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Abstract. Multi-particle sources constitute an interesting new
paradigm following the recent development of on-demand single-
electron sources. Versatile devices can be designed using several
single-electron sources, possibly of different types, coupled to the same
quantum circuit. However, if combined non-locally to avoid cross-talk,
the resulting architecture becomes very sensitive to electronic decoher-
ence. To circumvent this problem, we here analyse two-particle sources
that operate with several single-electron (or hole) emitters attached in
series to the same electronic waveguide. Using Floquet scattering theory
we demonstrate how such a device can emit exactly two electrons with-
out exciting unwanted electron-hole pairs if the driving is adiabatic.
Going beyond the adiabatic regime, perfect two-electron emission can
be achieved by driving two quantum dot levels across the Fermi level
of the external reservoir. If a single-electron source is combined with
a source of holes, the emitted particles can annihilate each other in
a process which is governed by the overlap of their wave functions.
Importantly, the degree of annihilation can be controlled by tuning
the emission times, and the overlap can be determined by measuring
the shot noise after a beam splitter. In contrast to a Hong-Ou-Mandel
experiment, the wave functions overlap close to the emitters and not
after propagating to the beam splitter, making the shot noise reduction
less susceptible to electronic decoherence.

1 Introduction

On-demand single-electron sources [1–4] make it possible to perform quantum optics
experiments with electrons, and they form the basis of the rapidly developing field of
quantum coherent electronics [5,6]. Electronic counterparts of the famous Hanbury-
Brown and Twiss effect [7–14] and Hong-Ou-Mandel interference [8,15–20] have
already been demonstrated experimentally. Quantum tomography of single-electron
states has also been proposed and realized [21–24]. However, one challenging issue
working with electrons is decoherence and relaxation caused by neighboring elec-
trons in the waveguides, which can significantly degrade quantum effects, resulting
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Fig. 1. A composite two-electron source can be constructed from single-electron sources
located side by side. Here, two quantum capacitors in series are driven by separate gate
voltages. Each capacitor is formed by a circular edge state (in red) and a metallic top gate.
Electrons (in blue) are emitted into an edge state in the direction indicated by arrows.

for example in a non-perfect Pauli dip in the shot noise (the fermionic analogue of
the Hong-Ou-Mandel peak in quantum optics) [17]. Several methods are currently
being developed to prevent decoherence, including quantum environment engineer-
ing [25–29], and the emission of electrons high above the Fermi level [24,30,31]. Still,
recent experimental results on energy relaxation indicate that the longest mean free
path is achieved by emitting the electrons close to the Fermi level [28]. For quantum
information processing, it may thus be favorable to use single-electron sources that
emit particles right on top of the Fermi sea, for instance, a quantum capacitor [32–35],
a leviton source [8,36–38], or the recently proposed emitter based on time-dependent
local gating [39].

While single-electron emitters have been investigated both experimentally and
theoretically, much less is known about more complex devices such as multi-particle
sources, although some experimental progress in this direction has already been
reported [8,40–44]. In this work, we analyze two-electron sources consisting of sev-
eral single-electron sources connected in series as illustrated in Figure 1 [45]. Here
we show two quantum capacitors attached to the same edge state, but one may also
consider combinations of different types of emitters, for example by integrating a
quantum capacitor [32] with a source of levitons [8]. Importantly, as we will discuss
in detail, one can combine a single-electron emitter with a source of holes [16], which
will enable the controlled creation of superpositions of quantum states which have
different numbers of fermions. Note also that Coulomb interactions can presumably
affect the emission process itself [46,47], which has yet to be confirmed experimentally.
Here, we do not take this effect into account.

The rest of the paper is organized as follows: in Section 2, we provide a brief
account of the excess correlation function formalism and demonstrate its usefulness
for the analysis of single and few-particle emitters. In Section 3, we outline the theory
of composite two-electron sources based on the scattering properties of the individ-
ual single-particle emitters. We provide several examples of composite two-particle
emitters in Section 4, and show that it is possible to emit exactly two electrons with-
out exciting unwanted electron-hole pairs if the driving is adiabatic. In a specific
case, perfect two-electron emission can also be achieved in the non-adiabatic regime.
Technical details of our calculations are deferred to the Supplementary Material.

