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4 Université de Paris, Laboratoire Matériaux et Phénomènes Quantiques (MPQ),
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Abstract. We review the intriguing many-body physics resulting out of
the interplay of a single, local impurity and the two-particle interaction
in a one-dimensional Fermi system. Even if the underlying homoge-
neous correlated system is taken to be metallic, this interplay leads to
an emergent quantum phase transition between metallic and insulat-
ing states. We show that the zero temperature critical point and the
universal low-energy physics associated to it, is realized in two differ-
ent models, the field theoretical local sine-Gordon model and spinless
fermions on a lattice with nearest-neighbor hopping and two-particle
interaction, as well as in an experimental setup consisting of a highly
tunable quantum circuit. Despite the different high-energy physics of
the three systems the universal low-energy scaling curves of the con-
ductance as a function of temperature agree up to a very high precision
without any free parameter. Overall this provides a convincing exam-
ple of how emergent universality in complex systems originating from a
common underlying quantum critical point establishes a bridge between
different fields of physics. In our case between field theory, quan-
tum many-body theory of correlated Fermi systems, and experimental
circuit quantum electrodynamics.

1 An impurity in a one-dimensional, correlated Fermi system

1.1 Linear response theory

Linear response theory provides a framework to study the effect of a weak local
impurity in a nonrelativistic many-body Fermi system. Let us assume that we are
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interested in the change of the particle density in response to the introduction of
an impurity potential into a translational invariant system. In this case we need to
consider the density-density response function χ(q, ω) of the homogeneous system. In
one spatial dimension (1d) and in the absence of two-particle interaction this Lindhard
function at temperature T = 0 and in the static limit, i.e. at energy ω = 0 (measured
relative to the chemical potential), shows a logarithmic divergence if the momentum
q approaches twice the Fermi momentum kF [1]. This divergence results from the
restricted phase space available in 1d and is thus not specific to any particular model
such as, e.g., the 1d Fermi gas. The divergence indicates that any impurity with
a nonvanishing backscattering 2kF component strongly affects the density. Taking
into account that in 1d particles cannot bypass the impurity this insight might be
considered as intuitive.

In 1974 the density-density response function of the spinless Fermi gas comple-
mented by a two-particle interaction was computed [2,3]. It was shown that the
logarithmic singularity of the noninteracting case turns into a power law with an
exponent which can be expressed in terms of an interaction dependent parameter K,
the so-called Tomonaga-Luttinger liquid parameter (see below),

χ(q ≈ 2kF, 0) ∼ |q − 2kF|2(K−1). (1)

For repulsive two-particle interactions 0 < K < 1 holds while K > 1 for attrac-
tive ones. The power-law divergence in the repulsive case shows that the interacting
homogeneous system is perturbed even more strongly by a single impurity than the
noninteracting one. It, in fact, indicates that linear response theory breaks down.
The response of the homogeneous system to the impurity potential is large even if
its amplitude at momentum transfer 2kF is arbitrarily small. Thus more elaborate
methods than linear response theory are required to study the effect of impurity
backscattering in 1d correlated Fermi systems. Before returning to this issue in
Section 1.3 we will next discuss the physics of homogeneous interacting 1d Fermi
systems from a more general perspective. This turns out to be a necessary first step.

1.2 Homogeneous Tomonaga-Luttinger liquids

Power-law scaling of correlation functions as in equation (1) is characteristic for
translationally invariant, metallic, and interacting 1d Fermi systems. Employing
renormalization group (RG) arguments, one can show that the Tomonaga-Luttinger
model is the low-energy fixed point of a large class of models in which the interac-
tion does not lead to the opening of a gap [4,5]. This class includes the continuum
electron gas with two-particle interaction but also lattice models, such as, e.g., spin-
less fermions with nearest-neighbor hopping and nearest-neighbor interaction. The
Tomonaga-Luttinger model plays the same role in 1d as the noninteracting Fermi gas
does for (interacting) higher dimensional metallic systems. The noninteracting Fermi
gas is the fixed-point model of systems falling into the Fermi liquid universality class.

To understand the universal low-energy physics of Tomonaga-Luttinger liquids, in
a first step, one can thus study the Tomonaga-Luttinger model. It has two branches
of fermions (right- and left-moving ones) with linear dispersion and two-particle scat-
tering which is restricted to small momentum transfer |q| � kF. The elementary
low-energy excitations of this model are not given by fermionic quasi-particles, as
in Fermi liquids, but are of collective bosonic nature. Using bosonization [5–7] ther-
modynamic observables and all correlation functions of interest can be computed
exactly in the low-energy scaling limit. For the spinless case, on which we focus, the
low-energy physics is characterized by only two parameters, K and the renormalized
velocity v. The parameters appearing in the Hamiltonian of the Tomonaga-Luttinger
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model enter the exponents of the characteristic power laws of correlation functions
only via K. The exponent of each correlation function is given by a unique function
of K. For an example, see equation (1).

To determine the low-energy physics of a given microscopic model from the Tomo-
naga-Luttinger liquid universality class one can, in a second step, proceed as follows.
By computing two thermodynamic observables, e.g., the compressibility and the spe-
cific heat, K and v can be determined in terms of the microscopic parameters. In
particular, these are the amplitude and range of the two-particle interaction, the
parameters of the single-particle dispersion (such as the hopping amplitude in a tight-
binding model), and the band filling.K and v can then be plugged into the expressions
of the correlation functions and observables of the Tomonaga-Luttinger model. The
challenging explicit computation of correlation functions for an interacting micro-
scopic model of interest can be avoided this way. Thermodynamic observables are
easier to access either by analytical means such as perturbation theory and the Bethe
ansatz, or by numerical approaches [5,7].

For the above mentioned lattice model of spinless fermions, which will be one of
the models considered here, K and v as functions of the nearest-neighbor interaction
U , the nearest-neighbor hopping t, and the filling ν can be computed exactly (see
below) employing the Bethe ansatz expression for the ground state energy [8]. At half
filling ν = 1/2 the corresponding set of integral equations can be solved analytically
while away from half filling a numerical solution up to very high precision is possible.
For ν 6= 1/2 the model is from the Tomonaga-Luttinger liquid universality class for all
U/t > −2, while for ν = 1/2 this low-energy physics is only found for −2 < U/t < 2.
In Section 3 we will return to this model.

