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Abstract. Parafermions are fractional excitations which can be
regarded as generalizations of Majorana bound states, but in contrast
to the latter they require electron-electron interactions. Compared to
Majorana bound states, they offer richer non-Abelian braiding statis-
tics, and have thus been proposed as building blocks for topologically
protected universal quantum computation. In this review, we provide
a pedagogical introduction to the field of parafermion bound states in
one-dimensional systems. We present the necessary theoretical tools for
their study, in particular bosonization and the renormalization-group
technique, and show how those can be applied to study parafermions.

1 Introduction

In the context of topological phases, Majorana bound states have been one of the
most exciting research fields of the past decade [1-3]. They can be experimentally
realized, for instance, by coupling either the helical edge state of a two-dimensional
topological insulator [4,5], or a nanowire with Rashba spin-orbit coupling [6-8], to a
superconductor via the proximity effect. Aside from the fundamental interest in a new
particle species, this research derives much of its relevance from the enormous poten-
tial of Majorana bound states for topological quantum computation [9-11]. Indeed,
qubits can be encoded in the degenerate ground states furnished by a collection of
Majorana bound states, and thanks to their non-Abelian exchange statistics, certain
qubit operations can be performed in a topologically protected way by braiding them.
However, Majorana bound states do not exhaust the full potential of topologically
nontrivial bound states, and in recent years, important results have been obtained
about their fractionalized cousins, the parafermionic bound states [12]. A set of
operators x1, ..., Xxn is said to satisfy Z,, parafermionic exchange statistics if

XXk = 62771'/71

-1
Xexi, Xp=1 xi=x7 (1)
for 1 < j < k < N. According to this definition, Majorana bound states are Zo
parafermions. However, whereas Majorana bound states can exist in noninteracting
systems, Z,, parafermions with n > 3 do require electron-electron interactions. This is
why most proposals for their realization are based on strongly correlated phases such
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as fractional quantum Hall systems as host materials [13-21], but nanowires [22-29]
and helical edge states [30-39] with interactions have been proposed as well.

The most important features of parafermions and some of their proposed exper-
imental realizations have already been discussed in several excellent recent reviews
[10-12]. Therefore, rather than giving an exhaustive overview of the recent litera-
ture, the aim of this text is to provide a pedagogical introduction to some of the
theoretical tools necessary for the study of parafermions. Historically, parafermions
originate from conformal field theory [40,41] but recent years have seen proposals for
parafermionic bound states which are amenable to simpler theoretical methods. Since
these proposals rely mostly on the technique of bosonization [42—44], this review will
present the essential steps for using bosonization to study parafermions.

The bosonization identity is a remarkable exact mapping between fermionic
and bosonic operators in one dimension [44]. It is closely related to the Jordan-
Wigner transformation and is at the heart of Luttinger theory [45,46], which allows
a description of one-dimensional gapless quantum systems at low energies for arbi-
trary interaction strength [47]. In fact, metallic one-dimensional systems have a large
degree of universality and bosonization directly connects bosonic, fermionic and spin
chains [48]. The properties of such gapless one-dimensional systems have been the
subject of many research projects over the past decades.

The aim of Luttinger theory is the description of gapless systems. However,
parafermionic bound states in 1D systems are typically bound to domain walls
between two regions with topologically distinct spectral gaps. Hence, their study
makes it necessary go beyond metallic 1D systems and embark on a deeper study of
gapped systems. We will present the renormalization-group analysis as an instrument
to find the conditions for opening gaps in 1D systems, and we will discuss different
methods to study them. We will then proceed with a simple example on how to derive
the parafermionic bound states from the bosonized expressions.

This review is structured as follows: in Section 2 we will present a brief, not nec-
essarily exhaustive, summary of the recent research in this field. In Section 3, we will
discuss bosonization and in particular how to apply it for gapped one-dimensional
systems. We will then move on to present a simple calculation for deriving the exis-
tence of parafermionic states in an example system in Section 4. We will conclude
the review in Section 5.

2 Overview

The simplest model containing Majorana bound states is the Kitaev chain [49]. Tt
consists of spinless fermions hopping on a 1D lattice and coupled by p-wave super-
conducting pairing. Such a chain can be in two topologically distinct phases, and
domain walls between different regions bind Majorana bound states. This prototypical
model is related via a (nonlocal) Jordan-Wigner transformation to the more mun-
dane quantum Ising model. The latter contains two competing terms, an exchange
term oc 5757, and a perpendicular magnetic field term oc S7. The two topological
phases of the Kitaev chain can be traced back to the ferromagnetic and paramagnetic
phases of the quantum Ising chain, which are separated by a critical point at which
the spectrum of the system becomes gapless.