2 Excess correlation function

The first-order correlation function is defined as G(1) (1; 2) = 〈Ψ̂†(1)Ψ̂(2)〉, where Ψ̂
in our case is the field operator of electrons in the conductor of interest, and the
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brackets 〈. . . 〉 denote the quantum-statistical average. The correlation function can
be calculated using any many-body formalism, and in Section 3 we show in particular
how it can be evaluated using scattering theory.

The correlation function G(1) is additive in the number of electrons, which makes
it a useful theoretical tool to characterize the excitations emitted by a source into
a conductor. We just need to calculate G(1) with the source turned on and off and
evaluate the difference known as the excess first-order correlation function [21,48,49]

G(1) (1; 2) = G(1)
on (1; 2)− G(1)

off (1; 2) . (1)

To be specific, we consider a chiral one-dimensional conductor and fix the spatial

coordinates at an arbitrary position downstream from the source, x
(0)
1 = x

(0)
2 = xD,

keeping only the times t1 and t2. For a linear (or linearized) dispersion relation,
E − µ = vµ (p− pµ), the correlation function at different coordinates can be calcu-
lated using the substitution, tj → tj − vµ (xj − xD), with j = 1, 2, where µ is the
Fermi energy of the electrons in the conductor and vµ (pµ) is the velocity (momen-
tum) of electrons at energy E = µ. We restrict ourselves to non-interacting electrons,
where G(1) provides complete information about the injected particles, and we set the
temperature to zero to keep the discussion simple. For the purposes of this work, we
consider only the regimes of perfect injection, where a controlled number of particles
are injected without exciting unwanted electron-hole pairs.

2.1 Single-particle emission

If the source emits a single particle, the excess first-order correlation function
reads [50]

G(1) (t1; t2) = η
e
i
~µ(t1−t2)

vµ
ψ∗ (t1)ψ (t2), (2)

where η = +1 stands for the injection of an electron and η = −1 for a hole.
The wave function is normalized such that∫

dt |ψ (t)|2 = 1, (3)

having introduced the factor of 1/vµ in equation (2), so that we can formulate the
normalization condition as an integral over time, instead of over space. It turns out

to be convenient to introduce the formal factor e
i
~µ(t1−t2) to describe the injection

of an electron on top of the Fermi sea of the conductor, for example for a leviton
source [51].

The correlation function is idempotent in the sense that∫
dtG(1) (t1; t)G(1) (t; t2) =

η

vµ
G(1) (t1; t2), (4)

which is characteristic for a pure state. A discussion of single-particle emission at
non-zero temperatures, where the injected state is mixed rather than pure, can be
found in references [52–54].
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2.2 Two-particle emission

For a source that emits two particles, we have [50]

G(1) (t1; t2) =
e
i
~µ(t1−t2)

vµ

2∑
α=1

ηαψ
∗
α (t1)ψα (t2) . (5)

If the source injects two particles of the same kind, two electrons or two holes, we
have η1η2 = +1, and the corresponding wave functions are orthogonal to each other,
meaning that their overlap integral

J =

∫
dtψ∗1 (t)ψ2 (t), (6)

vanishes, J+ = 0 (here the subscript denotes the product sign η1η2). This fact is
the manifestation of the Pauli exclusion principle for fermions injected into the same
quantum channel, see e.g. reference [55].

By contrast, if the two-particle source emits one electron and one hole, η1η2 = −1,
the overlap integral is not necessarily zero, J− 6= 0. To clarify the physics behind this
observation, we need to analyse the two-particle wave function.

2.3 Electron-hole emission and annihilation

The fermionic two-particle wave function is represented by the following Slater
determinant containing the single-particle wave functions, ψα,

ψ(2) (t1; t2) =

∣∣∣∣∣ψ1 (t1) ψ2 (t1)

ψ1 (t2) ψ2 (t2)

∣∣∣∣∣ . (7)

The integral of the squared wave function gives us the number of injected particles,

N =

∫∫
dt1dt2

∣∣∣ψ(2) (t1; t2)
∣∣∣2 = 2

(
1− |J|2

)
, (8)

having used the normalization of the single-particle wave functions according to
equation (3) together with the definition of the overlap integral in equation (6).

Note that in the case of electron-hole injection, simply using G(1) for calculating
the number of particles is incorrect, since

∫
dtG(1) (t; t) gives us the difference, not

the sum of the number of injected particles.
If two particles of the same kind are injected, their wave functions are orthogonal,

J+ = 0, and the number of injected particles is N+ = 2, as expected. The injected
state |ψ(2)〉 is a two-particle state, |ψ(2)〉 = |ee〉 or |ψ(2)〉 = |hh〉, where e stands for
an electron and h stands for a hole.