For many years emergent universal Tomonaga-Luttinger liquid physics of 1d sys-
tems was considered to be an appealing theoretical concept, which, however, was
far from being realizable in real-world experiments. Only at the beginning of the
1990s material science and nanostructuring techniques reached a level, such that an
experimental realization appeared to be within reach. Promising systems to observe
the typical Tomonaga-Luttinger liquid power-law behavior of the spectral and trans-
port properties are highly anisotropic quasi 1d crystals, semi-conductor-based quasi
1d heterostructures (cleaved-edge overgrowth), self-organized atom chains on sur-
faces, and unidirectional long molecules, such as, e.g., metallic carbon nanotubes. In
fact, examples from all these classes were investigated concerning their Tomonaga-
Luttinger liquid properties (for reviews, see Ref. [9–11]). Although many of the
measurements are consistent with Tomonaga-Luttinger liquid behavior, convincing
examples of power-law scaling in an energy variable, such as the temperature T or
the frequency ω, are rare. In most experiments the energy regime over which results
consistent with power-law behavior can be observed is small, typically less than one
order of magnitude. At the lower end the power laws are cut off by a finite energy reso-
lution or effects beyond the Tomonaga-Luttinger liquid theory such as coupling of the
1d chains. At the higher end details of the experimental system, e.g. the band struc-
ture, cut off the universal low-energy physics. Having only a small window of energies
available and taking into account experimental noise, it is hardly possible to distin-
guish power-law behavior from other functional forms. In addition, in most systems,
it is impossible to control any other parameter besides the energy variable in which
power-law scaling is investigated, e.g. the strength of the two-particle interaction.
It is thus impossible to show consistency of the experimentally extracted exponents
with the predictions of Tomonaga-Luttinger liquid theory. In short, the systems lack
control and tunability. This calls for further attempts to realize Tomonaga-Luttinger
liquid physics in experiments. One way is to use other systems, e.g. quantum circuits,
to emulate Tomonaga-Luttinger liquid behavior (see, e.g. Ref. [12]). Here we will
follow this route but consider inhomogeneous Tomonaga-Luttinger liquids instead of
translational invariant ones.
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1.3 Impurity backscattering

In a first step towards a comprehensive understanding of the effect of a localized impu-
rity in a Tomonaga-Luttinger liquid beyond linear response theory (see Sect. 1.1), in
1982 Apel and Rice studied a system in which the Tomonaga-Luttinger model is
complemented by a pure single-particle backscattering term [13]. Rewritten in terms
of the bosonic fields of the bosonization approach it becomes obvious that at low
energies this model is equal to the local sine-Gordon model studied in quantum field
theory [5–7]. Apel and Rice used a RG-related scaling theory. Their results indicate
that for a repulsive two-particle interaction with 0 < K < 1 even a weak impurity
drives the system from being a metal with finite (dc) conductance G at vanishing T
into an insulating phase with G(T = 0) = 0. For attractive interactions the system,
in contrast, remains metallic.

In 1992 this picture was confirmed by Kane and Fisher [14]. They studied the
local sine-Gordon model for arbitrary K using a RG approach perturbative in the
backscattering amplitude. This calculation was complemented by a perturbative RG
for the (dual, see Ref. [14]) problem of a weak link connecting two semi-infinite
wires each modeled by the Tomonaga-Luttinger Hamiltonian. It turned out that the
perfect chain fixed point with vanishing impurity backward scattering is stable for
attractive two-particle interactions with K > 1, but unstable for repulsive ones with
0 < K < 1, while the cut chain fixed point, with G = 0, is stable in the repulsive
case and unstable for attractive interactions. For K = 1/2 it was possible to show
that both fixed points are directly linked, i.e. not separated by any intermediate fixed
point. The consequences of this behavior for observables is best illustrated considering
the temperature dependence of the linear conductance. We will discuss this in the
next subsection. We note that in their analysis Kane and Fisher were able to resort to
results obtained for Hamiltonians studied earlier in the field of dissipative quantum
systems [15,16].

The absence of any intermediate fixed point in the local sine-Gordon model with
K = 1/n, n ∈ N, was confirmed numerically by quantum Monte Carlo approaches
[17,18] as well as analytically by the Bethe ansatz solution [19]. This let to the general
expectation that the same will hold for the local sine-Gordon model with arbitrary
K. Very recently a modified Bethe ansatz was used to solve the local sine-Gordon
model first for K = 2/3 [20] and later for all rational K < 1 [21]. We will elaborate
on these solutions in Section 2.

The just described physics of the local sine-Gordon model is often phrased as
follows. For repulsive interactions and on small energy scales even a weak impurity
grows and effectively cuts the chain into two parts. The opposite holds for attractive
interactions. Even starting with only a weak link connecting two semi-infinite chains
(i.e. a strong impurity) the system is “healed”, that is, the impurity vanishes.

In the early to mid 1990s two important steps were taken, to show that this
intriguing many-particle physics, resulting out of the interplay of single-particle
backscattering and the two-particle interaction, is also realized in other models for a
single impurity in a 1d correlated fermion system than the specific local sine-Gordon
model. Numerical results for the above mentioned lattice model of spinless fermions
(more precisely, for the equivalent XXZ-Heisenberg model) at small system sizes
turned out to be consistent with the above RG flow in the two limits of a weak impu-
rity and a weak link [22]. In addition, a fermionic RG applicable in the limit K → 1
was set up for the 1d continuum electron gas with an impurity and showed the RG flow
connecting the two fixed points [23]. However, it took another ten years to develop
an approximate RG method which is capable to capture the full crossover from the
perfect to the cut chain fixed point (or vice versa) for a lattice model [24]. In Section 3
we will describe this approach and present results for G(T ) obtained this way.
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Based on these insights one can now be certain that the local sine-Gordon model
is the effective low-energy model of a large class of impurity Hamiltonians with the
bulk part falling into the Tomonaga-Luttinger liquid universality class. To avoid any
confusion we emphasize that in microscopic models one has to distinguish two RG
flows. The one of the bulk part of a given model towards the Tomonaga-Luttinger
model and the flow of the single-particle (impurity) backscattering amplitude.

