ken time reversal symmetry the MBSs can provide a supercurrent if, and only if,
both MBSs couple to the superconducting lead. We use a low energy approach and
quasi-degenerate perturbation theory to derive an effective Hamiltonian in order to
calculate the ground state Josephson current. We also show that the critical current
is governed by the spin canting angle difference of the Majorana wave function at the
tunnel-interface. For completeness, we include a numerical treatment of the model
and find the high-energy contributions due to the residual s-wave pairing as well as
contributions attributed to the MBSs and suggest an experimental scheme to separate
these two contributions.

3.1 Model

The Hamiltonian of the system under consideration can be split into three parts
H = Hgpcs + Hyvw + Hr, (5)

where Hpcg describes the superconducting s-wave lead, Hyw describes the
Majorana nanowire and Hp specifies the electron tunneling between the lead
and the TSC. We treat the Majorana nanowire using the Bogoliubov-de Gennes
formalism [38,39]

1 L
Hyw =5 [ V@M@, (6)
0

where L is the finite length of the nanowire and ¥f(z) = [wl (z), wI(:r), Yy (z), =y (z)

is the Nambu basis creation operator, where 1 (z) creates an electron with spin o
at position x in the nanowire. The Hamiltonian in Nambu basis is then given by

h2
HEW, = {<_2m* 02— ,u) — ia@way] 7, + Vzo, + Aty (7)
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This Hamiltonian describes the semiconductor nanowire using an effective mass m*,
a chemical potential ¢ and the Rashba parameter «. Superconductivity is induced
by a parent superconductor with s-wave pairing in close proximity to the nanowire
and the applied Zeeman field V; drives the subsystem into a topologically non-trivial
phase for Vz > /u? + A2 in which MBSs emerge at the ends of the wire [38,39].
The superconducting lead is described using a standard s-wave BCS Hamiltonian

Hpos =Y &rchycno + 3 Apeslefpel ) + e, (8)
ko k

with the superconducting pair amplitude Apcgs and the single particle energy of
the normal state &, = e, — p [163]. Here, the operator cha creates an electron with
momentum k and spin ¢. For simplicity, we choose a gauge in which the supercon-
ducting phase difference between the superconductors ¢ is included in the tunnel

Hamiltonian

Hr = Zteigcliaz/}(,(()) + h.c., (9)
ko
with a momentum and spin independent tunneling amplitude ¢.

3.2 Low-energy approach

In the topologically non-trivial phase the low energy sector of the nanowire is governed
by the non-local fermion comprised of the two MBSs described by the Hermitian
operators y; and 5. This reduces the Hamiltonian in the low energy sector to

Hyw = iev1ye, (10)

with the splitting energy e ~ h’kp oq (eQL/Em’k§)71 cos (kpexL), where the effective
Fermi momentum kg g and the Majorana decay length £ can both be expressed using
the microscopic parameters of the model used in equation (7) [62]. In the low energy
description the electron creation operator in the tunneling Hamiltonian equation (9)
can be approximated as

¥5(0) = A1 (0)71 + A2 (0)72, (11)

using the electronic components of the Majorana spinor wave functions A,,. We
approximately calculate A,, by considering MBSs which emerge in a semi-infinite
wire and then cut the wave functions off at position L. The details of this calculation
and the expression of ¢ in the microscopic parameters can be found in reference [70].

In order to derive a full effective low-energy Hamiltonian we resort to quasi-
degenerate perturbation theory with respect to the tunneling Hamiltonian Hy [70].
To second order in Hr and for Agcg > ¢ the eigenenergies of the JJ are

B = e+ 2m0(0) (it? [A14(0) A2y (0) — A1y (0) Ao (0)] € + hoc).  (12)
Here, v(0) is the density of states in the lead at the Fermi level. Because only Cooper
pairs can be transferred across the junction the parity in the nanowire is a conserved
quantity and the lower signs of equation (12) correspond to the odd (o) parity while
the upper signs correspond to the even (e) parity states of the JJ. The MBSs wave
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functions enter equation (12) in spin singlet form, which reflects the fact that the
Cooper pairs in the lead are spin singlets.
Because the Majorana wave functions have no component in spin y-direction [65]

we can parametrize it as
At (0)\ il cos(0,,/2)
A (0)) — ™\ sin(©,,/2)

where K, is real valued and ©,, is the spin canting angle of the nth MBS at the
junction. In general, the wave function should vanish at the end of the nanowire
(boundary condition), but in order to include the wave function in our point like
tunneling model we treat x; as a free parameter and because of the exponential
spatial decay of the MBS we approximate ko = k1 exp (—L/&). The spin canting
angle of the two MBSs can be different at the interface x = 0, because the spin of
the second MBS rotates as its wave function traverses the nanowire. If we insert this
parametrization into equation (12), we find

