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Abstract. In an EPR setup, simultaneous measurement of two non-
commuting observables is considered at station A and, possibly after a
time delay, at station B. At each station one apparatus measures the
z-component of a spin, while a second one measures the x-component
of the same spin simultaneously. The dynamics of the measurements is
solved explicitly. It is shown that no violations of Bell inequalities occur
in Bell-like correlation experiments, and that, in fact, experiments of
this type are subject to even stronger constraints. This is caused by the
mutual influence of the two apparatuses coupled to the same spin, an
effect which occurs at both stations.

1 Introduction

A measurement is a process with several possible outcomes, each of which indicates
initial properties of the measured system. The effectiveness or accuracy of such a
process depends on how strong the indication is. In quantum theory, it is added that,
after the measurement, the measured system generally is to be found in an eigenstate
of the measured observable, consistent with the pointer that is to be interpreted as the
output of the measurement. Another important phenomenon in quantum mechanics is
that, even in principle, sets of observable properties corresponding to non-commuting
operators, that do not always have shared eigenstates, cannot be simultaneously
measured, or even defined, with infinite accuracy. The indication provided by the
measurement often is a statistical one at best.

Heisenberg’s uncertainty principle states that this effect can not be exclusively
attributed to the measurement equipment, but is a fundamental property of quantum
mechanics: a system cannot be found in a state in which certain properties are defined
with arbitrary precision simultaneously. If one first measures a position, and then a
momentum, the execution of the second measurement invalidates the outcome of
the first. One can no longer claim to know the position of the particle from the
first measurement, and another measurement of the position may provide a different
result, because the particle will no longer be found in an eigenstate concentrated at
the position measured previously. Of course, the outcome of the second measurement
will have been influenced by the preceding one.
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Instead of performing these two measurements independently in sequence, one
may, in principle, also attempt to measure two non-commuting observables simul-
taneously. In this case, not covered by the usual formulations of the Copenhagen
postulates of quantum mechanics, no erasure between the start of the measurements
can take place, and indeed, all information about the particle is obtained in a single
process. However, since the uncertainty principle still applies, none of it can be arbi-
trarily accurate; this kind of joint measurement of non-commuting observables has
been studied both experimentally and theoretically [1–20].

The modified uncertainty relations for these joint measurements have been exten-
sively studied in particular, which, among other things, led to several reformulations of
the uncertainty principle, in order to more properly include the sometimes surprising
uncertainties observed in these processes [1,6–15].

It has been demonstrated that, if there exists a joint measurement for all observ-
ables in a quantum correlation experiment, the experiment must satisfy the Bell
inequalities and a hidden variable theory for this experiment can exist [19,20].
A similar result is known for GHZ-type experiments [20]. Finally, there exists an
explicit model for a joint measurement process that includes the Hamiltonians of the
measurement devices, and allows their dynamics to be treated analytically [21,22].

The present work will be primarily based on this kind of simultaneous measure-
ment devices, and some more details will be discussed in Section 2. In Section 3
we will briefly discuss the Bell and CHSH inequalities and their relevance for joint
measurements of non-commuting variables. In Section 4 the CHSH expression is eval-
uated analytically and its numerical values are determined. In Section 5 the results
are summarized and discussed.

2 Measuring non-commuting observables

2.1 A quantum measurement device with solvable dynamics

The lack of sufficiently rich solvable models for the dynamics of quantum measure-
ments has hampered progress in this field and in the interpretation of quantum
mechanics for decades. In a series of investigations during the last decades, one of
the authors, in collaboration with A. Allahverdyan and R. Balian, has put forward
a set of “Curie-Weiss” models for the system and apparatus which allow analytical
treatment [23,24]. It involves a Curie-Weiss magnet (CW), consisting of N spin-half
fermions, with Hamiltonian