The above described transition from metallic G(T = 0) > 0 to insulating G(T =
0) = 0 behavior can also be understood within the framework of quantum critical
behavior [25]. The Tomonaga-Luttinger liquid parameter K can be used to tune the
inhomogeneous system through the T = 0 quantum phase transition from a metal
K > 1 to an insulator 0 < K < 1. The temperature dependence of the conductance,
to be discussed in the next section, reflects the scaling away from criticality which is
dominated by the quantum critical point. This quantum critical perspective on the
problem of a single impurity in a Tomonaga-Luttinger liquid helps to understand the
universality across models and experimental systems; see below.

1.4 The linear conductance and the universal β-function

Within the local sine-Gordon model employing the RG approach perturbative in the
weak impurity [14] it is straightforward to show that the conductance close to the
perfect chain fixed point depends on temperature as

G0 −G(T ) ∼ V 2
b T

2(K−1), (2)

with G0 being the T = 0 conductance in the absence of the impurity (see below) and
Vb the bare (as opposed to renormalized) amplitude of the impurity backscattering.
For K > 1 the exponent is positive and the finite temperature correction vanishes.
This indicates the stability of the perfect chain fixed point for attractive interactions.
For 0 < K < 1, the correction grows. One says that the backscattering renormalizes
towards strong coupling. As the calculation leading to equation (2) is controlled for
small renormalized backscattering it holds as long as the right hand side remains
small. Assuming a fixed Vb this is only the case for not too small temperatures.

A similar analysis close to the cut chain fixed point gives

G(T ) ∼ t2wlT
2(1/K−1), (3)

where twl is a measure for the bare hopping between the two semi-infinite chains. For
0 < K < 1 the conductance vanishes for T → 0; the cut chain fixed point is stable
and the system is an insulator. For K > 1 the finite T correction to the cut chain
conductance G = 0 grows for decreasing T . As the result equation (3) was derived in
the weak link limit the right hand side has to stay small and the temperature cannot
be taken too small. In other words, the cut chain fixed point is unstable.

As no intermediate fixed point interrupts the RG flow from the perfect to the
cut chain fixed point (or vice versa), the limiting behavior of equations (2) and (3)
are connected by a unique, K-dependent conductance function. More generally, such
universal scaling behavior as a function of temperature is expected in the vicinity
of continuous quantum phase transitions, when the system is slightly detuned from
the quantum critical point [25]. The theory of quantum critical phenomena predicts
that all microscopic parameters [e.g. Vb of equation (2) and twl of equation (3)] can
be encapsulated into a rescaling temperature T0, such that the conductance is given
by G0GK(T/T0) with a universal—but K-dependent—dimensionless function GK(x)
and x = T/T0.
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However, the numerical value of T0 is a priori unknown, and depends on specific
details of the system. In order to perform a direct comparison between different
models, in our case the local sine-Gordon model and the lattice model of spinless
fermions, as well as a comparison to experiments, it is possible to eliminate T0 by
considering, instead ofG, its logarithmic derivative dG/d lnT that does not depend on
the temperature scale. An underlying universal scaling law then implies the existence
of a so-called β-function completely characterizing the conductance renormalization
flow through the relation

βK =
dg(T )

d ln(T )
, (4)

with the normalized conductance g(T ) = G(T )
G0

.

In the two limits of equations (2) and (3) we obtain

βK = 2(1−K)(1− g) (5)

for 1− g � 1 and

βK = 2(1/K − 1)g (6)

for g � 1. In these limits βK depends on x = T/T0 only via g. Based on the discussion
of Section 1.3 we expect that βK is also model independent in the above two limits.

From the exact analytical results for G(T ) obtained by Bethe ansatz for the
local sine-Gordon model—for details see the next section—it is known that βK is a
function of g only also for arbitrary g, not only in the limits 1− g � 1 and g � 1. If
the idea of quantum critical universality holds and taken that the quantum critical
point separating the metal from the insulator is the same in all models of Tomonaga-
Luttinger liquids with impurity backscattering, the same function βK(g) should be
found in microscopic models for the specific value of K of the underlying homogeneous
system.

It is exactly this type of emergent universality which we will demonstrate in the
remainder of this minireview. We will explicitly verify that the β-function of the
lattice model of spinless fermions with nearest-neighbor hopping, nearest-neighbor
interaction, and an impurity falls on top of the β-function of the local sine-Gordon
model given the same K (but without any free parameter). Furthermore, we will show
that the measured conductance of a highly tunable quantum circuit [20], described
by a Hamiltonian which can be argued to be equivalent to the local sine-Gordon
model at low energy scales, leads to a β-function also falling on the universal curve.
This will complete our “triangle of universality”; see Figure 1 for an illustration. We
note that related experimental results were obtained earlier in reference [26], but
for a circuit setup which was less tunable and provided access to a single value of
K only. Only recently is was possible to close the triangle with the sides being a
field theory (the local sine-Gordon model), an interacting, microscopic lattice model,
and an experimental quantum circuit for different values of K. It exploits the latest
technical developments in the Bethe ansatz solution of the local sine-Gordon model
[21] and the recently achieved tunability of K in the quantum circuits [20]. In both
research fields only now values of K sufficiently close to 1 can be reached, for which
controlled results for the β-function of the interacting fermionic system are available
[24].

At the same time, the quantum circuit provides a convincing experimental emu-
lation of (inhomogeneous) Tomonaga-Luttinger liquid physics beyond the limitations
discussed in Section 1.2.
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Fig. 1. A sketch of our “triangle of universality”. The two models and the experimental
system show the same universal low-energy physics resulting out of a common underlying
quantum critical point.

We next review how to obtain GK(T/T0) or, equivalently, βK(g) for the local
sine-Gordon model.

2 The local sine-Gordon model

The local sine-Gordon model is a minimal quantum impurity model, of a free 1d
massless chiral (say right-moving) boson described by the field φ(x), with x ∈ R,
which, at the origin, is perturbed by a cosine potential of amplitude γ

H = H0[φ] +Hb, H0[φ] =

∫ ∞
−∞

dx
(
∂xφ

)2
, Hb = γ cos [βφ(0)] . (7)

We first discuss how it is related to the problem of a single impurity in a 1d fermionic
many-body system and, secondly, review its exact solution by means of a Bethe ansatz
approach. We consider both, the so-called diagonal case, when λ = 8π

β2 − 1 ∈ N [19],

and, the more general off-diagonal case, when λ ∈ Q+ [21]. We discuss the current I as
a function of T but also as a function of a bias voltage V applied across the impurity
(out-of-equilibrium setup). From this the linear conductance G(T ) = ∂I

∂V

∣∣
V=0

can be
computed.