(13)

2@

e(o

y=TFet I" cos(ip) sin (@1592> e L/E (14)

where T' = 4wx2t?v(0) and we choose ¢ to be real. Due to the fact that the Cooper
pairs in the s-wave leads are spin singlets, they can only be transferred across the
junction if the spins of the MBSs point in different directions and an optimal Cooper
pair transport is achieved for an anti-parallel spin configuration, which is reflected
by the sine dependence of the spin canting angle difference in the p-dependent part
of the eigenenergies.

The equilibrium supercurrent is then obtained by taking the derivative of the
ground state energy with respect to ¢

1(g) = 0,min(B?, B) = Ie(p)sinfy), (15)

where the ¢-dependence of the critical current I only results in a sign change if
the ground state changes between even and odd parity as function of p. As seen
in Figure 4a the critical current is oscillating as function of applied Zeeman field
with jumps at points where the parity of the ground state changes. The oscillation
amplitude is growing with increasing Zeeman field because of a larger decay length
for higher Zeeman fields. The oscillations can be traced back to the spin canting angle
difference. Figure 4b shows that the spin of the first MBS is polarized in the direction
of the magnetic field, while the spin of the second MBS rotates at the location of the
tunnel junction as the Zeeman field is changed.

3.3 High energy contributions and tight-binding approach

In order to underline our analytical findings in the low-energy effective model we con-
sider the equilibrium Josephson effect with the full model described with equation (6).
Therefore, we discretize the full Hamiltonian

N
K2 K2 «
_ i T ;
H —jEZl \I/j {(m*aZ - p) T, + Vg0, + A’Tz:| U, + {\Ilj [ Qm*aZTZ +za7'zay Wi
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Fig. 4. (a) Critical current (I¢(¢ = 7/2)) in the ground state of the low-energy model and
(b) tangent of the spin canting angles at position z = 0 of the two MBSs (1,2) as a function
of Zeeman field Vz. (c) Numerically calculated critical current I (black) and Majorana
contribution Ips (blue) as a function of applied Zeeman field. The Majorana contribution
was extracted following the scheme proposed in the text.The parameters chosen here are
ts = 10A, Apcs = A and t = 2.96 meV. The other microscopic parameters of (a), (b) &
(c) are m* = 0.015me, A = 0.2 meV, p =0, & = 20 meV nm, I' = 0.004 meV, L = 1.3 ym
and N = M = 100. Figure taken from [70].

M
+ {tS Z C;O_C‘jfl’a— + ABC.S‘eij,TCj,J,} + ECRLO_'(/)LU + h.C.}, (16)
g

Jj=1

where \I/; is the creation operator in Nambu basis in the Majorana nanowire, while

c} creates an electron in the s-wave lead. In order to keep the length of the nanowire

fixed we introduce a = L/N with N being the number of lattice sites in the nanowire.
The lead is also discretized using M lattice sites and the hopping inside the lead tg
can be connected to the bandwidth of the superconductor. The tunneling amplitude
t characterizes the tunneling between the last site of the lead and the first site of the
nanowire. We diagonalize the Hamiltonian and calculate the critical current

Ic = mgx](go), (17)

where the suppercurrent () follows from I () = 2¢0,, Y5, <o Ei(p). In Figure 4, we
show the critical current and the Majorana contribution to it. While the Majorana
contribution qualitatively confirms the analytical findings, higher energy contribu-
tions conceal most of the Majorana features. The higher energy contributions come
from a residual s-wave pairing in the TSC [160,164]. The critical current still shows
jumps at parity crossings, however, in contrast to the Majorana contributions the
magnitude of the critical current is reduced with increased Zeeman field. Also, the
critical current is never completely blocked regardless of the spin canting of the MBSs.

To experimentally unveil the Majorana contribution from the critical current we
suggest an experimental scheme based on quasiparticle poisoning. A quasiparticle
poisoning event changes the parity of the low energy sector. Thus, these events should
be avoided in topological quantum computing schemes. A quasiparticle poisoning
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time, the time scale on which these events occur, of Tp = 100 us is experimentally
feasible [165]. The scheme is based on measuring the supercurrent for both parities
of the low energy sector spanned by the two MBSs with a fixed set of parameters
Az, Ic. Because the background of the high energy contribution is the same for both
parities the difference of the two critical currents removes the background and owing
to the particle-hole symmetry of the superconductor system all that is left is twice
the Majorana contribution Ip;. In order to realize this scheme the current needs to
be measured within Tp with a sensitivity of less than 10_2% in order to resolve the
Majorana contributions. This high sensitivity within the short quasiparticle poisoning
time is experimentally challenging but feasible.