Ĥ = −J2N
m̂2

2
− J4N

m̂4

4
(1)

with parameters J2 and J4, chosen such that the phase transition to a magnetized
state is of first order, for example: J2 = 0, J4 > 0. Here, the magnetization operator,

m̂ = 1
N

∑N
n=1 σ̂

(n)
z is the pointer of the apparatus. The initial state of the magnet is a

metastable, paramagnetic one. At t = 0, the apparatus is coupled to the tested spin by
the interaction Hamiltonian −gNm̂ŝz, and to a standard phonon bath characterized,
in particular, by its temperature T , which lies below the first order phase transition
temperature of the magnet. The interaction Hamiltonian leads to a quick decay of
the so-called Schrödinger cat terms; it may be shown that 〈ŝx〉 and 〈ŝy〉 will vanish
rapidly, because of a dephasing followed by decoherence [23,24]. The conditions on
this type of measurement apparatuses can be relaxed [25], but in the present work
we shall not elaborate on this.



Non-Equilibrium Dynamics 2211

Provided the coupling parameter g is large enough, the system–apparatus inter-
action will cause the magnet to magnetize in one of two directions: after the
measurement time τ one finds 〈m̂(τ)〉 = ±mF (T ) with mF (T ) close to 1. This indi-
cates the magnetization of the apparatus to be either upwards or downwards in the
z-direction. It acts as the pointer variable. At the end of this ideal measurement,
the spin will be maximally correlated with it: “up” or “down” in the z-direction,
respectively [23,24].

After dephasing, decoherence and thermal relaxation, the final combined state of
the apparatus A and the measured spin S is (for all practical purposes) described by
the density matrix:

ρf = p+Π̂mF
⊗ |↑〉〈↑ |+ p−Π̂−mF

⊗ |↓〉〈↓ |, (2)

where Π̂±mF
denotes the projection operators that project onto the states with

magnetizations ±mF [25].
The frequencies, p+ and p−, with which each of these two outcomes occurs in a

series of measurements depends on the initial density matrix for the spin state of the
ensemble of measured particles. Crucially, it has been shown that the device correctly
reproduces the Born rules, and the outcome probabilities pε = 1

2 [1 + ε〈σ̂z(0)〉], for
magnetization directions ε = ±1 along the positive or negative z-axis; as such, this
spin-induced magnetization process may be considered to represent an ideal quantum
measurement [23,24].

2.2 Measuring two variables simultaneously at one station

This approach has also been generalized to the simultaneous measurement of two
non-commuting observables [21–24,26]. Here, two Curie-Weiss magnets (CW2), are
simultaneously coupled to a different component of the spin of the same particle.
Again, the interaction with the particle will, under appropriate circumstances, desta-
bilize the metastable initial state, and interaction with a reservoir drives both magnets
to one of their magnetized states; dephasing followed by decoherence again causes all
Schrödinger cat terms to vanish.

If both couplings are activated simultaneously, the frequency with which each
combination of directions occurs again depends on the initial density matrix that
describes the state of the ensemble of particles with which the magnets interact. Ideal
accuracy is typically not possible in the two magnet scenario, and only occurs in the
limit where the coupling between the spin and one of the two detectors is trivially set
to zero, effectively reducing the system to a single ideal CW measurement. Similarly,
if the two couplings are not activated simultaneously, but in sequence with a large
enough time delay, the situation upon activating the first magnet becomes that of the
CW measurement process, and only the spin component coupled to the first magnet
is measured. The measured particle is forced into a state no longer described by
its original density matrix, obscuring some of its initial properties, and preventing
interactions with the second CW device from revealing anything about them, as is
consistent with Heisenberg’s uncertainty principle. More details may be found in the
literature [21–24,26]. Here, we continue with both measurements starting at exactly
the same moment in time.