If an electron and a hole are injected, their wave functions are not orthogonal,
J− 6= 0, and the number of injected particles is less than expected, N− < 2, accord-
ing to equation (8). One can interpret this suppression as being caused by the two
injected particles annihilating each other with a probability given by the squared
overlap integral, |J−|2. One may think of the electron emitted by one source as being
reabsorbed by the other source which emits a hole (or vice versa) [45,56–58]. As such,
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Fig. 2. Non-local and local injection of fermions on a beam splitter. Left panel: if particles
are injected into different input arms, the overlap integral in equation (6) describes the
scattering on the beam splitter, subject to the Pauli exclusion principle for electron-electron
or hole-hole interference, J+ 6= 0, but not for the simultaneous arrival of an electron and a
hole, J− = 0. Right panel: if two particles are injected into the same input arm, the overlap
integral rather characterizes the injection process. The Pauli exclusion principle demands
that the overlap vanishes, J+ = 0, if two electrons or two holes are injected. Otherwise,
J− 6= 0 is the amplitude for the particles to annihilate each other according to equation (9).

the emitted state is a coherent superposition of the two-particle electron-hole state,
|eh〉, and the state without any injected particles, the vacuum state |0〉,

|ψ(2)〉 =

√
1− |J−|2 |eh〉+ J− |0〉 . (9)

As we now go on to show, the number of injected particles in equation (8) can be
determined from shot noise measurements at low temperatures [8,9].

2.4 Shot noise

Shot noise is generated if the stream of injected particles is partitioned on an electronic
beam splitter as illustrated in Figure 2 [59–63]. We first emit particles into one of the
input arms using a periodically driven electron source, while the other input channel
is grounded, as indicated in the right panel of Figure 2. In this case, the time-averaged
cross-correlations of the outgoing currents, Pout, is related to the excess first-order
correlation function of the incoming excitations as [64]

Pout

P0
= −

T0∫
0

dt

∞∫
−∞

dτ
∣∣∣vµG(1)(t + τ ; t)

∣∣∣2 . (10)

Here, the factor P0 = e2RT/T0 is given by the electron charge e, the reflection R
and transmission probabilities T = 1−R of the beam splitter, and the period of the
drive T0. To keep the discussion simple, we assume that electrons injected in different
periods do not overlap. We can then extend the limits of the integral over t to infinity.
Upon substituting equations (5) into (10), combined with equations (3) and (6), we
now arrive at an expression for the shot noise in the case η1η2 = −1, which reads

Pout

P0
= −N = −2

(
1− |J−|2

)
. (11)
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This result shows that the shot noise is given by the product of two factors: one, −2P0,
is the shot noise produced by two independent particles. The other one, 1− |J−|2, is
the probability that the two particles do not annihilate each other.

Note that in the case of electron–electron (or hole–hole) injection, the overlap
integral is zero, J+ = 0, and the shot noise, equation (10), is given by the sum of the
independent contributions of two particles, Pout = −2P0.

2.4.1 Annihilation versus the electronic Hong-Ou-Mandel effect

Equation (11), replacing J− by J+, also describes the situation where two electrons
(or two holes) are injected into different input arms and interfere at the beam splitter
as in a Hong-Ou-Mandel interferometer [6,54,61,65]. Note that we are discussing two-
particle, not single-particle, interference in the following. Although the equation is
formally the same for the two cases, the physical interpretation of the overlap integral
in equation (6) is completely different.

In the non-local setup in the left panel of Figure 2, the two sources emit particles
into different input channels, and the emitted electrons or holes (η1η2 = +1) are
initially uncorrelated. They interfere when they arrive at the beam splitter, where
the Pauli exclusion principle forces them to exit via different output arms [61]. In
this case, the overlap of the wave functions at the beam splitter determines the
suppression of the shot noise, and its exact value, J+ 6= 0, can be controlled by
adjusting the relative emissions times. On the other hand, if an electron and a hole
are injected, η1η2 = −1, they scatter on the beam splitter independently, since their
energy is different such that the Pauli exclusion principle does not apply, and the
overlap integral vanishes, J− = 0.