An Ising spin on a given lattice site can point into one of two possible directions,
corresponding to the states |[1) and ||). To generalize this concept, one can define
more general “clock variables”, which owe their name to the analogy to a hand of
a clock which is allowed to point in n possible directions. The resulting model is
called a Z,, clock model and can display similar critical points as the Ising model.
The corresponding critical theories were first studied in 1985 [50] using conformal
field theory, and parafermions were identified as their excitations. However, in those
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models, parafermions are not the only excitations and their connection to the lattice
parafermions of equation (1) is nontrivial [12,51].

Read and Rezayi [52] demonstrated that quasihole states in quantum Hall sys-
tems at certain fractional filling factors (in particular v = 12/5 and v = 13/5) obey
parafermionic exchange statistics. This prediction was made possible by the preced-
ing important insight that wave functions of fractional quantum Hall states are in
fact closely related to correlation functions of certain conformal field theories [53].
Nevertheless, these fractional filling factors are not very robust in experiments, and
their excitations have not been studied experimentally so far.

One option to obtain interface bound states with parafermionic exchange statis-
tics is to replace the noninteracting electrons which give rise to Majorana bound
states in the Kitaev chain by fractionalized Laughlin quasiparticles. Laughlin states
occur at fractional filling factors v = 1/n with odd n, and are easier to observe exper-
imentally. Starting out from a similar idea as in the Kitaev chain, namely from a 1D
Laughlin edge state consisting of different regions which are gapped out by either
superconductivity or some form of backscattering, one can show that the resulting
interface bound states are Zs, parafermions [13]. Several experiments have indeed
shown in recent years that it is possible to induce superconductivity in quantum Hall
edge states [54-56].

In principle, such quantum Hall edge states can form the basis of more advanced
parafermion chains. The resulting coupling of parafermionic interface states then
leads to parafermionic lattices, which have been studied in several recent works [57—
62]. Moreover, it was shown that purely fermionic, Hubbard-like chain models can
also give rise to exact parafermionic bound states, albeit with a less rich non-Abelian
braiding statistics [63—66]

In the limit of large system length, parafermions span a ground state space with a
topologically protected degeneracy. This makes them ideal candidates for topological
quantum computation [11]. Unfortunately, braiding is difficult, but not impossi-
ble, in a 1D system [13,67]. Therefore, several theoretical proposals have studied
the possibility of using fractional quantum Hall edge states as building blocks for
more complicated 2D lattice structures. It has been shown that coupling between
parafermions can then fuse them into Fibonacci anyons, whose braiding properties
could allow universal quantum computation [16].

The fact that fractional quantum Hall edge states can host topologically protected
parafermions is owed to a large extent to the fact that they are not true 1D systems,
in the sense that such a chiral motion of quasiparticles is only possible because it
happens at the edge state of a two-dimensional system. In contrast, several important
theoretical works [68-70] have argued that even interacting strictly 1D systems should
not carry more complex excitations than Majorana bound states. This, however, does
not seem to entirely rule out interface states in 1D systems satisfying parafermionic
exchange statistics. However, those interface states are then necessarily not fully
topological, in the sense that a part of the ground state degeneracy can be lifted by
local perturbations.

3 Bosonization

Bosonization was derived as an exact mapping between fermionic and bosonic fields
in one dimension [71]. The bosonization identity shows that chiral fermionic operators
can be expressed as exponentials of bosonic operators. The usefulness of bosonization
for more exotic states like parafermions is a consequence of the fact that functions
involving exponentials of bosonic operators can be used to construct quasiparticle
operators with rather general exchange statistics, parafermions being one of them.
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In the following, we will present a pedagogical example of how to construct
parafermions in a simple 1D system. Our starting point will be the edge state of
a two-dimensional topological insulator, where electrons with opposite spins travel in
opposite directions. It has been known since the seminal work by Fu and Kane [72]
that the superconducting proximity effect and a magnetic field generate spectral gaps
with different topological invariants in this system, and that the interfaces between
regions with different gaps host Majorana bound states. In the absence of electron-
electron interactions, the edge state of a two-dimensional topological insulator can
be described by the Hamiltonian,

Ho = ~ivr [ do [t6}h(2)0,0r(@); — 10} (2)0un (2] )

where ¥g 1 (x) are field operators for right-moving spin-up (left-moving spin-down)
electrons, and vp is the Fermi velocity. This Hamiltonian has a few noteworthy
features: firstly, since right-movers and left-movers have opposite spins, the Nielsen-
Ninomiya (“fermion doubling”) theorem implies that this Hamiltonian cannot emerge
as the continuum limit of a 1D lattice Hamiltonian [73]. Nevertheless it can describe
edge electrons in topological insulator edge states because the host materials in this
case are two-dimensional. Secondly, the operator He has time-reversal symmetry if
the latter is defined as acting on the operators as Oy ,(2)0~! = £11, g(x). Thirdly,
we have linearized the spectrum and this has led to an infinite “Dirac sea”, i.e., the
spectrum of Hg is unbounded from below. To cure a trivial divergence of the ground
state particle number, we have therefore used fermionic normal-ordering, which is

defined as,

YL (2)000a(2)F = YL (2)00va () — (], (2)0uta(@))o, (3)

where o € {R, L} and the subtracted quantity is the (divergent) expectation value
with respect to the Dirac sea. However, it will turn out that the infinite spectrum of
H,) has more subtle effects which will make it necessary to introduce a short-distance
cutoff and bosonic normal ordering later.