4 TSC-TSC junction in silicene

In the model discussed in the previous section the focus has been placed on a
superconducting JJ between a topological superconductor and a non topological
superconductor [160,161,164]. In such a JJ, the current phase relation features a
27 periodicity like the traditional Josephson effect. However, JJs between two topo-
logical superconductors are predicted to feature promising avenues to probe localized
Majorana zero modes [1,7,71-90,166-168]. In their paper [169] Fu and Kane predict
the existence of MBSs localized inside such a JJ as well as a 47 periodicity of the cur-
rent phase relation, an effect closely linked to the existence of MBSs which is known
as the fractional Josephson effect. Additionally, it is predicted that including interac-
tions in such JJs can result in the existence of excitations similar to Z; parafermions
linked to an 87 periodicity [170]. However, these fractional effects are only preserved,
as long as the fermion parity, i.e. the number of fermionic particles in the JJ modulo
2, is conserved inside of the junction. In general, effects breaking this fermion parity
conservation are present in real JJs and therefore possibly spoil this experimental sig-
nature. Since these predictions a lot of work has been done to overcome this problem
of quasiparticle poisoning and first experimental signatures of the fractional Joseph-
son effect could be observed both in junctions based on nanowires [22,37] as well as
junctions based on HgTe [83,88]. These experiments focus on dynamical effects of
JJs like Shapiro steps and Josephson radiation and are performed out of equilibrium.
However, a scheme to identify a 47 Josephson effect based on dc properties of JJs
was proposed by Beenakker et al. [89], even in the presence of slow quasiparticle
poisoning. By looking at long junctions, i.e. JJs where the distance between the two
superconductors is large compared to the superconducting coherence length &g, they
found that the critical current of topologically non-trivial JJs is twice as large as
the critical current of topologically trivial JJs. This now calls for a tunable JJ in
which one can tune between a topologically trivial and topologically non-trivial JJ
to extract the proposed signature. Such junctions can be provided by making use of
the buckled structure of silicene or similar compounds [90], which we will review in
the following.

4.1 Model

To build a JJ that is tunable between a topologically trivial and a topologically non-
trivial state we consider a sheet of silicene with proximity induced superconductivity
via two superconducting leads (Fig. 5). In addition, two electric fields are applied
perpendicular to the sheet. As we will see below, the border between the two regions
of different electric fields will define helical edge states mediating the Josephson effect.
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Fig. 5. Two superconductors (S 1 and S 2) are placed on top of a sheet of silicene with
a distance [ and a phase difference ¢ between the two. The two electric fields El and Ez
perpendicular to the silicene sheet define the helical edge states (dashed black line) at the
border between the two regions. Figure taken from [90].

Such a system for low energies can be described by the following Hamiltonian

H = % /d% U Hx)U(x),  HEX)=Ho+Hs +Hs (18)

where we use the standard Nambu basis

U(x) = (Pr(x), ¥y (x), ] (x), —] (x))7,

(19)
¢5(X) = (CAKS(X)7 CBKS(X)7 CAK/S(X)’ CBK’S(X))Ta

and 1,(x) is obtained from 1)4(x) by the substitution K «> K’. The Hamiltonian can

be separated into three parts. The first part [171-173]

HO = _ith(aa:pszUw + 6ypzay) - ASOpzsszo'z + mp,o, (20)

describes the electronic properties of a single sheet of silicene.? The first term con-
taining the Fermi velocity vy describes the kinetic energy. The second term describes
the intrinsic spin-orbit interaction Ago while the last term describes the staggered
potential m « E, resulting from the perpendicular electric field. The Pauli matri-
ceso / 7/ s/ p correspond to the sublattice (A, B) / valley (K, K’) / spin (1,])
/ particle-hole degree of freedom. The s-wave superconducting proximity effect is
described via

Hs = Alcos(6)ps +sin(6)p,), (21)

where A is the superconducting pairing gap and ¢ the phase difference between the

two superconductors. Finally, scattering events between the two valleys of silicene are
described by

HI = 5/)27-37’ (22)

2 This notation differs from the one in reference [90] by an additional sign in the changed spin
basis.
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where § is the strength of the intervalley scattering, which we assume is generally
present.