By contrast, in the local setup in the right panel of Figure 2, the two emitters
are placed in the same input arm to make up a composite source. In this case, two
injected electrons (or holes) with η1η2 = +1 interfere already upon emission. The
Pauli exclusion principle forces the two injected electrons (or holes) to be in orthog-
onal quantum states and the overlap must vanish, J+ = 0, independently of the
emission times. On the other hand, if one source emits an electron and the other a
hole, η1η2 = −1, the overlap integral is not necessarily zero, J− 6= 0 and it charac-
terizes correlations between the entire injected state and the vacuum (the untouched
Fermi sea) according to equation (9). More precisely, the overlap integral J− is just
the quantum-mechanical amplitude of the annihilation process, in which an electron
injected by one source is annihilated by a hole from the other source, such that no
particles effectively are emitted towards the beam splitter. Importantly, the value of
the overlap integral, J− 6= 0, can in this case be continuously tuned by changing the
emission times.

We recall that we here consider zero temperature and refer the reader to refer-
ences [66,67] for a discussion of electron–hole interference at nonzero temperatures
in the non-local setup and to references [68] for a discussion of electron–electron
interference at nonzero temperatures in the local setup.

As we have seen, the shot noise suppression is clearly caused by different phys-
ical processes. In the non-local setup, the shot noise suppression occurs due to the
interference of identical particles at the beam splitter [69–71]. By contrast, for the
local setup, the shot noise suppression is due to the decreased number of injected
particles, since electron and holes may annihilate each other close to the emitters.
Shot noise suppression forms the basis of single-electron state tomography based on
Hong-Ou-Mandel interferometry [21], and one may anticipate that similar ideas can
be developed based on the annihilation effect for the local setup. Importantly, with
the sources placed close to each other as in the right panel of Figure 2, the setup
becomes less susceptible to decoherence along the electron waveguide [27,72].
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3 Scattering theory of composite two-electron sources

We now describe the scattering theory of composite two-electron sources. To this end,
we first consider a single-particle emitter that is attached to a chiral one-dimensional
electron waveguide. The source is driven by a classical periodic field with period
T0 = 2π/Ω, for example an electric potential that is applied with a gate electrode.

The effect of a periodic driving field can be described by a Floquet scattering
matrix SF, whose elements SF (En, E) are the photon-assisted amplitudes for an
electron with energy E to exchange n energy quanta of size ~Ω with the driving field
such that its energy becomes En = E + n~Ω [73]. The scattering amplitudes relate

the electron operators in second quantization before and after the source, â and b̂,
respectively, as

b̂ (En) = SF (En, E) â (E) (12)

for annihilation operators and

b̂† (En) = S∗F (En, E) â† (E) (13)

for creation operators. The electrons before the source are in equilibrium and are
characterized by the Fermi distribution function

f(E) =
1

1 + exp
[
E−µ
kBθ

] , (14)

where µ is Fermi energy, the temperature is θ, and kB is the Boltzmann constant.
The quantum-mechanical average used in the definition ofG(1) describes the fermionic
operators before the source, where the particles are in equilibrium and we have〈

â† (E) â (E′)
〉

= δ (E − E′) f(E). (15)

In the wide band limit, the excess first-order correlation function then becomes [74]

G(1)(t1; t2) =
1

hvµ

∫
dEf (E) e

i
~E(t1−t2) {S∗in(t1, E)Sin(t2, E)− 1} , (16)

where we have introduced the inverse Fourier transform of the Floquet ampli-
tudes [75]

Sin (t, E) =

∞∑
n=−∞

e−inΩtSF (En, E) . (17)

These expressions allow us to describe dynamic single-electron emitters.

3.1 Composite sources

We can now describe two-particle sources composed of two single-particle emitters
connected in series [45]. If each source separately operates as an ideal single-particle
emitter, we can expect that the composite source will work as a two-particle emitter.

We place the two single-particle emitters, each described by the scattering matri-
ces SL

in and SR
in, in close proximity to form a composite source. To be specific, we
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choose SL
in to describe first emitter upstream. The total scattering amplitude of the

composite source can then be calculated as [57]

Stot
in (t, E) =

∞∑
n=−∞

T0∫
0

dτ

T0
einΩ(τ−t)SR

in (t, En)SL
in (τ, E), (18)

where we have neglected the distance between the sources. At zero temperature and
in the wide band limit, the distance between the emitters can be accounted for simply
by adjusting the injection times of the two emitters.