Bosonization rests on identifying the fermionic fields g r,(z) with bosonic fields.
To set the stage for this transformation, we start with a seemingly unrelated Hamil-
tonian, namely that of a harmonic string, which is a sum of kinetic energy density
and potential energy density,

Us
Hbos = %

/mm@awmm% (4)

where vy is the speed of sound, and the momentum density and position operators
are canonically conjugate, [¢(x),(y)] = id(x — y). This Hamiltonian can easily be
diagonalized in terms of bosonic normal modes by, where p = 2mn/L (n € Z) is the

wave vector and L is the length of the system. Note that [b,, b;r),] = 0pp. Defining a
new bosonic operator 0(z) via 0,6(z) = wll(z), one finds that Hyos = >, vs |p|b;)bp
where [42],

) Lip|l1 )
ola) =~ SR ), ®
P

_im Lipl 1 _appiyz —ipe g
0(z) = T zp: o |p|e e (b} —b_p). (6)
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To ensure convergence in the summation over momenta, it was necessary to introduce
a short-distance cutoff a. The fields obey the commutation relation,

T

[#(2), 0(y)] = — 5 sgn(z —y). (7)

From these fields, it is straightforward to construct chiral right- and left-moving
fields by defining ¢, = a¢p — 0, where a = R, L = +, —. The latter are indeed chiral
because the Heisenberg equation of motion 0y, (,t) = i[Hyos, 9o, t)] implies that
these fields propagate only in one direction, o (2, t) = o (x — Qust).

At this point, we can introduce the bosonization identity, which provides an exact
mapping between the chiral fermions fields ¥ ; and the chiral bosonic fields ¢g, .
The mapping is given by

1, 1, A
o) = —iva(@) — e—iad(x)+ib(z) (8)

V2ma 2ra

where ¢ is again the same small distance cutoff as introduced before. A proof that
bosonization is really an operator identity can be found in reference [44]. This identity
also allows us to deduce that the time-reversal operator acts on the bosonic fields as
O¢(z)0~ ! = ¢(x) + 7/2 and OF(z)O~! = —f(x) + 7 /2.

As a proof of principle, this expression already allows a calculation of the fermionic
anticommutator. Splitting the chiral fields ¢, = ¢ + ¢ into parts ¢ (z) containing
only creation operators b;, or only annihilation operators b, respectively, one finds
the commutator,

27[a + ia(x — y)]) (9)

(03 (2), 0 (4)] = baew In ( o

B _ oA+B[ABI/2 (

Using the Baker-Campbell-Hausdorff formula e“e valid in this form

if [A, B] € C), and assuming that L > x — y, a, one can show that

1 a

a2+ (z — y)2 206 —y). (10)

{Va(z), vl ()} =

Two remarks about this result are in order. Firstly, in equation (8), we neglected
so-called Klein factors. The latter would in fact be necessary to find the vanishing
anti-commutators {¢.(x),¥s(x)} = 0 and {¢L(x),7,b;{(y)} = 0. For many practi-
cal calculations, Klein factors are a trivial modification of the bosonization identity
because they do not evolve in time and drop out when bosonizing expressions where
the numbers of right- and left-movers is separately conserved, such as 9, ()} (y).
We will ignore them in the following, but a more careful treatment of Klein factors
is not difficult and can be found in reference [44].

Secondly, one sees that the correct anticommutator is only obtained when taking
the limit a — 0 at finite x — y. It will remain true, even for bosonizing more com-
plicated functions of fermionic fields, that a must be assumed to be much smaller
than the distance between the points z and y at which the field operators are eval-
uated. This means that effects at length scales smaller than a cannot be described
using bosonization, so the presence of a short-distance cutoff makes it an effective
low-energy theory.

We have argued in this section that the bosonization identity equation (8) can be
used to translate between fermionic and bosonic operators. In the following sections,
we will show why this is useful.
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3.1 Bosonic normal ordering

When discussing the fermionic anticommutator, we have already encountered one
of the problems which can arise when naively using the bosonization identity on
products of fermionic operators evaluated at the same spacetime points, e.g., the
density operator 1/1};(:17)77/1 r(z). Similar products occur in the kinetic energy operator,

%aﬂbR. Bosonic normal ordering is a convenient technique to rigorously bosonize
such expressions.