4.2 Chern Number

In order to understand why this system features the described tunability we can
first look at a simplified system neglecting superconductivity (Hs) and intervalley
scattering (M) and consider only the silicene sheet in the presence of two electric
fields (Ho). This system preserves both the spin as well as the valley subspace so
that they can be expressed via the eigenvalues £, = 41 of their respective Pauli
z-matrices s, and 7,. The resulting energy spectrum

& = j3\/(7“’F];3’)2 + (m —n€Aso)?, (23)

is hyperbolic with an energy gap of 2 x (m —n€Ago). Because the mass parameter m
is proportional to the z-component of the applied electric field this energy gap closes
at a critical electric field E = +E,. with E. = Ago/d ~ 17meV /A [90,174] where 2d
is the separation along the z-direction of the two sublattices of silicene. At which
of the two signs of the electric field the gap closes depends on the spin and valley
configuration. By calculating the spin and valley dependent Chern numbers

Mg = g sgn(m — &nlAso) (24)

we can see that this gap closing is accompanied by a topological phase transition.
While the overall Chern number

n= Zn’if =0 (25)
né

vanishes due to the entire system being time reversal invariant a topological Zo
invariant

Tt — Ty, 0 |E.|>E.
v zﬁ: 5 mod {1 B.| < B, (26)

distinguishes between the topologically trivial (v = 0) and non trivial (v = 1) regime.
In the topologically non-trivial regime the system is a quantum spin Hall insulator
featuring a single set of spin-helical edge states at the sample edge. By applying an
electric field stronger than the critical field E,. perpendicular to the silicene sheet the
system can be tuned into the topologically trivial regime which in turn also destroys
the topological edge states.

With a single applied electric field the system can only either have a single set of
spin-helical edge states or no edge states at its sample edge. A richer situation arises
when we look at the boundary between regions with two different electric fields F; and
E,. If the spin and valley dependent Chern number (24) changes across the boundary
for a specific spin and valley polarization a topological edge state of corresponding
polarization exists running along the boundary between the two regions. Because
the system is time reversal invariant, these edge states always exist in time reversal
invariant spin-helical form. Therefore, the phase diagram in Figure 6 lists the number
of spin-helical edge state pairs along the boundary while the total number of edge
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Fig. 6. Phase diagram of the three different scenarios of edge states forming at the boundary
between two regions of a silicene sheet featuring two different electric fields 1 and E2. The
numbers indicate the number of spin-helical edge state pairs at the boundary. In the green
region the two sets of spin-helical edge states form a single set of spin-degenerate edge states.
The black arrow indicates an example path to tune from spin-helical to spin-degenerate edge
states at the border.

states will always be twice that amount. By changing the two electric fields three
scenarios can be distinguished.

First, if both electric fields are small (|E1|, |Es| < E.) both regions of the silicene
sheet are topologically non-trivial (¥ = 1) and there exist no topological edge states
at the boundary (Fig. 6, blue center region). Also no edge states exist if both electric
fields are large and point in the same direction (F1,FEy > E. or Fy,Ey < —E,),
however both regions are now topologically trivial (v = 0)(Fig. 6, blue outer corners).

The second scenario features one set of spin-helical topological edge states at the
boundary between the two regions (Fig. 6, orange). This is the case when the electric
fields fulfill the condition |E;| < E. < |E}|. Here one of the two regions is topologically
non-trivial (v = 1) while the other is topologically trivial (v = 0). These edge states
are protected from backscattering as they are Kramers partners.

Finally the third scenario features spin-degenerate edge states at the boundary
between the two regions which can be separated into two sets of spin-helical edge
states (Fig. 6, green). This scenario occurs when both electric fields are large but
point in opposite directions (E; < —E, and E; > E.). In this case both regions are
topologically trivial (v = 0).

The existence of edge states in the last scenario does not contradict the fact that
the topology does not change across the border,? as these edge states are not topolog-
ically protected. In fact, the existence of backscattering in these spin-degenerate edge
states is critical in order to tune a topologically non-trivial JJ to a trivial one. To
achieve the desired tunability to be described in the following section, we will have to
tune from a regime with spin-helical (Fig. 6, orange) to a regime with spin-degenerate
(Fig. 6, green) edge states. This can be achieved for instance by first setting Fy > E,
while E5 = 0 so that spin-helical edge states exist and then tuning Fy < —F, while
leaving E; unchanged as indicated by the black arrow in Figure 6.