The correlation function of the composite source can be calculated using Eq. (16)
by replacing Sin with Stot

in . The correlation function then consists of three terms,

G
(1)
tot = G

(1)
R +G

(1)
L + δG

(1)
LR, (19)

where G
(1)
j , j = L, R, is given in equation (16) with Sin replaced by Sjin, while the last

term accounts for the combined effect of the two single-particle emitters and reads

δG
(1)
LR =

1

hvµ

∫
dEf (E) e

i
~E(t1−t2)

∑
m,n

T0∫∫
0

dτ ′

T0

dτ

T0
e−imΩ(τ ′−t1)einΩ(τ−t2) (20)

×
{[
SR

in (t1, Em)
]∗
SR

in (t2, En)− 1
}{[

SL
in (τ ′, E)

]∗
SL

in (τ, E)− 1
}
.

With these expressions, we can now describe the composite two-particle sources.

4 Examples

We are now ready to discuss examples of composite two-particle sources. We restrict
ourselves to zero temperature, θ = 0, where the Fermi distribution is a step function,
f (E) = Θ (µ− E), with Θ (x) being the Heaviside function.

4.1 Adiabatic injection

If the scattering amplitude of each single-particle source, Sjin, is energy-independent,
the total amplitude is simply given by the product, Stot

in (t) = SR
in (t)SL

in (t) [45,55].
The expression for the correlation function also greatly simplifies. In particular, at
zero temperature, equations (16), (19), and (20) in combination give us

G
(1)
j (t1; t2) =

e
i
~µ(t1−t2)

vµ

[
Sjin (t1)

]∗
Sjin (t2)− 1

2πi (t1 − t2)
, (21a)

G
(1)
tot (t1; t2) = G

(1)
R (t1; t2) +

[
SR

in (t1)
]∗
G

(1)
L (t1; t2)SR

in (t2) . (21b)

The last equation admits the following interpretation: the quantum state injected by
the composite source is the sum of the quantum state injected by the downstream
source and the state injected by the upstream source after being modified by the
downstream one. Although this might be a rather artificial interpretation, since we
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can’t really divide the quantum phase-coherent system into parts, it provides a useful
description of what is happening in the system.

Equation (21) tells us that in the adiabatic case, if each source separately works
as a single-electron emitter, the two emitters form a perfect two-particle source which
excites no unwanted electron-hole pairs. Indeed, if the correlation function of each

individual source has the form given in equation (2), G
(1)
j (t1; t2) ∼ ψ∗j (t1)ψj (t2),

j = L, R, the correlation function of the composite source, G
(1)
tot, is given by equa-

tion (5) with, for instance, ψ1 (t) = ψR (t) and ψ2 (t) = SR
in (t)ψL (t). We note that

in the adiabatic limit, the scattering amplitude of an emitter coupled to a chiral
one-dimensional channel is just a phase factor, Sjin = eiσj , so that the modulus is

unity, |Sjin| = 1. For this reason, ψ2 is normalized if ψL is also normalized. This line
of reasoning can be generalized to any number of sources operating in the adiabatic
regime [51].

4.2 Levitons

A paradigmatic example of an energy independent source is the case of an AC voltage
applied to a metallic contact from which a chiral edge state originates. The scattering

amplitude is the phase factor, Sin(t) = exp[−i (e/~)
∫ t
−∞ dt′V (t′)], where V (t) is the

time-dependent voltage [50]. If the voltage is a sequence of Lorentzian voltage pulses
of a definite amplitude [76–86],

eV (t) = η

∞∑
m=−∞

2~Γτ

(t− τ −mT0)
2

+ Γ2
τ

, (22)

a sequence of single electrons (η = +1) or holes (η = −1) are injected [36–38]. These
particles are called levitons [8]. The parameter Γτ is the half-width of the density
profile of the wave packets. It also defines the energy of each leviton, E = ~/(2Γτ ) [38].
The parameter τ determines the position of the peak of the wave packet within the
period, 0 < τ < T0. In general, when T0 ∼ Γτ , the particles injected during different
periods are overlapping, the resulting state is thus strictly speaking a multi-particle
state, and the corresponding wave functions were analysed in reference [51].