The bosonic operator Hyos has a unique vacuum state satisfying b, |0) = 0 for all
p. This makes it possible to define bosonic normal ordering by the prescription of
shifting all annihilation operators to the right, and all creation operators to the left.
For example,

b} bpybp,bT = b1 b1 by, by, (11)

P37 py- P17P4

Note that order of operators within the product of creation operators (or annihila-
tion operators) on the right hand side is irrelevant since they mutually commute.
By construction, the vacuum expectation value of such a normal-ordered product
vanishes.

Normal ordering is particularly important for exponentials of operators. For the
operator occurring in the bosonization identity one finds using the binomial formula,

) e ix)™ x© n iN)™ GNP (oY (o YR m
:ez)«pa: _ Z{)(TL?(<)O(J§ + s0;)77, _ ZO Z_O ( ) ( )m'(n(fan)l)'(@a)

— Pl giha (12)

This result also follows from the fact that linear functions of creation and annihilation
operators, such as ¢ (), commute under normal ordering. Next, we use again the
Baker-Hausdorff formula to combine the exponents. Finally, taking the limit L >
x — ¥, a, one finds [44]

\2/2
:eiAWa: — <L) Mo (13)

2ra

Using the expansion e*?e = 1 4+ i\p, + (...), one can easily see that the vacuum
expectation value of a normal-ordered exponential of a bosonic operator is always
one: ((€?¥«(®)") = 1. Therefore, we can also write e?*?e" = ¢A¢a / (¢ir?a) One can

analogously derive an equation useful for normal ordering products of exponentials,

—(A2+2%)/2 ; AN

ihea @) pixgaty) _ (L 2rla +iay = )N . idpa(@)+iNea)-
27a L ’ ’

(14)

The advantage of normal ordering is that all cutoff-dependent and potentially diver-
gent terms have been extracted from the operators. The limit £ — y needs to be
taken with care in the prefactor, but in the normal-ordered operator, it can be taken
straightforwardly.
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3.2 Density and kinetic energy

Using equation (14), it becomes simple to directly derive bosonized expressions for
bilinear fermionic operators. As a first example, we consider the fermionic density
operators. We start from the product,

L iga(@) gmiva(y) _ etee@emionl): (15)

vl (@)va(y) = 5 — 27[a + iy — )]

As before, we should take the limit a — 0 first and afterwards perform a Taylor
expansion to first order in x — y. Finally, one performs fermionic normal-ordering to
eliminate a constant term. Then, we find for the normal-ordered fermionic density,

(%

L@ Pa(@)l = = - O0pa(®). (16)

After this warm-up exercise, let us investigate the fermionic kinetic energy in a similar
fashion. We start by differentiating equation (15) with respect to y and assume as
before that a < x — y,

1
ia(y — x)

UL (@)D baly) = = {C“

_ ~e’i4pa (ZE) efiipa ("/) —+
21 | (y —2)* '

. eiPa(®) o —ipal(y) :
(17)

Next, we have to expand the exponentials up to the second and first order in z — y,
respectively,

. 2 2
- ipa(T) ,—i C - . wy —x y—x .
e @eten®) 1 iy — a)gl (o) — W ) - W e

90,00 il (2) — (y — o)l @) (18)

Note that the constant term in the first line drops out when using fermionic normal
ordering. We now consider the kinetic Hamiltonian He in equation (2) for a linear
spectrum. We first rewrite it in a hermitian form,

avp % .
H, = Z - /dx [71 ﬂ/i:&(l‘)@xd)a(l’)* + h.c.]. (19)
Taking into account that the fields o, (z) are hermitian, we find the well-known result
v . o ' o |
Ha= 10 Z/dw-[awwa(@P. = o /d:c {10.0(2)]% + [00(x))%},  (20)

showing that the noninteracting fermionic Hamiltonian (2) is identical to the bosonic
Hamiltonian (4) if we identify the Fermi velocity vp with the sound velocity vs.

Using bosonization it becomes almost trivial to incorporate the effect of electron-
electron interactions. The essential, and perhaps surprising, insight is that, as shown
in equation (16), the bilinear fermionic density operator is proportional to a lin-
ear bosonic operator. This means that density-density interactions, being quartic in
fermionic operators, become quadratic in terms of bosonic operators.