Let us denote the station by A and the two apparatuses by A and A′, each having
a magnet and a bath, and denote the parameters of A′ by a prime. As in the single
magnet version, the magnetization of each magnet will become 〈m̂(τ)〉 = ±mF and
〈m̂′(τ ′)〉 = ±m′F , respectively, indicating up or down along the corresponding axis.
This will be denoted by ε = ±1 for the apparatus A measuring along the z-axis and
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ε′ = ±1 for the measurement by A′ along the x-axis. For an ensemble of particles,
for which the initial expectation values of the spin components are 〈σ̂x(0)〉, 〈σ̂y(0)〉
and 〈σ̂z(0)〉, it may be demonstrated that the probability of each of the possible
combinations of outcomes is [21,22]:

pεε′ =
1

4
[1 + ελ〈σ̂z(0)〉+ ε′λ′〈σ̂x(0)〉] , (3)

where the absence of 〈σ̂y(0)〉 is a consequence of the “truncation of the density matrix”
or “disappearance of Schrödinger cat states” observed in the CW2 setup [21–24,
26]. We recall that ε = ±1 and ε′ = ±1, while λ and λ′ are efficiency parameters
(0 ≤ λ, λ′ ≤ 1) that depend on the details of the apparatuses; numerical analysis
confirms this structure, and allows one to estimate the values of λ and λ′ [21].

No standard “collapse of the wave function” is found: after the measurement,
the particle will not be prepared in a proper eigenstate of either measured variable,
nor a combination of the two, but in a more complicated state [21]. On grounds of
symmetry and linearity, it can be argued that different measurement devices with the
capacity to provide partial information about two different spin components should
display the behavior of equation (3) [21].

Although no description as a standard measurement is possible, the process can
be described as a generalized quantum measurement, corresponding to the bivariate
POVM {Fεε′} = {F++, F+−, F−+, F−−}, with:

Fεε′ =
1

4
(σ̂0 + ελσ̂z + ε′λ′σ̂x) , (4)

for which it can be verified that, for any state ρ, one may construct the same prob-
abilities as in (3) by computing pεε′ = tr [ρFεε′ ] [4,21]. For the measurements of the
individual spin components, one may define F xε′ =

∑
ε Fεε′ and F zε =

∑
ε′ Fεε′ .

Equivalently, one may interpret the device to simultaneously measure smeared
versions of more conventional spin observables; the above may also be written as:

Fεε′ =
1

4
(1− λ− λ′) σ̂0 + λ

1

4
(σ̂0 + εσ̂z) + λ′

1

4
(σ̂0 + ε′σ̂x) , (5)

where one may obtain the single-observable POVMs as before,

F zε = (1− λ)
1

2
σ̂0 + λ

1

2
(σ̂0 + εσ̂z), F xε′ = (1− λ′)1

2
σ̂0 + λ′

1

2
(σ̂0 + ε′σ̂x). (6)

Again note that this is only possible because of the relatively small value of λ
and λ′: even non-commuting observables can be jointly measured if they are suf-
ficiently smeared or diluted to become compatible, the optimal smearing value being
λ = 1/

√
2 [4,16,27,28]. Beyond this bound, {F++, F+−, F−+, F−−} no longer defines

a POVM, because some elements are no longer non-negative operators. In that case
joint measurements are no longer possible. Nevertheless, both {F z+, F z−} and {F x+, F x−}
still represent measurements that can be conducted separately with a single-apparatus
setup.

For all devices that do indeed give rise to a probability distribution as in (3), one
must at least remark that one requires that λ2 + λ′2 ≤ 1; otherwise, the probability
would become negative for a state with 〈σ̂z〉 = λ/

√
λ2 + λ′2 and 〈σ̂x〉 = λ′/

√
λ2 + λ′2;

this coincides with the optimal values of the smearing parameters [22,27,28]. One
may also define a suitable bivariate POVM with optimal values and attribute any
discrepancies to the device, which acts on the measured state as a noisy channel [21].
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For the CW2 model, the limiting value will appear to be significantly smaller;
for most choices of parameters, one finds λ ∼ 0.3, and no significantly larger values
seem achievable in this type of device [21]. The possibility that a model exists for
a device which measures two non-commuting spin components simultaneously, but
does so more accurately, remains unclear.