3 While the Zo number v does not change across the boundary, individual spin and valley
dependent Chern numbers n,¢ do change resulting in the existence of these edge states.
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4.3 Josephson junction

With the ability to tune edge states from spin-helical to spin-degenerate we can now
turn to JJs mediated by such edge states by including the superconducting term #gs.
First looking at the case of spin-helical edge states we can project the Hamiltonian
‘H onto the subspace spanned by the two edge states and find two Andreev bound
states (ABSs)

r, - /dx Qp(x)% [eieq(x) +CI(~T>]7 Ty = /dx @(x)\% {e—iem(:r) - 4(:6)}2’7)

forming inside of the junction by standard wave matching procedures where

A2 — g2 _yar-ez
o(z) = \/Te e ‘, 0 = arg <5+i\/A2——€2) (28)

and cf(z) create an electron in the helical edge state with spin polarization s at
position z along the boundary. They feature the 47 periodic energy phase relation

£(¢) = £A cos (f) (29)

and lie at zero energy if the phase difference across the JJ is equal to 7. Linear
combinations of these ABSs at zero energy in turn form MBSs

_ (M +Ty)

i(Dy — Ty)
n=g ——

e=0 ’ = \/i (30)

e=0

due to the relation I‘J{\szo =T9]c—0.

This JJ is topologically non-trivial as it is being mediated by spin-helical topo-
logical edge states and features two MBSs and a 47 periodic energy phase relation.
As we tune the electric fields to the regime featuring spin-degenerate edge states the
system effectively gets doubled. Repeating the steps described above reveals that in
this situation there indeed exist 4 ABSs with the same energy phase relation (29),
where each branch is now two fold degenerate. However, the crossing at zero energy is
no longer protected, as backscattering in the spin-degenerate edge states is no longer
prohibited by time reversal symmetry. This means, that including the time reversal
invariant intervalley scattering H; the 4 ABS can now couple, open a gap in the
spectrum at zero energy and turn the energy phase relation

e(9) = i\/A2 cos? (ﬁ) + 62 (31)

27 periodic. As no zero energy states exist in this case there are no longer any MBSs
in this system and the JJ is topologically trivial.

As intervalley scattering H; is allowed by the symmetry constraints of the system
it will generically be present and can arise for instance through disorder [175]. A
way to tune J in a single setup is proposed in [90]. By tuning the electric fields
along the path depicted in Figure 6 we can therefore electrically tune between a
fractional JJ and a nonfractional JJ which can potentially be used to demonstrate
the topological nature through a dc measurement of the critical current described
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in [89]. The topological Josephson effect studied here differs from previous studies
[71,176,177] by the fact, that spin-degenerate topological edge states, albeit not being
protected, exist connecting the superconductors resulting in a conventional Josephson
effect. While the analytical model is based on the short junction limit | < £y numerical
tight binding simulations have shown, that this effect persists into the long junction
regime [90].

5 Corbino geometry topological Josephson junction

Several theoretical extensions have been devoted to the search for MBSs in a circular
geometry due to the geometrical versatility for the manipulation and braiding of
MBSs [13,178-181]. In this section, we consider a Corbino geometry JJ deposited
on the surface of a three-dimensional TT [180], and discuss how to create and braid
MBSs, and how to detect the Majorana exchange statistics in an electrical transport
experiment.

5.1 Vortex-bound Majorana fermions

A three-dimensional TI is a material characterized by an insulating bulk in
coexistence with metallic surface states as a consequence of strong spin-orbit cou-
pling [182-184]. The surface of the TI is described by a Dirac Hamiltonian Hy; =
Vp(pgos + pyoy) in the z-y plane [14] where vg is the Fermi velocity and the o Pauli
matrices denote spin. Similar to any other metal, the surface becomes superconduct-
ing when it is proximity coupled to an s-wave superconductor, which can be modeled
by the BAG equation

Hyse/r ¥(r) = EV(r), (32)
H. — A
HSC/TI = ( A* a —H, +N>’ (33)

where U(r) = (ut,uy, v}, —v4)? is the Nambu spinor. This proximity effect is a nec-
essary but not sufficient condition for creating MBSs because the surface remains
gapped if there is no vortex in the superconductor. We discuss below how a vortex
modifies the order parameter A and binds a MBS.