If the electron—electron interactions are weak, one can use equation (2) as a
starting point and project the fermionic interaction Hamiltonian onto the basis of
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right-movers and left-movers near the Fermi points. Then, one mainly needs to
consider two types of interactions,

(wlﬂl}a)( L¢a) X (ax@oz)2
W) Whar) o (020L) (Ospr): (21)

The first line involves scattering processes with momentum exchange |q| < kr,
whereas the processes in the second line can happen either with |¢| = 2kr or with
|g| = 0. Combining these interaction terms with the bosonized version of the kinetic
Hamiltonian (20), one finds a result of the form,

M=o [ [K:wxe)?: (00 (22)

The “Luttinger liquid” Hamiltonian Hj, differs from equation (20) in two important
points: a change of the effective sound velocity v and the emergence of the so-called
Luttinger parameter K. For weakly interacting fermions, K and v are determined by
the (unperturbed) Fermi velocity vg as well as by the Fourier components near ¢ = 0
and |g| & 2k of the interaction potential between the physical electrons. Fortunately,
however, the validity of the Hamiltonian (22) is not limited to weakly interacting
fermions: it was shown by Haldane [47] that equation (22) can describe all gapless
1D quantum systems at low energies if one considers K and v as phenomenological
parameters.

Interactions have a subtle effect on normal ordering as well. The operator Hyy,
is bilinear, but not diagonal in the operators b, and b;;. Indeed, since it contains

“pairing” terms proportional to b,b_, and b;bi it has to be diagonalized using

p’
a Bogoliubov transformation, which leads to new eigenmodes b, = f(b,, bT_p). This
means, however, that the respective vacuum states of b, and b, will differ for K # 1.
Therefore, we will assume in the following that normal ordering is understood to be
with respect to the eigenmodes b, of the interacting system.

It is worth pointing out that the Luttinger Hamiltonian (22) can also be used
to model fractional quantum Hall edge states of the Laughlin sequence if one takes
into account that for filling factor v = 1/n (with odd n) the canonical commutation
relation (7) between the phase fields is modified to [¢(x), 0(y)] = —imsgn(z —y)/(2n).

3.3 Renormalization group analysis

A renormalization group (RG) analysis is one of the most important tools for analyz-
ing correlated systems [74,75]. By systematically integrating out high-energy degrees
of freedom, it will allow us to derive effective low-energies Hamiltonians from which
one can then determine the possible phases of Hamiltonians in the presence of dif-
ferent kinds of interaction terms. In view of parafermions in helical edge states (of
a topological insulator or a quantum Hall system), the most important interaction
terms which drive transitions to topological phases are superconducting pairing and
backscattering of single particles or particle pairs.

Single-particle backscattering corresponds to an operator o Qﬂng. In the helical
edge state of a topological insulator, right- and left-movers have opposite spins, so
this term can be generated by a magnetic field applied perpendicularly to the spin
quantization axis. However, single-particle backscattering changes the total momen-
tum by 2kp, so it is kinematically allowed only if the chemical potential is near the
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Dirac point (kr = 0). Bosonizing this term is straightforward and leads to

Hyps = Q%a /dm cos[2¢(x)]. (23)

Hyy,, violates time-reversal symmetry because © H1,,© ! = —Hyp,. The combination
of electron-electron interactions and spin-orbit coupling can also give rise to two-
particle backscattering, described by interaction terms Haps o w;(awwg)(am)m +
h.c. It is time-reversal symmetric but still breaks spin conservation, which is why spin-
orbit coupling is essential [33]. Note that the derivatives of the fields appear naturally
due to the Pauli principle: Hops can be regarded as the continuum limit of a lattice
backscattering term which acts on fermions on neighboring lattice sites.

As Hops involves derivatives, bosonizing it requires careful normal ordering. As in
equation (17), one starts by bosonizing Haps assuming that all four fermionic fields
are located at different positions 123 4. Afterwards, one takes the limit 21234 —
in the completely normal ordered expression. The result then is

Hopy = 22 / dar cos[4e(x)]. (24)

Let us assume we start with an electronic system with density-density interactions,
to which we add one of the terms corresponding to backscattering. Therefore, we start
from the general Hamiltonian,

Hyp = o [ do [10.0)% +(0:6)"]
H, = %/dmcos[%«b(w)] = 2:_32 /dxcos[Q)\\/Eé(x)]

vg 2ma MK ~
= %Z 5 (L> / dz’ cos AWK ¢(z)); (25)
where we defined ¢ = qb/\/f and # = v/ K0 to diagonalize Hy,,. With this definition,
g has the dimension of energy and § = ag/v is dimensionless. The model contains a
short-distance cutoff a. The main idea of an RG analysis is to investigate the depen-
dence of the coupling parameter § on such a cutoff. Normal-ordering is convenient for
such an RG analysis as it allows us to extract the cutoff dependence of an operator.
Perturbative RG rests on the principle that physical quantities should remain
invariant under the choice of cutoff, provided that the coupling constants are changed
accordingly. A possible starting point is the S matrix in the interaction picture [76]

S—Texp|-i [ av), (26)
oo

where V(t) is the perturbation operator with time evolution governed by the unper-
turbed Hamiltonian V(t) = e!fotVe=Hot Moreover, T' denotes the time-ordering
operator. In our case, we take V = Hy and Hy = Hpr. Since we are using perturbation
theory, we can expand this for small g,