Although neither measurement is fully accurate – even particles prepared with
their spin along the positive z-axis will sometimes cause the detector measuring this
spin component to indicate spin down – the procedure is fully informative about
both spin components: as long as λ and λ′ are known, one may determine 〈σ̂x(0)〉
and 〈σ̂z(0)〉 for any ensemble of measured particles through repeated measurements
[21,22,26].

2.3 Simultaneously measuring two variables of an entangled pair at each station

Now, one may introduce a second copy of the two-magnet device discussed above,
resulting in a total of four CW magnets: A and A′ at station A, and B and B′ at
station B. As usual for EPR setups, there may be a time delay between between the
simultaneous measurement at station A and the one at station B. This setup will
allow one to consider correlations between measurement outcomes of experiments
with pairs of entangled particles. Since both devices individually should produce the
result found in equation (3), one may construct the combined probability distribution
for two CW2 devices. Each of them attempts to measure one of two particles from
the same, possibly entangled state, so as to yield:

pεε′;δδ′ =
1

16

[
1 + ελ〈(σ̂z ⊗ τ̂0)(0)〉+ ε′λ′〈(σ̂x ⊗ τ̂0)(0)〉

+δκ〈(σ̂0 ⊗ τ̂z)(0)〉+ δ′κ′〈(σ̂0 ⊗ τ̂x)(0)〉
+εδλκ〈(σ̂z ⊗ τ̂z)(0)〉+ εδ′λκ′〈(σ̂z ⊗ τ̂x)(0)〉

+ε′δλ′κ〈(σ̂x ⊗ τ̂z)(0)〉+ ε′δ′λ′κ′〈(σ̂x ⊗ τ̂x)(0)〉
]
. (7)

Here λ, λ′, ε and ε′ relate to the apparatuses A and A′ which measure σ̂z and σ̂x
at station A, respectively, and κ, κ′, δ and δ’s refer similarly to the apparatuses B
and B′ which measure τ̂z and τ̂x at station B, respectively. Moreover, the operators
σ̂0 and τ̂0 denote one half times the 2 × 2 unit matrix, acting on the first and sec-
ond particle, respectively. Again, the maximal (symmetric) values are in principle:
λ = λ′ = κ = κ′ = 1√

2
, while, as mentioned earlier, the CW2 model seems to be lim-

ited to λ ∼ 0.29 − 0.30, which easily satisfies the bounds set by both Heisenberg’s
principle and unitarity [21].

Devices based on a different physical principle, having an outcome probability
distribution with the same form as that in (3) will, when employed at each of the
stations to measure entangled states, will also be subject to (7), with their own values
of λ, λ′, κ and κ′.

3 The CHSH inequality

Consider a detector that, given a detector setting a, may measure some property,
of a system in an unknown state, and may subsequently indicate a value A(a). In
a typical classical probabilistic theory, the expectation value of the output of this
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detector may be computed from:

〈A(a)〉 =

∫
A(a, λ)p(λ)dλ. (8)

Here λ (not to be confused with the earlier efficiency factor) indicates some (possibly
hidden) information, for which p(λ) is the probability distribution. The integral must
be taken over all values of λ. This may include properties of both the detector, and
the measured system, although it is usually assumed not to depend on the choice of
detector settings; see e.g. [29,30] for criticism on that assumption.

Naturally, a similar formula would hold for another detector setting a′ at station
A, or for another but similar detector that may be prepared in settings b or b′, and
measures B at station B. Because of the principle of locality, it is generally assumed
that the measurement outcomes do not depend on the settings of the other detector;
the correlation between the outputs of two such detectors is therefore typically taken
to be of the following form [31]:

E(a, b) =

∫
A(a, λ)B(b, λ)p(λ)dλ. (9)

For two-setting devices, one may then compute the following object:

SCHSH = E(a, b) + E(a′, b)− E(a, b′) + E(a′, b′). (10)

As long as A and B remain between −1 and 1, or are normalized to do so, the so-called
Clauser-Horn-Shimony-Holt (CHSH) inequality [32],

|SCHSH| ≤ 2, (11)

must hold; a result also known as Bell’s theorem [33]. In quantum theory, how-

ever, values up to 2
√

2 may be obtained; this result, which has been experimentally
confirmed, is known as Bell’s paradox [32–38].