Employing bosonization the low-energy features of the Tomonaga-Luttinger liquid
model are captured by a 1d free massless boson theory [5–7], that can be decomposed
in terms of chiral right-moving and left-moving modes, with Hamiltonian H0[φl] +
H0[φr] as in equation (7). Adding an impurity, specifically a local backscattering
term, couples φl and φr at x = 0. The system is described by the local sine-Gordon
model equation (7) with β =

√
8πK and φ essentially being the difference of the

bosonic modes on the left and on the right of the impurity [19]. We note in passing
that for K < 1/4 the low-energy mapping of the Tomonaga-Luttinger model with
local impurity onto the local sine-Gordon model equation (7) is expected to break
down [19]. In this case additional allowed and relevant tunneling processes across the
impurity corresponding to, e.g., the simultaneous tunneling of two fermions, lead to

higher harmonics like cos
[√

32πKφ(0)
]
. Accordingly, universality is lost in this case.

From the scaling dimension ∆ = K of Hb we recover the RG flow discussed in
Section 1.4. In the repulsive regime ∆ < 1, Hb is a relevant perturbation that cuts the
system and at low energy one reaches the insulating fixed-point with vanishing linear
conductance. Setting γ = 0 in equation (7) corresponds to the perfect conduction
fixed point where the conductance reaches its maximal value G0.
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The strong impurity formulation, or cut chain limit, also bears a universal descrip-

tion in terms of a (dual, see Refs. [14,19]) local sine-Gordon model H̃ = H0 + H̃b with

H̃b = γ̃ cos
[√

8π
K φ(0)

]
. Setting γ̃ = 0 corresponds to the cut chain fixed point, i.e.

two semi-infinite Tomonaga-Luttinger models. H̃b describes the tunneling of fermions
between the two half chains, and has scaling dimension ∆̃ = K−1. Fermion tunneling
is therefore relevant for attractive interactions K > 1.

A bias voltage V applied across the impurity is described by a term

HV = −eV
√
K

2π

∫ ∞
−∞

∂xφ, (8)

which has to be added to the Hamiltonian equation (7). The voltage couples to
the charge difference Q between the right and the left of the impurity. The pref-
actor ensures that HV = −QV/2. In the absence of the impurity this leads to the
conductance

G0 = K
e2

h
. (9)

Note that we add the fundamental constants such as e, h,. . . to the “theorists units”
whenever we judge this to be appropriate.

The potential term in equation (7) generates a typical energy scale, the “impurity

temperature” Tb, that scales as Tb ∼ W
∆

1−∆ γ
1

1−∆ , with the scaling dimension ∆ =
K. Here W denotes the high-energy cutoff of the model which is left implicit in
equation (7) and Tb is the model specific realization of the nonuniversal temperature
T0 introduced in Section 1.4. Low-energy universality implies that physical quantities

X can be expressed as universal functions f
(X)
univ of dimensionless arguments V

Tb
, TTb

, . . .,
e.g., for the electrical current

I(V, T ) = Tb f
(I)
univ

(
V

Tb
,
T

Tb

)
, (10)

as long as V �W , T �W , . . . .
The local sine-Gordon model is integrable [27], which allows for a number of exact

predictions for the out-of-equilibrium current equation (10) (for arbitrary V
Tb

and T
Tb

)

for integer values of λ [19] and all rational values of λ [21]. This provides access to the
finite temperature linear conductance. Integrability of the local sine-Gordon model
[27–29] and also the bulk sine-Gordon model, implies that both possess a rich math-
ematical structure, with, amongst other things, an infinity of commuting conserved
quantities. Being one of the simplest integrable model, the bulk sine-Gordon model
has been studied extensively and the Bethe ansatz approach that will be outlined
shortly, builds on developments of formal aspects that have been studied in great
detail. A nonexhaustive list of significant contributions include the construction of
quasiparticle modes [30,31], and the development of the thermodynamic Bethe ansatz
[32,33]. In the context of the XXZ spin lattice model, strings and the algebraic Bethe
ansatz were introduced [34–37] and adapted to the sine-Gordon model [38–41]. The
description of the impurity scattering was included in references [27–29].

Avoiding all tedious technicalities that come along with this rich mathematical
structure, in practice one achieves an exact change of the many-body basis from
a free chiral boson with bias voltage (states incoming from x = −∞ towards the
impurity), to a gas of interacting quasiparticles whose thermodynamics is known
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exactly. Just as in free gases, where many-body states have the structure of Fock
states generated by modes a†p, creating single-particle plane waves with momentum
p, the many-body states can be described as collections of quasiparticles created
by modes Aa(θ), with quantum number a and momentum p parameterized by a
rapidity θ = ln p. Yet they are interacting quasiparticles, with nontrivial scattering
amongst them, which is encoded in the bulk scattering matrix S. As a consequence
the density ρa(θ) describing the thermodynamics of the gas depends in a nonlinear
way on the densities of all other particles ρb(θ

′). The out-of-equilibrium treatment
employs integrability and identifies the basis of quasiparticle modes Aa(θ) with the
following properties:

1. The many-body states generated by the quasiparticle modes are the many-body
states of a chiral right moving boson.

2. The density matrix of the free boson gas at T and V can be represented in
terms of the quasiparticle modes.

3. The many-body bulk scattering amongst quasiparticles is factorized.

4. The many-body bulk scattering amongst quasiparticles is diagonal.

5. The many-body impurity scattering is factorized and without particle pro-
duction, i.e. a single quasiparticle incoming state yields a single quasiparticle
outgoing state after impurity scattering.

Finding the basis turns out to be quite different when λ is an integer, and when
it is a positive rational number.

Diagonal case: λ ∈ N
The solution to the “integer” local sine-Gordon model [19], with λ ∈ N, involves

two quasiparticles, a soliton and an antisoliton A±(θ), carrying an electric charge

±qs = ±
√

8πK
β2 respectively, together with a collection of nb = λ− 1 neutral bound

states (A+, A−) called breathers.