1
SA14S0 LS =1 i/dtHg(t) -3 /dtldthHg(tl)Hg(t2). (27)
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To investigate the RG flow, we consider S as a function of a and §. Demanding its
invariance under change of cutoff, our aim is to find a renormalization of the coupling
constant in such a way that

S(a,f]) :S(afda,§+d§), (28)

where da < 0. Since all operators are normal-ordered, we can directly read off the
cutoff dependence. The first order term gives us the condition Sél)(a,g) = Sél)(a -
da, g + dg). Since both sides contain the same integral, we simply have to compare

the prefactors,

i <2M>A2K _iv(g +dg) (27r(a - da)>A2K7 (29)

C2ma? \ L 2m(a — da)? L

which leads to the scaling equation dg = (A2K — 2)gda/a. We parameterize the cutoff
as a(f) = ape™*, where ag is some initial cutoff. This leads to da = —ad{ and to the
flow equation

dg o

— =(2-XK)g. 30

G2 wK)g (30)

By construction, increasing the short-distance cutoff, i.e., to going to lower energy
scales, corresponds to a positive d¢ > 0. Hence, the flow equation tells us that, depend-
ing on A2K the coupling constant § may increase, decrease or stay invariant. In the
former case, i.e., for K < 2/)\?, the perturbation is called RG-relevant. If the RG flow
can be continued the zero energy, the effective coupling constant will then increase
exponentially, and the phase at low energies will be determined by the coupling
Hamiltonian H,.

If, on the other hand, one finds dg/d¢ < 0, the perturbation is said to be irrelevant
and can be treated as a small perturbation at low energies. The case where dg/d¢ =0
is called marginal. In this case, the relative importance of Hy; and H, remains
identical under the change of cutoff, so the RG analysis, at least up to this order,
yields no answer regarding the low-energy phase, and a second-order RG analysis
is necessary. Such a second-order treatment also leads to a renormalization of the
Luttinger parameter K and reveals that the phase transition between the phase where
H, is RG-irrelevant and the phase where H, is RG-relevant is of Kosterlitz-Thouless
type [42].

3.4 Spectral gaps

What happens when a cosine term becomes RG-relevant? The short answer is that
the system becomes gapped, but in fact there are different, equally interesting ways
to see this. Adding the cosine term breaks the conformal symmetry of Hyj but leaves
it Lorentz-invariant. This restricts the spectrum to the Lorentzian form,

E(k) = /(vk)? + E2 (31)

with some gap energy F,. For a Luttinger liquid, F/, = 0, but in the presence of an
RG-relevant cosine term, F, is proportional to its strength.

The “sine-Gordon” model Hgg = Hyrr + Hy is one of the few exactly solvable
models of quantum field theory [77]. It was known for a long time that the classical
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equation of motion of the model is the sine-Gordon equation, an exactly solvable
nonlinear differential equation whose solutions are solitons. It was shown much later
that the S matrix of the quantum field theoretical model can be found exactly [78,
79], and even form factors (matrix elements of operators in the eigenstates) can be
determined [80,81]. However, in the presence of competing cosines, for instance due
to a simultaneous presence of a superconducting term and a backscattering term
in different regions, the model is not integrable any more. Moreover, the solitons
are excited states of the sine-Gordon model, i.e., with energies about the gap, and
therefore in general not necessary to describe topological phases.

Alternatively, the phase diagram as well as some response functions of Hgg can
be obtained using refermionization. If the cosine term is the most RG-relevant term,
it will dominate the low-energy phase, so it is judicious to choose a basis which
diagonalizes this term. One starts by defining the rescaled bosonic fields ¢’ = A\,
0’ = 6/X, which remain canonically conjugate. As a consequence, the definition

1/}/ (x) x e*ia¢'+i¢9' (32)

ensures that the fields ¢/, () mutually anticommute. Reverting the steps leading to
the bosonized Hamiltonian, one can then show that

Hse = —ivK N2 /daz 0ol — o] + g/dx (vihvs + e,

T (AlK - A?K) [ dzlot @) + o). (33)

Here, p!,(z) = !t (2)4, (x)* is the quasiparticle density. This model is called the
massive Thirring model and its equivalence to the sine-Gordon model was in fact
known long before bosonization [82]. In this form, the term proportional to g makes
it obvious that the spectrum is gapped, but apart from that it might seem that
little has been gained: the refermionized model contains interactions between the
quasiparticles. Luckily however, these interactions are “weak”. In an RG-sense, they
constitute a marginal correction to the kinetic energy Hamiltonian, whereas the g
term is still an RG-relevant correction. Therefore, perturbative techniques can be
employed. One very prominent technique is a ladder-diagram resummation which is
well-known in the contact of the Mahan exciton problem [76].