This is by far the most well-known example of a contradiction between quantum
mechanics, and local realist theories that require the aforementioned classical prob-
abilistic structure, despite having given rise to more alternative interpretations than
other such demonstrations. Unlike, for example, GHZ-type experiments, where con-
tradictions between classical and quantum probability theory are already observed
in a single run of the experiment, the CHSH-Bell procedure requires the compar-
ison of experiments conducted in different, incompatible contexts, which is at the
root of a class of objections for which one of us has introduced the term “Contex-
tuality loophole”; several closely related ideas have been treated in the literature
[29,30,39–51]. The validity of these objections has, however, also been disputed
[52–54]; for a reply, see [55]. Finally, it may be remarked that some objections
against GHZ-type experiments have also been reported, and that certain local realist
approaches, such as superdeterminism, can not be ruled out [23,39,56–59].

At each of the stations, the measurements considered in the present work, however,
do take place in a single context, and in a single run of the experiment, and there exists
a joint, classical probability space, that contains all information for the measurement
of each variable at each of the stations A and B. It will be shown that, in this case,
the Bell inequalities hold.

Although without consequences for local realism, these results are connected with
the close interplay between commeasurability, the possibility of measuring all pairs
and triples of commuting and non-commuting observables involved, smearing and the
maximal values that can be obtained for |SCHSH| [16,19,20,27,28].
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4 CHSH experiments in a single context at each station

4.1 Singlet Bell pairs

In order to consider the CHSH inequalities, we will be interested in the interactions
with fully entangled spin-zero pairs, which are to be prepared in the singlet state:

ρ =
1

4
(σ̂0 ⊗ τ̃0 −

3∑
i=1

σ̂i ⊗ τ̃i). (12)

Here, the σ̂i denote the usual Pauli-matrix spin operators, applied to the first particle
of an entangled pair at station A, i running over (x, y, z), while τ̃i does the same for
the spin of the other particle at station B, in the same basis.

To study correlations between non-orthogonal measurement bases, where the most
interesting values of SCHSH are found, one rotates one detector along the y-axis, and
substitutes:

τ̃x = cos θτ̂x + sin θτ̂z, τ̃z = cos θτ̂z − sin θτ̂x, τ̃0 = τ̂0, τ̃y = τ̂y, (13)

with which one may re-express the so-called Bell (or EPR [35]) state (12) as:

ρ =
1

4
[σ̂0 ⊗ τ̂0 − σ̂y ⊗ τ̂y − cos θ(σ̂x ⊗ τ̂x + σ̂z ⊗ τ̂z)

− sin θ(σ̂x ⊗ τ̂z − σ̂z ⊗ τ̂x)], (14)

from which we can read off:

〈σ̂x ⊗ τ̂x〉 = 〈σ̂z ⊗ τ̂z〉 = −cos θ

〈σ̂x ⊗ τ̂z〉 = −〈σ̂z ⊗ τ̂x〉 = −sin θ

〈σ̂i ⊗ τ̂y〉 = 〈σ̂y ⊗ τ̂i〉 = −δiy
〈σ̂0 ⊗ τ̂i〉 = 〈σ̂i ⊗ τ̂0〉 = 0. (15)

For the interaction of a pair of particles in such a state with these detectors, we may
use (7) and (15) to find:

pεε′;δδ′ =
1

16

[
1 − (εδλκ+ ε′δ′λ′κ′) cos θ − (ε′δλ′κ− εδ′λκ′) sin θ

]
. (16)

Again, ε = ±1, ε′ = ±1, δ = ±1 and δ′ = ±1 denote the polarization directions of the
magnets after the measurement has taken place, and λ, λ′, κ and κ′ the efficiency
parameters, as in (3) and (7). Note that the opposite sign in the final term stems
from that in 〈σ̂z ⊗ τ̂x〉.