Off-diagonal case: λ ∈ Q+

The only recently achieved solution of the “fractional” local sine-Gordon model
[21], involves N quasiparticles with a complex spectrum, whose structure depends
on arithmetic properties of the rational sine-Gordon parameter λ. In the case
λ < 1, and introducing the integers κi of the continued fraction decomposition
λ = 1/ [κ1 + 1/ {κ2 + ...(+1/κα)}], the number of modes is N = 1 +

∑α
i=1 κi. The

first quasiparticle is a neutral soliton As carrying energy. There are two charged
quasiparticles A±c , with charge ±q × qs where q is the denominator of λ, and a col-
lection of N − 2 additional neutral particles, carrying only entropy, that are also
necessary for the proper description.

Once the correct quasiparticles have been identified, a closed formula for the
linear conductance of the Landauer-Büttiker type can be obtained. We here present
the general formula [21] valid for the off-diagonal case λ < 1

G(T ) = G0 Aλ
∫ ∞
−∞

dθ Tb(θ) [−∂θfc(θ)] , (11)

where Aλ is a known numerical constant, and Tb(θ) is the transmission probability
of a charged quasiparticle across the impurity, that is also known. The Fermi fac-
tor fc(θ) = 1

1+eεc is expressed in terms of pseudo energies εa(θ) (a = 1, . . . , N) that
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Fig. 2. Top left panel: Exact universal linear conductance G0GK(T/Tb) of the local sine-
Gordon model for λ = 3

17
orK = 17

20
= 0.85, obtained from equations (11) and (12). Top right

panel: θ-dependence of the pseudo-energies εa of the nine quasiparticles that are required
to describe the system, shown here in the limit V

T
= 0. The two charged quasiparticle have

degenerate spectrum (dashed line). Bottom panel: The corresponding total densities Pa of
quasiparticles (left) and the densities ρa = Pafa of occupied quasiparticles (right).

entirely determine the thermodynamical properties of the gas. They are in turn deter-
mined by a set of nonlinear coupled integral equations, the thermodynamic Bethe
ansatz equations,

εa(θ) = δa,s e
θ − 1

2π

N∑
b=1

Kab ? ln
(

1 + eµa−εa
)
, (12)

where ? denotes a convolution in rapidity space. The kernel Kab(θ) is known exactly
and encodes the effect of the interaction among the quasiparticles. The chemical
potential reads µa = q V2T (δa,N+1 − δa,N ).

We use the case K = 17
20 = 0.85 or λ = 3

17 = 1/ [5 + 1/(1 + 1/2)] involving
1 + 5 + 1 + 2 = 9 quasiparticles, to illustrate the procedure for obtaining the conduc-
tance. By numerical integration of the thermodynamic Bethe ansatz equation (12)
one obtains the pseudo-energies, leading to the conductance G(T ) equation (11),
see Figure 2. The same procedure but for λ = 1

3 and 1
4 leads to the dashed lines

in Figure 6.
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3 Spinless fermions on a lattice

The fermionic many-body model we consider is given by the Hamiltonian

Hhom = −t
∑
j

(
c†j+1cj + c†j cj+1

)
+ U

∑
j

(nj − 1/2) (nj+1 − 1/2) . (13)

We used standard second-quantized notation with c†j and cj being creation and anni-

hilation operators on site j respectively and the local density operator nj = c†j cj .
The nearest-neighbor hopping amplitude is denoted by t and the two-particle inter-
action by U . We shifted the local density in the interacting part by 1/2 such that the
Hamiltonian is particle-hole symmetric at half filling ν = 1/2. The lattice constant is
set to a = 1.

In the thermodynamic limit, if the sums over j in equation (13) run from −∞
to ∞ the homogeneous model can be solved by the Bethe ansatz from which the
Tomonaga-Luttinger liquid parameter K(U/t, ν) can be extracted (this also holds for
the renormalized velocity v, which we, however, are not interested in) [8]. At half
filling, which we mainly consider, it is given by

K =

[
2

π
arccos

(
−U

2t

)]−1
. (14)

The model belongs to the Tomonaga-Luttinger liquid universality class for −2 <
U/t < 2. For other fillings K(U/t, ν) can be computed by numerically solving a set
of integral equations and the model is a Tomonaga-Luttinger liquid for all U/t > −2
[8]. For later use we report the expansion of K in U/t for arbitrary filling [5]

K = 1− U

πvF
[1− cos (2kF)] +O

(
[U/t]2

)
, (15)

with the Fermi velocity vF = 2t sin kF and kF = νπ .
The formalism we use below to compute the temperature dependence of the linear

conductance of the model equation (13) complemented by a local impurity, employs
a transport geometry in which the interacting wire is connected to two semi-infinite
noninteracting leads. We restrict the interaction to N − 1 bonds between the sites
j ∈ [1, N ] and in the second sum in equation (13) the site index thus runs from
j = 1 to j = N − 1. However, the lattice site in the first sum runs from −∞ to
∞. The sites j ≤ 0 form a left lead and the sites j ≥ N + 1 a right one. Due to
the abrupt change of the two-particle interaction at the two contacts at sites j = 1
and j = N the T = 0 conductance of the setup does not take the unitary value.
The inhomogeneity of the two-particle term leads to a single-particle backscattering
which masks the effect of the single impurity to be introduced into the interacting
part of the wire. We therefore smoothly turn off the interaction over Nc � N lattice
sites when approaching the contacts at j = 1 and j = N from the center on the
interacting chain. As discussed in reference [42] the details of the envelope function
do not matter as long as it is sufficiently smooth. This way the T = 0 conductance in
the absence of an impurity can be tuned arbitrarily close to the unitary limit. In the
numerical results shown below, me made sure that the relative deviation from the
unitary conductance is less than 10−4. Note that for this setup with “adiabatically
connected” noninteracting leads the unitary conductance is given by G0 = e2/h,
instead of Ke2/h as obtained for the model of Section 2 in which the interaction is
not restricted to a subsystem [42–44]. One can expect that this difference does not
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affect the universal properties after adding a local impurity. Below we will confirm
this by directly comparing the conductance and the β-function of the present model
with the one of the local sine-Gordon model.