To simplify our analysis of two Lorentzian voltage pulses being applied per period,
we consider the limiting case T0 � Γτ and restrict ourselves to a single long period.
This approach can also be employed when Floquet scattering theory is used to
describe a non-periodic process as we will see in Section 4.3 [53]. The applied voltage
is then the sum of two Lorentzian pulses, Vtot = VL + VR, with

eVj(t) = ηj
2~Γj

(t− τj)2
+ Γ2

j

. (23)

Here, the time t extends over the full, long perid T0 � Γj . The voltages VL,R now
play the role of single-particle sources, while the total voltage Vtot effectively is our
composite two-particle source. The corresponding scattering amplitudes read [35]

Sjin (t) =
t− τj + iηjΓj
t− τj − iηjΓj

. (24)
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According to equation (21), the correlation function of the composite source has the
form of equation (5) with η1 = ηR, η2 = ηL and the following wave functions [40,50]

ψ1 (t) =

√
ΓR/π

t− τR − iηRΓR
, ψ2 (t) =

√
ΓL/π

t− τL − iηLΓL

t− τR + iηRΓR

t− τR − iηRΓR
, (25)

which are normalized according to equation (3). When both voltages have the same
sign, ηL = ηR, the overlap integral in equation (6) is zero, J+ = 0, recalling that the
subscript stands for the sign of the product ηLηR. In other words, when both voltages
excite particles with the same charge (two electrons or two holes), the particles occupy
orthogonal states in accordance with the Pauli exclusion principle.

By contrast, if the two voltages VL and VR excite particles of opposite charge,
ηL = −ηR, the overlap integral is non-zero, and one may interpret this as the particle
generated by one source being annihilated by the other with probability |J−|2. Indeed,
using equations (6), (8), and (25), the number of emitted particles reads [38]

N = 2
(

1− |J−|2
)
≤ 2, |J−|2 =

4ΓLΓR

τ2 + (ΓL + ΓR)
2 , (26)

where τ = τL−τR is the time difference between the two voltage pulses. If the electron
and hole wave packets have the same width, ΓL = ΓR, and are injected simultaneously,
τ = 0, the annihilation is complete and no particles are emitted, N = 0 [45]. For
this reason, we can refer to a hole-like leviton as an anti-leviton, and we see how a
leviton created by one voltage pulse and a hole created by another voltage pulse can
completely annihilate each other. Of course, in this simple case, the voltage pulses
simply cancel each other, such that the total applied voltage vanishes.

Interestingly, the overlap integral in equation (26) has the same time dependence
as the wave function squared in equation (25), however, with both the amplitude and
the width of the wave packet being renormalized. This fact can be used to access the
time-dependent density profile of a single-electron wave packet via a time-averaging
measurement like the shot noise measurement described by equation (11).

4.3 Non-adiabatic injection

We now move on to non-adiabatic particle injection. Theory predicts that an electron
and a hole injected in an irreversible decay process do not annihilate each other [57].
Therefore, one may speculate that complete annihilation only occurs in the adiabatic
regime. To support this expectation, we now discuss a single-particle source that can
be tuned from the adiabatic to the non-adiabatic regime. Specifically, we consider
single-particle emission into a Fermi sea from a single quantum level that can be varied
linearly in time with rapidity c. The corresponding scattering amplitude reads [35]

Sin(t, E) = 1− 2

∞∫
0

dξe−ξe−i
t−τ
Γτ

ξeiζξ
2

eiζ
E−µ
E ξ , (27)

where τ is the time when the quantum level would cross the Fermi energy µ, if there
were no coupling. The width of the injected wave packet due to the coupling to the
Fermi sea is denoted by Γτ . This width determines the time window during which
the broadened quantum-dot level crosses the Fermi level. The coupling strength can
also be characterized by the dwell time, τD, which is the time it takes an electron to
decay from the quantum level at a fixed energy above the Fermi level. In addition,
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the crossing time Γτ depends on the rapidity c. Thus, the parameter that enters
equation (27) is defined as Γτ = ~/(2cτD). Moreover, the parameter ζ is given by
the ratio of the two characteristic time scales, ζ = τD/Γτ , and it controls how adi-
abatic the driving is. Specifically, with ζ = 0, we recover the adiabatic solution in
equation (24). Finally, E = ~/(2Γτ ) is the energy of the injected particle relative to
the Fermi level [64].

The wave function of the injected particle reads Ψ(t) = e−
i
~µtψ(t) with [35]

ψ (t) =
1√
π |Γτ |

∞∫
0

dξe−ξe−i
t−τ
Γτ

ξeiζξ
2

. (28)

The wave function is normalized according to equation (3), and we note that the
two parameters Γτ and ζ both depend on the rapidity c. If the rapidity is positive
(negative), c > 0 (c < 0), an electron (hole) is injected. To take this into account, we
use ηΓτ and ηζ, with both Γτ and ζ being positive, and η = 1(−1) for electron (hole)
injection.