4.2 Detector settings in a single context at each station

To allow comparison with the conventional EPR experiment, SCHSH−sim, the equiv-
alent of SCHSH for simultaneous measurements, is to be computed. To connect the
two previous notations, we denote by a the z-axis of Alice and by a′ her x-axis, and
by b Bob’s z-axis and by b′ his x-axis. Note that their measurement bases have been
rotated with a relative angle θ. For each of the four a–b combinations, we can com-
pute the correlation, E(a, b). Although both apparatuses at A act simultaneously, as
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do those at B, one may still compare the outputs of pairs of apparatuses with one
member at each station.

As in equation (9), one may compute, for example, E(z, z), the correlation between
the outputs of the two apparatuses corresponding to their measurements of σ̂z and
τ̂z. It reads:

E(z, z) =
∑

εε′δδ′=±1

εδpεε′;δδ′ =
∑
ε′δ′

(p+,ε′;+,δ′ − p+,ε′;−,δ′ − p−,ε′;+,δ′ + p−,ε′;−,δ′)

= −λκ cos θ. (17)

Likewise, one finds:

E(x, z) =
∑
εε′δδ′

ε′δpεε′;δδ′ = −λ′κ sin θ,

E(z, x) =
∑
εε′δδ′

εδ′pεε′;δδ′ = +λκ′ sin θ,

E(x, x) =
∑
εε′δδ′

ε′δ′pεε′;δδ′ = −λ′κ′ cos θ. (18)

From (7), (16), (17) and (18), one may compute the equivalent of expression (10)
for simultaneous measurements. In the present notation, one finds:

SCHSH−sim = E(z, z) + E(x, z)− E(z, x) + E(x, x)

=
∑

εε′δδ′=±1

[(ε+ ε′)δ + (−ε+ ε′)δ′] pεε′;δδ′

= −(λκ+ λ′κ′) cos θ − (λ′κ+ λκ′) sin θ. (19)

Note that, in the last step, it has been used that
∑
δ δ = 0, while

∑
δ δ

2 = 2, and
likewise for δ′, ε and ε′. Also notice the familiar combination in the middle line, where
always one of the terms in round brackets vanishes. Even for (symmetric) parameters

satisfying the unitarity bound, κ = κ′ = λ = λ′ = 1
2

√
2, one finds |SCHSH| ≤

√
2,

which fails to exceed the classically permitted value of 2. Quantum mechanics con-
strains these correlations further than classical mechanics does, while, with separate
measurements of each variable, it was the classical theory that was more constrained.
This effect is essentially because of the unavoidable inaccuracy of the detector setup.
A conventional EPR experiment with an equally limited device would not violate the
Bell inequality either; but unlike such a separate measurement scenario, the detector
efficiency is always limited for simultaneous measurements, because of the mutual
influence the two apparatuses at each station have on each other via their couplings
to the spin of the same particle.

On top of the effect that the two conflicting measurements are fundamentally
required to have on each other, the CW2 model seems to suffer from an even larger
reduction in efficiency. Numerical simulations of the dynamics of the CW2 detector
presented in earlier work found no values λ > 0.28 [21]. Our subsequent numerical
analysis of the equations presented there fails to find any values λ > 0.3, at least for
symmetric detectors with λ = λ′; typical choices of parameters result in λ ∼ 0.29. For
apparently optimal values, one finds SCHSH−sim ∼ 0.24, well below the Bell bound of
SCHSH = 2 and also below the simultaneous-measurement bound SCHSH−sim =

√
2.
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4.3 Different interpretation of the measurements

It may be noted that the information provided by a measurement made with
the type of device considered can also be interpreted as (a smeared version of)
a measurement of a single composite variable: the spin component along one of
two possible orthogonal linear combinations of the two measured spin components,
σ̂u = 1√