The system is complemented by a hopping impurity on the bond from site N/2
to site N/2 + 1 (N even) with the Hamiltonian

Hhop = t′
(
c†N/2+1cN/2 + c†N/2 cN/2+1

)
, (16)

or a site impurity with Hsite = V n(N+1)/2, N odd. In the first case the total hopping
across the central bond is t− t′. A t′ 6= 0 or V 6= 0 leads to a nonvanishing impurity
backscattering. For U = 0 the transmission amplitude and thus G(T ) for both types
of impurities can be computed exactly using single-particle scattering theory (see,
e.g. Ref. [45]).

To computeG(T ) of the lattice model for U 6= 0 we use Matsubara Green functions
and the functional RG approach [46]. The technical details of the application of this
method to study transport properties of lattice models of inhomogeneous Tomonaga-
Luttinger liquids are given in references [47–49]. We here only present the basic idea.
The relevant steps are the following:

1. Express the partition function as a coherent state functional integral.

2. Integrate out the noninteracting leads by projection. They are incorporated
exactly as lead self-energies in the propagator of the interacting part.

3. Replace the reservoir-dressed noninteracting propagator of the system by one
decorated by a cutoff Λ. For the initial value Λi, the free propagation must
vanish; for the final one Λf , the original propagation must be restored. One
often uses a cutoff in the Matsubara frequency. When Λ is sent from ∞ to 0
this incorporates the RG idea of a successive treatment of energy scales.

4. Differentiate the generating functional of one-particle irreducible vertex func-
tions with respect to Λ.

5. Expand both sides of the functional differential equation with respect to the
one-particle irreducible vertex functions. This leads to an infinite hierarchy of
coupled differential equations for the vertex functions.

The hierarchy of coupled flow equations presents an exact reformulation of the quan-
tum many-body problem. Integrating it from Λi to Λf leads to exact expressions for
the vertex functions from which observables such as the conductance can be com-
puted. In practice, truncations of the hierarchy are required, resulting in a closed
finite set of equations. The integration of these leads to approximate expressions for
the vertices and, thus, for observables.

Truncating the infinite hierarchy of equations we neglect the flow of three- and
higher particle vertex functions and replace the two-particle vertex by a static one
of nearest-neighbor-type. The resulting flow equations and the expression of G(T )
in terms of the vertex functions can be found in references [47,48]. In this trunca-
tion the self-energy (single-particle vertex function) is independent of the Matsubara
frequency and can be interpreted as an effective single-particle potential which is gen-
erated during the RG flow by the interplay of the bare impurity and the two-particle
interaction. At the end of the flow (for Λf) a single-particle scattering problem in
the presence of the effective potential has to be solved. This provides a compara-
tively simple picture of a many-particle correlation effect. Integrating the coupled
flow equations for the effective interaction and the self-energy in the limits t′ → 0 or
V → 0 (weak impurity) and t′ → t or V →∞ (weak link) it was shown analytically
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Fig. 3. Left panel: Strong (black) and weak (red) impurity exponents as a function of
U/t for two different fillings ν = 1/2 and 1/4. Right panel: One-parameter scaling plot
of the conductance. Open symbols represent results obtained for U/t = 0.5, ν = 1/2, and
different T and amplitudes of the site impurity V , while filled symbols were calculated for
U/t = 0.851, ν = 1/4. Both pairs of U/t and ν lead to the same K = 0.85. The solid lines
shows the universal conductance curve of the local sine-Gordon model for K = 0.85 (see the
upper left panel of Fig. 2).

that the approximate functional RG reproduces the power-law scaling underlying
equations (2) and (3) [50]. In the effective single-particle picture the power laws fol-
low from scattering off an effective potential which during the RG flow develops a
long-ranged oscillatory part [47,48] (see also Ref. [23]) out of the purely local bare
impurities (hopping or site). Further away from the bare impurity the long-range part
leading to the power-law scaling of G(T ) is cut off at a scale ∼ 1/T .

In the left panel of Figure 3 we show the exponents 2(K − 1) and 2(1/K − 1)
as functions of U/t for two different fillings, obtained by inserting the Bethe ansatz
result for K (“exact”) as well as by numerically computing G(T ) from the functional
RG and extracting the exponent (“FRG”). For sufficiently small |U/t| the agreement
is excellent, and the deviations from the exact results are small up to moderate values
of the interaction. In fact, the extracted exponents agree to leading order in U/t to
the result obtained when inserting the expansion equation (15) for K.

The right panel of Figure 3 shows a one-parameter scaling plot of the conductance
in the presence of a site impurity as a function of x = T/T0(U/t, ν, V/t) with a
nonuniversal scale T0(U/t, ν, V/t) [14,17–19,48,51]. Open symbols were computed for
ν = 1/2 and U/t = 0.5, while filled ones were computed for ν = 1/4 and U/t = 0.851.
For both parameter sets one obtains K ≈ 0.85 (within the approximated functional
RG). For appropriately chosen T0 (determined “by hand”) the G(T )/G0 curves for
different V , ν, and U , but fixed K, collapse onto a K-dependent, dimensionless scaling
function GK(x). Note that the data extend over roughly 20 orders of magnitude in
temperature. In accordance with equations (2) and (3) GK(x) exhibits the limiting
behavior GK(x) ∝ 1 − x2(K−1) for x → ∞ and GK(x) ∝ x2(1/K−1) for x → 0. We
note that to prevent deviations from scaling T must be taken much smaller than
the band width 4t—the high-energy cutoff of the present model—and much larger
than a scale of order 1/N which cuts off the universal behavior at the lower end.
In the figure N = 104 was considered such that, for fixed parameters, several orders
of magnitude in T can be used for the scaling plot. We note that in addition data
for a hopping impurity can be collapsed on the curve (not shown). For fixed K this
provides a “numerical proof” of universality, that is independence on the details of
the impurity and its amplitude, the interaction strength U/t as well as the filling
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ν, within the lattice model. For the local sine-Gordon model this type of “internal”
universality can be shown analytically; see Section 2.