4.3.1 Two-particle injection

We now take two quantum dot levels as above and attach them in series to a chiral
waveguide. As before, we use the subscript L for the upstream source and R for the
downstream source. The scattering amplitude of each source reads

Sjin(t, E) = 1− 2

∞∫
0

dξe−ξe
−iηj

t−τj
Γj

ξ
eiηjζjξ

2

e
iζj

E−µ
Ej

ξ
, j = L, R, (29)

where the last exponential factor does not contain ηj , since the ratio ζj/Ej is the
same for electron (ηj = 1) and hole (ηj = −1) injection.

Based on this expression, we can calculate the scattering amplitude of the compos-

ite source Stot
in using equation (18) and, furthermore, the correlation function G

(1)
tot

using equation (16). The calculation is in principle straightforward, however, it is
rather lengthy, and the details are presented in Appendix A of the Supplementary
Material.

At zero temperature, the result has the form of equation (5) with η1 = ηR and
ψ1(t) = ψR(t), where ψR is the wave function of a particle that would be injected by
the downstream source on its own,

ψR (t) =
1√
πΓR

∞∫
0

dξe−ξe
−iηR

t−τR
ΓR

ξ
eiηRζRξ

2

. (30)

For the second contribution in equation (5), we have η2 = ηL and the wave function

ψ2 (t) =
1√
πΓL

∞∫
0

dξe−ξe
−iηL

t−τL
ΓL

ξ
eiηLζLξ

2

×

1− 2

∞∫
0

dχe−χe
−iηR

t−τR
ΓR

χ
eiηRζRχ

2

e
iηLζR

ΓR
ΓL

2ξχ

 . (31)
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Fig. 3. The overlap integral |J−|2 in equation (32) as a function of the scaled time delay
τ ≡ t̄ for the renormalized non-adiabaticity parameter ζ ≡ ζ̄ = 0, 2, 4. The overlap integral
is given in units of 2

√
ΓRΓL/ (ΓR + ΓL).

The wave function is normalized as shown in Appendix B of the Supplementary Mate-
rial. Note that the equation above consists of two distinct terms, ψ2 = ψL + δψLR, as
compared to equations (19) and (20). First, ψL is given by equation (30) with the sub-
script R replaced by L, i.e., it represents a particle injected upstream in the absence
of a downstream source. Second, δψLR describes the joint effect of the two sources.
The term δψLR is important, because it is responsible for the orthogonalization of ψ1

and ψ2 if ηLηR = +1 and for the annihilation effect if ηLηR = −1.
It is easy to show that the two wave functions are orthogonal, if ηL = ηR. In other

words, the overlap integral in equation (6) vanishes, J+ = 0, with the subscript refer-
ring to the sign of the product ηLηR. The details of these calculations are presented
in Appendix C of the Supplementary Material. Hence, if the sources emit particles
of the same kind, electrons or holes, the resulting two-particle state contains parti-
cles in orthogonal states as required by the Pauli exclusion principle. By contrast, if
ηL = −ηR, the two wave functions are no longer orthogonal (see Appendix D of the
Supplementary Material for further details), and we have

J− (t̄) =
2
√

ΓRΓL

ΓR + ΓL

∞∫
0

dξe−ξeit̄ξeiζ̄ξ
2

, t̄ =
ηRτR + ηLτL

ΓR + ΓL
, ζ̄ = ηL

Γ2
RζR + Γ2

LζL

(ΓR + ΓL)
2 . (32)

As already discussed, a nonzero overlap integral, J− 6= 0, indicates that the parti-
cles partially annihilate each other according to equations (8) and (26), and the degree

of annihilation, |J−|2, can be accessed through shot noise measurements as shown in
equation (11). We note that for adiabatic injection, ζL = ζR= 0, equation (32) agrees
with equation (26).

Similar to the case of leviton injection in equation (26) and the subsequent discus-
sion, the overlap integral J− (−t̄) in equation (32) has the form of the wave function
of a single emitter, but with the renormalized nonadiabaticity parameter ζ → ζ̄, cf.
ψ ([t− τ ] /Γτ ) in equation (28). Therefore, for a composite source consisting of two
identical emitters, one can experimentally access the time-dependent electron density
profile injected by a single-particle source by measuring the probability of annihilation
as a function of the time delay between the emitters.