It is worth pointing out as well that the refermionized model has an exactly
solvable point where the quasiparticles become non-interacting (K = 1/A? in the
example above). Such a point is called a Luther-Emery point [83]. This special point
is useful to get an insight into the phase diagram, but it should be pointed out that
response functions, especially close to gap energies, change strongly in response to
quasiparticle interactions [76]. The exact solution of the sine-Gordon model indeed
reveals that the Luther-Emery point is a special point and that deviations from this
point lead to non-analytical corrections to response functions.

The most user-friendly approximation to study sine-Gordon Hamiltonians relies
on the argument that an RG-relevant cosine term will “pin” the phase field to a
minimum of the cosine function. For the Hamiltonian H, above this would mean that
one can approximate ¢ ~ m/(2Av/K). Performing a Taylor expansion ¢ ~ ¢upin + 66
about one of the possible minima yields a quadratic Hamiltonian in d¢. The latter can
be solved exactly. It gives direct access to the spectrum, and can in principle be used
to calculate response functions. However, it is worth pointing out that this “pinning”
approximation is not very accurate when it comes to dynamic correlation functions
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of sine-Gordon models, as can be shown by comparing with the exact solution based
on the form factors of the sine-Gordon model.

Modelling sine-Gordon terms using this “pinning” approximation is an excellent
approximation for studying ground-state properties, which allows us to use it below
for deriving the edge parafermion modes. We should point out that another very
fruitful application of sine-Gordon Hamiltonians is the wire constructions which are
presented by T. Meng in the same special issue [84].

4 Parafermions

In this section, we will show how the competition between different non-commuting,
RG-relevant sine-Gordon terms in a bosonized Hamiltonian can lead to the emergence
of parafermionic bound states. In 1D systems, parafermions are bound to domain
walls at the interfaces between parts of the system with topologically different spectral
gaps. In the following, we will choose the specific example of a time-reversal invariant
helical edge state of a 2D topological insulator, where different regions are gapped
out either by the superconducting proximity effect or by two-particle backscattering.
In this case, the resulting interface bound states are Z, parafermions [32,33]. We
would like to point out, however, that the procedure we will present is more general,
and has been used for studying Z,,, parafermions in fractional quantum Hall systems
with filling factor 1/n (with odd n) as well [13,14].

We have already presented the Hamiltonian H,. Another potentially RG-relevant
term which can be added to the helical edge Hamiltonian results from the proximity
effect in the presence of a superconductor,

H = A/dac {wk(w)’d)z({b) + h.c.} = %/dw cos[20(x)]

= vA /dxcos[Qé(x)/\/E] = é ma 2/K/dm' cos[20(x) VK] (34)
" 2ma? C 2ma? \ L ' i

Here, A denotes the induced gap energy, which is a function of the bulk supercon-

ducting gap as well as of the electron tunneling amplitude between superconductor

and the edge state, and A is its dimensionless version. As before, we obtain the flow

equation
dA 1Y «
—=(2-=]A.
dl ( K) (35)

From this, we can conclude the superconductivity is relevant for K > 1/2. Clearly, the
RG flow of cosine terms containing 6 or ¢ change in opposite ways as a function of K:
gaps due to backscattering are typically reinforced by strong repulsive interactions,
whereas superconducting coupling is inhibited by them.

The basic ideas for deriving parafermionic operators are as follows: based on the
assumption that each RG-relevant cosine term pins its bosonic field to a minimum,
one can identify a finite set of ground states. Then, one constructs operators, localized
at the interfaces, which cycle between those degenerate ground states. The latter are
the desired parafermionic bound states.

To be concrete, let us consider a minimal model consisting of a helical edge
state, in which one region is gapped out by superconductivity, whereas another
one is gapped out by umklapp scattering. This corresponds to the Hamiltonian
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Fig. 1. Alternating superconducting (blue) and backscattering (green) regions with
parafermionic interface states indicated by stars. In the superconducting (backscattering)
region, the field @ (¢) is pinned.

H=Hp; + Hy + H,., where

Hypp = %/dm [Kﬁ(@IG)QI + %:(8@)21 ;
H, = [ deg(o) cos16(a)
—/dmA(m) cos[20(x)]. (36)

=
I

Near K = 1/2 both terms can open spectral gaps. In the respective regions, the cosine
terms will pin the phase field § and ¢ as shown in Figure 1 for case of N = 2 junctions.
Without loss of generality, we can assume that g > 0 and A > 0. In the supercon-
ducting regions, 8(z) will be pinned to values §(z) = fmr, whereas backscattering will
pin the ¢ field to values ¢(x) € mm /2, where 72 and i are now operators with integer
spectrum, who inherit their commutation relations from those of the phase fields [see
Eq. (7)].