As a consequence of the physical requirement that the superconducting order
parameter is a single-valued function, an Abrikosov vortex carries a flux quantum
®y = h/(2¢) and has an order parameter of the form

A(r, 0) = A(r)ei¢_i"”9, (34)

where polar coordinates (r,8) are defined with respect to the center of the vortex, ¢
is the superconducting phase which is uniform in space. A(r) vanishes at r = 0 and
converges to a constant Ag at large r. n, = 1 is the winding number of the vortex,
which is essential ingredient for the creation of MBSs. It is known that the proximity
effect of this order parameter on the TT surface supports a single MBS at zero energy
[13], as illustrated in Figure 7a. However, it is not easy to find an analytical solution
of the Majorana wave function for an arbitrary value of the chemical potential .
One can prove analytically the existence of a MBS in two limiting cases of u: p > Ag
and pu = 0. For the former case, it is possible to perform an unitary transformation
that maps the topological insulator-superconductor heterostructure into a spinless
P +ip, superconductor [13,16], and for the latter, solving explicitly the BAG equation
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Fig. 7. A Majorana fermion bound to (a) an Abrikosov vortex or (b) a Josephson vortex
in a superconductor-topological insulator heterostructure forming a JJ.

at £ = 0, the Bogoliubov quasiparticle operator for the zero-energy solution of the
vortex is given by

’7:/(127’67% ST dsA(s) 6i¢/2+m/4’¢¢(r)+€_i¢/2_iﬂ/4¢l(r) ’ (35)

satisfying v = 7T, where 1, (r) is the electron field operator with spin o. Note that, in
this case, there is no zero-energy solution for the spin-up sector. Recent experiments
have reported the experimental signatures of the vortex-bound Majorana state using
scanning tunneling spectroscopy [46,47,67,117,185-188|.

A Josephson vortex formed in a SC-TI-SC junction with an external magnetic
field B applied perpendicular to the TI surface, illustrated in Figure 7b, can also be
used to create MBSs, due to its topological equivalence with the Abrikosov vortex
discussed above. If the distance d between the superconductors is small compared to
the coherence length and the electromagnetic field produced by the Josephson cur-
rent (screening effect) is negligible [163], subgap states of the JJ can be described by
counter-propagating one-dimensional channels along the junction which are coupled
by an effective mass m j(x) = Ag cos[d(x)/2], where §(z) = 2rBdxz/Po+ dy is the local
superconducting phase difference along the axis x parallel to the junction [13,189].
The constant parameter §y is determined by the phase difference of the superconduc-
tors in the absence of the magnetic field. Here, one can define the position x = z,, at
which 6(z,) = 7 is satisfied, as the center of the Josephson vortex. Like the center
of the Abrikosov vortex, the mass gap vanishes at the center, m;(z,) = 0, and the
superconducting order parameter winds around a closed loop encircling the center
of the Josephson vortex. The usefulness of the Josephson vortex is that the position
r = x, where a MBS is localized can be controlled by changing the superconducting
phase difference dg.

To proceed, we give a brief introduction to braiding of several MBSs. A well sep-
arated pair of MBSs, v and ~s, can be described by non-local fermionic operators,
¢ = (71 +i72)/2 and cf, whose number operator is 72 = cfc defining a degenerate two
states, an even-parity state |0) with n = 0 and an odd-parity state |1) with n = 1. An
exchange process of 71 and 5 leads to the development v; — —72 and 9 — 1, which
corresponds to a unitary operation ~y; — Blg'yZ-Bir2 with By = exp[(7/4)y172] =
[1+ 7172]/v/2, where the convention is {y;,7;} = 20;; [6]. In the occupation number
basis {|0), |1)}, B12 = expl[i(n/4)0.], which produces just a phase factor in the fermion
basis |0) — €'%|0), [1) — e~*7|1). To use the full power of non-abelian braiding (i.e. a
state change in the manifold of degenerate ground states) one needs at least 4 MBSs,
i.e. 2 fermions with basis {|j)}, 7, j = 0, 1 [99]. In the subspace of a given total fermion
parity (e.g. even parity with basis states {|00),|11)}) braiding MBS 2 and 3 would
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(b)

Fig. 8. (a) Schematic of a Corbino geometry topological JJ formed by thin-film supercon-
ductors denoted as S1 and Sz which are deposited on the surface of a topological insulator
(3D TI). In the presence of two flux quanta, 2®¢, two zero-energy MBSs (red balls) form at
opposite sides of the junction. Their positions can be moved by applying a small voltage V
across the junction, enabling us to perform an adiabatic exchange. Figure adapted from [180].
(b) A winding of superconducting order parameter by —2m along a closed loop around one
MBS with points A, B, and C shown in (a). ¢; = 4,5,c are the phases of the superconducting
order parameter at positions i, given by ¢4 = ¢1,¢p = ¢1 — 7+ 0, pc = ¢p1 — 7 — 50, where
66 is a small positive number.

correspond to a rotation around the z-axis that turns the basis states into a super-
position state (e.g. [00) — (]00) + [11))/+/2 [6,10,18]). In the following subsections,
we discuss how to realize and detect the exchange of 2 MBSs in a Corbino geometry
JJ. For the extension of this proposal to 4 MBSs, we refer readers to reference [190].