In Figure 3, we show the overlap |J−|2 as a function of the time delay between
particle emissions for different values of the non-adiabaticity parameter. The maxi-
mum annihilation takes place in the case of adiabatic injection, ζL = ζR = 0 (black
line). In this case, a zero time delay (τ = 0) leads to the transfer of an electron
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from one source to the other. Beyond the adiabatic regime, an increase in the rapid-
ity suppresses the degree of annihilation at the maximum, and also it increases the
asymmetry of the peaks. This behavior is in full agreement with a similar modifica-
tion of the single-electron wave functions found in reference [35]. The wavy structure
on the left slope is a manifestation of quantum-mechanical interference in time that
occurs during tunneling from a quantum level, whose position changes with time [53].
An experimental observation of such a delicate quantum effect would be an important
step towards the development of a time-resolved detector of single- and few-electron
quantum states.

5 Conclusions

We have presented a Floquet scattering theory of composite two-particle sources
composed of several single-particle emitters connected in series to a chiral waveguide.
The setup can include more than two single-particle emitters, and the individual
emitters may be of different types. For example, the combination of a leviton source
with a quantum capacitor is within experimental reach, and it would enable the use
of one source to characterize the other [84].

Using our theory, we have analysed several situations where ideal two-particle
injection can be achieved. In particular, we have considered adiabatic injection using
emitters with an energy-independent scattering amplitude. If both single-particle
emitters operate under ideal conditions, the composite source emits exactly two par-
ticles without exciting any unwanted electron-hole pairs. An example of such an
emitter is provided by a leviton source.

Going beyond the adiabatic regime, we have analysed a setup with two quantum
levels that are shifted with a constant rapidity across the Fermi level of the external
reservoir. This setup enables perfect two-particle injection both for adiabatic and
non-adiabatic working conditions, where the injected wave packets have symmetric
and asymmetric density profiles, respectively.

As an interesting new application of composite two-particle sources, we have exam-
ined the regime where one source injects an electron and the other a hole. In this
case, the electron and the hole may annihilate each other, effectively meaning that
one source reabsorbs the particle that was emitted by the other. If the probability of
annihilation is less than one, a superposition of a two-fermion state and the vacuum
state is formed. The amplitude of the annihilation process is given by the overlap of
the injected single-particle quantum states. This fact can be used to develop single-
electron tomography protocols based on this reabsorption effect. The advantage of
our approach lies in the compactness of the setup, which helps avoiding decoherence,
which is a major problem for quantum coherent electronics.
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5. J. Splettstoesser, M. Moskalets, M. Büttiker, Phys. Rev. Lett. 103, 076804 (2009)
6. E. Bocquillon et al., Ann. Phys. 526, 1 (2014)
7. R. Hanbury Brown, R.Q. Twiss, Nature 178, 1046 (1956)
8. J. Dubois, T. Jullien, F. Portier, P. Roche, A. Cavanna, Y. Jin, W. Wegscheider,

P. Roulleau, D.C. Glattli, Nature 502, 659 (2013)
9. E. Bocquillon, F.D. Parmentier, C. Grenier, J.M. Berroir, P. Degiovanni, D.C. Glattli,
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P. Degiovanni, New J. Phys. 13, 093007 (2011)
22. T. Jullien, P. Roulleau, B. Roche, A. Cavanna, Y. Jin, D.C. Glattli, Nature 514, 603

(2014)
23. A. Marguerite et al. (2017), arXiv:1710.11181v1
24. J.D. Fletcher, N. Johnson, E. Locane, P. See, J.P. Griffiths, I. Farrer, D.A. Ritchie, P.W.

Brouwer, V. Kashcheyevs, M. Kataoka, Nature communications 10, 5298 (2019)
25. C. Altimiras, H. le Sueur, U. Gennser, A. Cavanna, D. Mailly, F. Pierre, Phys. Rev.

Lett. 105, 226804 (2010)
26. P.A. Huynh, F. Portier, H. le Sueur, G. Faini, U. Gennser, D. Mailly, F. Pierre,

W. Wegscheider, P. Roche, Phys. Rev. Lett. 108, 256802 (2012)
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56. M. Moskalets, M. Büttiker, Phys. Rev. B 80, 081302(R) (2009)
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