In addition to the functional RG data for the spinless fermion model (symbols)
the right panel of Figure 3 shows the universal linear conductance (divided by G0 =
Ke2/h) of the local sine-Gordon model (red line; the same data as in the upper left
panel of Fig. 2). The agreement is excellent. It is plausible to assume that the small
deviations result out of the approximate nature of our functional RG approach to
the spinless fermion model which is only controlled for small to intermediate |U/t|.
Decreasing |U/t|, i.e. bringing K closer to one, further reduces the deviation. This
indicates that the low-energy physics of both models, with T � W for the local
sine-Gordon model and vF/N � T � 4t for the lattice model of spinless fermions
with an impurity, is dominated by the same quantum critical point. The excellent
agreement “proves” universality across the models. We here compare the GK(x) of
the two models, and not the β-function, as it has a direct physical meaning (the
conductance).

After introducing the experimental quantum circuit as our third system to realize
the quantum critical point in the next section, we will show that the β-function, in
which the nonuniversal scale is eliminated, is the same in all cases and, therefore,
universality holds between all three systems. This will also confirm our expectation,
that βK is a function of g only, see Section 1.4.

4 A tunable quantum circuit: experiments

A quantum circuit composed of a short spin-polarized electronic channel in series
with a resistance (see schematic in Fig. 4) appears markedly different from a sys-
tem of interacting electrons confined to 1d. Nevertheless, at low temperatures, this
circuit is predicted to be mathematically described by the same local sine-Gordon
model [12] as a 1d metal of spinless fermions including a single impurity [5]. Such a
connection illustrates the remarkable universal character of the Tomonaga-Luttinger
liquid concept. It originates from the similar continua of bosons describing, on the
one hand, 1d fermions with short-range interactions [5,8] and, on the other hand, a
linear resistance R in a quantum circuit [52]. As a result, the two different systems
can be mapped onto the same Tomonaga-Luttinger Hamiltonian with interaction
parameter K = 1/(1 +Re2/h) [12]. In practice, the quantum circuit implementation
[20,26,53,54] constitutes an experimental test-bed that stands out in that it allows
for direct, quantitative and parameter-free investigations of the universal Tomonaga-
Luttinger liquid physics; see our discussion in Section 1.2 for other realization of
Tomonaga-Luttinger liquids.

Quantum circuits can be engineered or adjusted in-situ to cover arbitrary
strengths of repulsive interactions 0 < K < 1, through the tuning and separate
characterization of R [20,26,53,54]. For the data discussed in this minireview, we
used a robust and precise approach that consists in implementing a linear resistance
R = h/ne2 from n ∈ N integer quantum Hall edge channels in parallel [20,54]. Corre-
spondingly, the interaction parameter can take the values K = n/(n+ 1), with here
n ∈ {1, 2, 3, 4}. Note that lower values of K can be achieved through larger resistances
obtained with narrow metallic stripes (instead of ballistic channels) [53]. On a prac-
tical side, such stripes should be short enough so that any distributed capacitance
remains negligible with respect to R up to the relevant frequency scale kBT/h, with
kB the Boltzmann constant.

The impurity is realized by a quantum point contact formed in a Ga(Al)As two
dimensional electron gas, see Figure 1 of reference [20] for an electron micrograph
of the device schematically represented in Figure 4. The spin polarization is achieved
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Fig. 4. Schematic representation of a quantum circuit described at low temperature (kBT �
h/RC) by the same Hamiltonian as the local sine-Gordon model and the model 1d spinless
fermions with an impurity. In practice, a series resistance R = h/ne2 is implemented from
the parallel combination of n quantum Hall edge channels.

by immersing the device in a large perpendicular magnetic field of 2.7 T (correspond-
ing to the regime of the integer quantum effect at filling factor 3). The impurity
quantum point contact is tuned in-situ, by field effect, to partially transmit a sin-
gle electronic channel (the outer quantum Hall edge channel). It is characterized
by the unrenormalized transmission probability τ of electrons across the channel,
which is experimentally obtained from the quantum point contact differential con-
ductance GQPC = τe2/h measured at large enough dc voltage bias to suppress the
Tomonaga-Luttinger (dynamical Coulomb blockade) conductance reduction.

The interconnection between the quantum point contact and series resistance
R = h/ne2 involves a micron-scale metallic island playing the role of a floating reser-
voir merging all quantum Hall channels, which would otherwise separately propagate
along opposite sample edges. Note that the metal is thermally diffused into the GaAs-
GaAlAs heterojunction, in order to make a good electrical contact with the two
dimensional electron gas located approximately 100 nm below the surface. The geo-
metrical self-capacitance of the island C ' 3.1 fF determines the relevant high-energy
cutoff, with universal Tomonaga-Luttinger behavior emerging at kBT � h/(RC).
The knowledge of the important cutoff parameter C is experimentally obtained from
Coulomb diamond measurements of the conductance across the same island, but with
all connected quantum point contacts tuned to weak tunnel couplings [20].

This circuit can be described by the following Hamiltonian:

H = H0 +HI +HC +Henv. (17)

Here H0 represents a ballistic conduction channel

H0 = i~vF
∫
dx
(
ψ+
+∂xψ+ − ψ+

−∂xψ−
)

(18)

where ψ+(−) is the annihilation operator for the electrons moving toward (away from)
the island and vF is the Fermi velocity. HI models the backscattering at the QPC
located at x = 0, HI = ~vFr

[
ψ+
+(0)ψ−(0) + ψ+

−(0)ψ+(0)
]
, with |r|2 ' 1− τ for a near

ballistic QPC. HC is the coupling between electrons in the channel and the electro-
magnetic RC environment, HC = −Q̂(V − ∂tΦ̂) with Q̂ the total charge transferred

across the QPC and Φ̂ a bosonic operator corresponding to the time integral of the
voltage across the RC impedance. The dissipative RC environment Henv is modeled
by an infinite set of quantum LC resonators as detailed in [52]. The mapping of such
a circuit on the spinless Tomonaga-Luttinger Hamiltonian including an impurity was
first demonstrated in [12].
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Fig. 5. Experimental procedure illustrated at K = 4/5 (R = h/4e2) for three settings of the
impurity backscattering τ . Left panel: Symbols represent measurements of the conductance
across the device plotted versus temperature. Right panel: Discrete differentiation δg/δ lnT
plotted versus g = G/(Ke2/h). Symbols connected by lines are obtained from the conduc-
tance data of corresponding color in the left panel. The thick continuous lines represent a
low-pass Fourier averaging of the full data set (∼ 200 values of τ).