5.2 Creation and braiding of MBSs

Figure 8a shows a Corbino geometry JJ placed on the TI surface. The junction
lying in the z-y plane is made of thin films of inner (S7) and outer (S3) s-wave
superconductors, which are connected by the TI surface. For simplicity, the distance
between S7 and S is zero, which physically means that the distance is much smaller
than the superconducting coherence length, forming a circular interface of radius R.
If we introduce two flux quanta at the interface, the phase of the superconducting
order parameter of S; remains constant, while the phase for Sy enclosing the flux
quanta winds by —4m [191],

Agei 0<r<R,
A(r,0) = { Aoe—oi20+i¢2 ;> R (36)

where ¢ and ¢ are spatially uniform phases of the two superconductors. In a thin-
film superconductor, there is a length | which characterizes the spatial variation in
phase across a JJ, and thus determines the relation between the phase associated
with the winding number and 6. Here, the phase factor —i20 in equation (36) is
valid for 2rR < [. If one considers the case 2rR > [, the phase factor is no longer
linear in 6, although the winding by —47 remains invariant [191], which would lead
to quantitative modifications of subgap structures such as the localization width of a
bound state and subgap level energies. However, the physics we discuss below results
from the exchange statistics of MBSs and is not affected by such modifications.

The BAG Hamiltonian of the system has the form of equation (33) with the
proximity-induced gap described by equation (36). The local superconducting phase
difference across the junction is d¢(0) = ¢ — ¢2 + 20. Then, on the circumference of
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the junction, there are two positions 04 satisfying d¢(6+) = £,

:¢2—¢1i7T.

0+ 5

(37)

As shown in Figure 8b, for each position, the order parameter along a closed loop
containing the position has the winding number and thus a MBS is localized. Note
that the phases ¢; and ¢o are gauge dependent, however, their difference is gauge
invariant and determines the position of the MBSs. Since all positions along the
circle are equally likely in terms of energy due to the rotation symmetry, only their
relative position is fixed by the number of fluxes. Since ¢; and ¢, are the single-
valued phases of the superconducting order parameters, their initial values, and thus
the initial positions are chosen spontaneously.

The fact that the positions of MBSs are moved by changing ¢; — ¢o allows to
perform an adiabatic exchange. It can be achieved experimentally by applying a
dc voltage V; across the junction. Then ¢ — ¢o varies with time ¢ as ¢1 — o =
oo + 2eVjt/h, where ¢ is constant. During a half rotation time T); = 7h/(eVy), the
phase difference is changed by 27 and the two MBSs are exchanged,

Y1 TSV, Y2 = ST, (38)
governed by a braiding operator
B=e2"7, (39)

Here, o = sm/2 is the exchange phase revealing the exchange statistics of MBSs.
s = 1(—1) corresponds to the change of ¢1(¢2) by 27 (—27).

5.3 Transport signatures of exchange statistics

We now couple a metal tip with bias voltage eV to a position of the Corbino geometry
JJ and analyze the tunneling conductance between the tip and MBSs travelling adi-
abatically along the junction to detect the exchange statistics.* Because the bound
states decay exponentially away from the positions (r,0) = (R, 6+), one of them,
which we set to 71, would couple to the tip. The coupling becomes significant and
suppressed as 7y; approaches to and leaves from the tip, respectively, leading to time-
dependent tunneling events occurring periodically with period T';. In each period,
the MBSs are exchanged, see Figure 9a. Consequently, we define the discrete time
sequence t, = tg + ¢’y at which the coupling is maximal, where ¢ = 0,1,2.... The
tunneling Hamiltonian in the low-energy subspace where only the zero-energy states
contribute to the tunneling conductance is [180]

Hr(t) = 32 et (Ve + e, (40)
q,k

where A~! is the tunneling duration, c,t is the electron creation operator of the tip
and V}, is the coupling coefficient.®