Next, we define operators corresponding to the total charge and the total spin in
a given region z7 < x < x2. From equation (16), one obtains

Quena) = Y [ detulea(e): =~ [9(e2) — (),

a=R,L 771

S = 3 o [ diel@a@): = -2 0 -0l @)

a=R,L 1

Due to the pinning of the fields by the cosine terms, one finds that the spin trapped
between two superconducting regions, as well as the charge trapped between two
regions gapped by backscattering, are quantized. Note that while the spin is quan-
tized to integer multiplies of the electron spin, the charge is quantized to half-integer
multiples of the elementary charge (see Fig. 1 for the notation),

Sn - _(9n+1 - Qn)/w = _ﬁn+1 + ﬁnv
Qn = —(Pnt1 — Pn) /T = — (g1 — ) /2. (38)

The half-integer quantization can most easily be understood by using the refermion-
ization transformation (32) on the backscattering term. Using 6’ = /2 and ¢’ = 2¢,
one finds that ] o (/1)2e 3%, Since ¢ commutes with the charge operator, it does
not create charge. Therefore, charge is only created by the 9/ operator, which reveals
that the latter carries half an electron charge.
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To learn more about the ground state degeneracy, one first needs to determine
the domain of the fields ¢(z) and 6(z). Since each superconducting region conserves
charge modulo 2, whereas each backscattering region conserves spin modulo 4, one
finds that there are four possible values for each S, and Q,, so S, € {0,1,2,3} and
Q. € A0, %, 1, %} This argument can be made more mathematically rigorous using
translation operators for the phase fields [33].

The different possible values of the pinned phase fields cause a degeneracy of
the ground state. The latter can be determined by constructing a complete set of
commuting observables, where it has to be taken into account that @, and S,, do
not mutually commute as a consequence of the nonlocal commutation relations (7).
Using the largest possible set of mutually commuting operators, one finds that for
2N interfaces each ground state can be parameterized as [s1,...,SN—_1, Stot; Gtot)s
where s; are the eigenvalues of S;, and s that of the total spin operator Sioy =
>_; 8 = fu — fiyq1. Similarly, g is the eigenvalue of the total charge operator
Qrot = (11 — Min41)/2.

In contrast to the interface charges, the total charge of the entire system must be
integer, so giot € {0,1}. Analogously, the total spin must reflect the fact that each
electron carries one unit of spin, S0 sior € {0,2} for giot = 0 and sy € i\},?)} for
Gtot = 1. This leads to a total ground state degeneracy of 4V 1 x 2 x 2 = 4N,

Finally, we can construct the parafermion bound states operators. They should be
local in the bosonic fields, i.e., any given bound state operator should only involve the
pinned phase fields in the two adjacent regions. Moreover, all bound state operators
should act within the ground state vector space. The resulting 2N operators are

Xon—1 = €'Pn /2,

Xon = €6 i01/2, (39)

Using the Baker-Hausdorff formula as well as the commutator (7) of the bosonic
fields, one can indeed verify the parafermionic commutation relations (1).

The operators x, obey the anyonic commutation relations of parafermionic
operators, but for them to be non-Abelian particles, the unitary transformation
corresponding to their adiabatic exchange must be a representation of the braid
group. Exchanging the positions of two parafermions in real space, without bringing
them together, is not possible in a 1D edge state. Therefore, alternative braiding
schemes have been proposed which rely on repeatedly nucleating and fusing pairs of
parafermions [13]. This can be regarded as a braiding operation in parameter space,
and it has been shown to be topologically protected in the sense that weak deforma-
tions of the braiding path do not change the braiding phase. However, this robustness
is significantly weaker than that afforded by real-space braiding of parafermions
in 2D systems, because certain phases in the cosine terms could cause accidental
degeneracies which must be avoided [13,18,19].

5 Conclusions

In this review, we have discussed the emergence of parafermions in one-dimensional
quantum systems, with a particular focus on explaining the theoretical techniques
necessary for their modeling. Bosonization has for many years been the method of
choice for investigating one-dimensional systems. For many gapless systems, the rep-
resentation of fermionic particles in terms of bosonic density waves leads to an exact
mapping between an interacting fermionic theory and a noninteracting bosonic one,
and thus allows one to study the full crossover between the weakly and strongly
interacting limits.
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To construct parafermions, one needs to supplement the well-known metallic Lut-
tinger Hamiltonian with gap-opening terms, which usually leads to sine-Gordon type
Hamitonians. We’ve explained how a renormalization-group analysis reveals the pos-
sible phases of such Hamiltonian. In the strong-coupling limit, the cosine terms in the
Hamiltonian cause a ground state degeneracy, and parafermionic operators emerge
as the local operators which cycle between the ground states.

The author acknowledges support by the National Research Fund, Luxembourg under grants
ATTRACT 7556175, INTER 11223315, PRIDE/15/10935404, and AFR/11224460.
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