The prominent observable for electronic systems is the electrical conductance. In
the present context of a Tomonaga-Luttinger liquid with an impurity, a crossover from
a conductor toward an insulator is predicted to develop as the temperature is reduced,
except in the absence of interactions K = 1 (R = 0) or in the absence of any impurity
(τ = 1) [13,14]. According to the (inhomogeneous) Tomonaga-Luttinger liquid theory,
and as shown explicitly in Section 3, the conductance G along this crossover follows
a universal scaling law that only depends on the interaction parameter K [14].

Experimentally, for all implemented interaction parameter K = 1/(1 +Re2/h) ∈
{1/2, 2/3, 3/4, 4/5}, the impurity backscattering strength is spanned over the full
range τ ∈ [0, 1]. At each given setting of τ , we measure the conductance G of the
device (quantum point contact and series resistance) at several values of the tem-
perature, as illustrated for K = 4/5 (R = h/4e2) in the left panel of Figure 5 with
τ ' 0.25 (black), 0.65 (red) and 0.92 (green). Then, using data points up to tempera-
tures of at most h/(25kBRC) (in order to ascertain a universal low energy behavior),
we perform discrete differentiations δg/δ lnT for each given device setting of τ . The
result is plotted as a function of g in the right panel of Figure 5, as symbols connected
by lines corresponding to the conductance data of the same color in the left panel.
This procedure is repeated for many settings of τ , approximately 200 values for each
K. As shown in Figure 2(a) of reference [20], all data points for a given K (series
resistance) pile up on the same curve independently of the device’s tuning of τ , which
directly demonstrates an underlying universal scaling behavior. The corresponding
experimental renormalization flow β-function βK(g), shown as thick continuous lines
in the right panel of Figure 5 for K = 4/5 and in Figure 6 for K = 3/4 and 4/5, were
obtained by a low-pass Fourier averaging of the individual data points (for K = 1/2
and 2/3 see Figure 2(a) of reference [20] including a comparison with exact solutions
of the local sine-Gordon model). The quantitative agreement reached between the
experimentally derived βK(g) using a quantum circuit implementation (colored con-
tinuous lines), the exact theoretical solutions of the local sine-Gordon model (black
dashed lines), and the functional RG results for a lattice model of spinless fermions
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Fig. 6. Comparison of the renormalization flow β-functions at K = 3/4 (shifted vertically by
0.1) and 4/5 obtained experimentally by measuring a quantum circuit (colored continuous
lines), numerically by computing the conductance employing an approximate functional
RG approach to a model of interacting spinless fermions with one impurity (symbols), and
analytically by solving exactly the local sine-Gordon model (blacked dashed lines). The
asymptotic behavior equations (5) and (6) for 1− g � 1 and g � 1, respectively, is indicated
by the dashed-dotted lines.

with one impurity (symbols) is displayed in Figure 6. We emphasize that the compari-
son is free of any fitting parameters. As expected (see Sect. 1.4) the unique β-function
depends on the temperature only via the dimensionless conductance g. The parameter
free collapse of all data sets provides a convincing example of the power of emergent
universality originating from an underlying quantum critical point. This universal-
ity provides a bridge between different fields of physics, here between field theory,
quantum many-body theory of correlated Fermi systems, and experimental circuit
quantum electrodynamics.

5 Summary and outlook

There exist at least three levels from which the results presented in our minireview
can be summarized.

The highest one is the perspective of emergent universality in complex systems
resulting out of a common underlying (quantum) critical point. It bridges different
fields of physics. Our theoretical results obtained for the field theoretical local sine-
Gordon model and the condensed matter model of spinless lattice fermions with
nearest-neighbor hopping, nearest-neighbor interaction and a local impurity, as well
as the experiments on highly tunable quantum electrodynamical circuits provide a
convincing example of the power of this concept. The parameter free collapse of the
low-energy β-function of the conductance for different K, as shown in Figure 6, is
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of exceptional high quality. It explicitly shows that the underlying quantum critical
point is the same for all three systems.

The second level is the one of the physics of a local impurity in a 1d correlated
Fermi systems. Considering the two different models and the experimental emulation
we were able to shed light on the emergence of the metal-to-insulator transition. Even
if the bulk system is metallic the interplay of the single impurity and a repulsive two-
particle interaction will drive it into an insulating state. The quantum critical nature
of the transition leads to the universality within a given system. For fixed K, the
microscopic details and parameters enter the conductance only via a nonuniversal
scale T0.

The third level concerns the experimental verification of the (inhomogeneous)
Tomonaga-Luttinger liquid concept. Our discussion shows that to convincingly
demonstrate this type of physics requires experimental control, tunability, and the
access to the variable in which power-law scaling is to be shown (the rescaled tem-
perature T/T0 with a temperature scale T0 encapsulating microscopic details) over
several orders of magnitude. In this respect the emulation by quantum circuits is
clearly superior to the attempts to directly realize (quasi-) 1d fermionic systems in
semi-conductor-based heterostructures, self-organized atom chains on surfaces, and
unidirectional long molecules (e.g. metallic carbon nanotubes). We are not aware of
any experiments on such systems which show Tomonaga-Luttinger liquid behavior in
a way which is equally convincing as the emulations discussed here (see also Ref. [26]).
In fact, many of the interpretations of experimental data on (quasi-) 1d fermionic
systems in the light of Tomonaga-Luttinger liquid theory have been questioned.

As a next step it would be very interesting to emulate other models of inhomoge-
neous Tomonaga-Luttinger liquids. Even introducing a second localized impurity is
expected to lead to new effects associated to resonant transport (see Refs. [24,48] and
references therein). In this case no exact solution for any model properly describing
this situation is available. In fact, different approximate approaches lead to conflicting
results on the emergence of a regime of energies with a novel scaling exponent. The
experimental emulation of this setup could provide a very useful contribution to settle
this issue. Novel fixed points with unique scaling exponents have also been predicted
for Y-junctions of three Tomonaga-Luttinger liquids (see Ref. [24] and references
therein). Experimentally realizing those would also be of great interest. Furthermore,
experimentally emulating correlated 1d fermions in (more) complex nonequilibrium
situations, such as periodically driven systems, could help to deepen our understand-
ing of the interplay of two-particle interactions and nonequilibrium. Currently, the
number of tools to investigate such systems theoretically in a controlled way is very
limited.
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