4The bias voltage can be defined relative to a grounded superconductor which can be either S1
or Sa.
51t is sufficient to use spinless electrons cL as the MBSs are spin-polarized and therefore couple

only to one spin-direction of the tip electrons.
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Fig. 9. (a) Time-dependent tunneling between a metal tip and two circulating MBSs (shown
for a clockwise rotation). The tunneling occurs periodically with a period Ty, for which
the two MBSs are exchanged. (b) Time-averaged differential conductance as a function of
eV. The parameters are hTJ_1 = 0.1 meV = 107 A\ = 10kgT = 10T". The exchange phase
o = 7/2 is used. Around zero voltage, the peaks emerge at eV = :I:ahT]l, constituting a
direct imprint of the exchange phase of two MBSs. Figure (b) taken from [180].

The resulting time-averaged tunneling current in the weak tunneling limit is
plotted in Figure 9b, exhibiting peaks at distinct bias voltages,

eV = +(a—2nl)h/Ty, (41)

where [ is an integer. This feature results from the coherent interference in the time-
dependent tip-Majorana tunneling where the exchange phase « from the half-rotation
of MBSs introduces a relative phase between the tunneling at time ¢’ and ¢’ +T';. The
interference effect can also be understood by noting that tunneling of electrons from
and to the tip changes the parity (e.g. |0) — |1)), and therefore the braiding phase
as outlined in the introduction. Suppose that N half-rotations are interrupted by a
tunneling event after n < N half-rotations. This path can interfere with a path with
N half-rotations that is interrupted after m < NN half-rotations by a tunneling event
(both paths change, e.g., |[0) — |1)). The probability for this event results from the
absolute square of the superposition of these two amplitudes which have the same
initial and final state leading to an exchange phase dependence o cos[(n — m)a/2].
We emphasize that, different to the case of tunneling between the tip and a static
MBS which yields a conductance peak at zero bias voltage, we obtain conductance
peaks at non-zero voltage for zero-energy MBSs due to the exchange operation.

6 Conclusion

We gave a brief summary of recent efforts on the creation, detection and manipu-
lation of MBSs in diverse quantum hybrid systems. We also briefly discussed their
potential as topologically protected qubits owing to their non-Abelian braiding statis-
tics. Subsequently, we then summarized four of our own projects regarding MBSs in
detail.

First, we considered a spinless lead-MBS-quantum dot setup and showed that a
pair of Fano resonances (FRs) arise in the differential conductance as a function of the
quantum dot level energy ep in specific parameter regimes. These FRs are symmetric
under ep — —ep as long as lead and quantum dot only couple to one MBS, because
of the particle-hole symmetry of a single MBS. As soon as we introduce a Dirac-like
coupling to the quantum dot and the lead, i.e. a coupling to not only the nearest but
also to the more distant MBS, the symmetry of the FRs vanishes. Therefore, this
symmetry can be used as a signature of coupling to a spatially isolated MBS.
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Second, we summarized our findings for the equilibrium supercurrent in a JJ
between an s-wave superconductor and a finite length Majorana nanowire. Due to
the finite size of the Majorana nanowire not only the wave function of the closest MBS
but also the wave function of the more distant MBS can have a finite weight at the
junction. We analytically showed that the low energy contribution to the Josephson
current is a function of the difference of the two spin canting angles of the MBS wave
functions at the junction and is only finite if coupling to both MBSs is realized. This
feature directly reflects the spin-singlet nature of the Cooper pairs mediating the
Josephson effect. A numerical tight-binding model verifies the oscillatory behavior of
the low energy contributions to the supercurrent as function of applied Zeeman field
due to rotations of the spin canting angle of the more distant MBS.

Next, we considered a tunable JJ consisting of a sheet of silicene where the super-
conductivity is proximity induced by two superconducting leads. Two applied electric
fields can be used to change the topology of the silicene sheet and thus tune the JJ
between being topologically trivial and topologically non-trivial. In the topologically
non-trivial regime the Josephson current is mediated by spin -helical edge states and
is 4m periodic as a function of the phase difference between the two superconducting
leads due to the formation of MBSs.

Finally, we analyzed a setup consisting of a Corbino geometry JJ on the surface of
a 3D TI. The introduction of two magnetic flux quanta into the junction results in the
formation of two MBSs which can rotate along the junction when a voltage is applied
across the junction due to the temporally changing superconducting phase difference.
We showed that the time-averaged differential conductance measured using a metallic
tip positioned at the junction reveals the non-trivial MBS statistics.
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