λ2+λ′2 (λ′σ̂x + λσ̂z) and σ̂v = 1√
λ2+λ′2 (λ′σ̂x − λσ̂z), with the combination

of the two magnetization directions indicating the initial spin along only one
of these two axes. The device then measures along either basis with probabil-
ity 1

2 . For this procedure, the relevant POVMs become {2F++, 2F−−} for the
û-direction, and {2F−+, 2F+−} for the v̂-direction; their elements being

Fuε = 2Fεε =
1

2

(
σ̂0 + ελ̃σ̂u

)
, F vε = 2F−ε,ε =

1

2

(
σ̂0 + ελ̃σ̂v

)
, (20)

with smearing parameter λ̃ =
√
λ2 + λ′2.

It might be worth noting that more smearing is required to render two non-
commuting variables commeasurable than to satisfy the Bell inequalities: saturation
occurs when the smearing parameter becomes λ̃ = 2−

1
4 , while for simultaneous mea-

surement of {Fuε } and {F vε } to be possible, one requires λ̃ ≤ 2−
1
2 [27]. If this is not

the case, some elements of the corresponding bivariate POVM fail to be non-negative
operators. In any model for which the probabilities of outcomes can be coded as in
(3), Bell saturation occurs for the composite variables when λ = λ′ = 2−

3
4 ∼ 0.59;

twice the maximal value found in the CW2 model.

5 Summary and discussion

The Curie-Weiss model for ideal measurements of the z-component of a spin–1
2

fermion is known to be exactly solvable [23] and can been extended to incorporate
the simultaneous measurement of the z and x-components of a similar spin– 1

2 state,
by adding a second CW device, coupled to the second observable [21–23]. In an EPR
setup, there are two stations where such a simultaneous measurement takes place,
with a possible but irrelevant time delay between them. The correlations between the
outcomes of measurements on pairs of entangled particles, are presented.

Our numerical analysis of the analytical solution of an explicit example of such
coupled devices, and results in the literature for this model, support these finds [21].
The maximal efficiency with which devices of this kind may measure either variable
is strongly constrained, at least partially because the uncertainty principle and the
influence the two measurement processes have on each other through their coupling
to the measured particle.

In the type of experiment considered, measurements of each observable involved
take place in every individual run of the experiment, and in a single context. Hence
there must exist a single probability distribution that represents the frequency with
which each outcome occurs; in this type of scenario, the Bell inequalities hold, which
is consistent with the analysis in the present and previous work [19,21,22,40,44].

A stronger bound than that of Bell (|SCHSH−sim| ≤
√

2 instead of |SCHSH| ≤ 2)
is shown to hold for a class of joint measurement processes that probe two non-
commuting variables with equal susceptibility, which confirms earlier results on such
measurements [27,28]. Here, we consider Curie-Weiss-type detectors and take into
account the internal dynamics of the measurement devices for an example of such a
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process, using methods presented in earlier work [21]. The values of |SCHSH−sim| are

actually found to lie well below
√

2.
Any procedure to simultaneously measure incompatible observables may only pro-

vide limited information about each of the properties of the initial state, because the
attempt to measure one variable will inevitably disturb the measurement of the other.
Even an ensemble of spins prepared along a measurement axis will cause both out-
puts to occur with finite, although non-trivial frequency. This effect is similar to that
responsible for Heisenberg’s uncertainty relations [1,7,11–14]. Usually, such effects
are observed in measurements performed in sequence, where a system will not be
in a proper eigenstate of one observable after another observable, which does not
commute with the first, has been measured. In our situation, however, measuring
the two observables at the respective stations simultaneously, prevents the measured
state from forming a proper eigenstate of the other during any stage of the measure-
ment process. The final state, in particular, is an eigenstate of neither. This alone,
however, is insufficient to explain the detector efficiency observed in numerical anal-
ysis of our model, which suggests that the specifics of the CW2 measurement device
are at least partially responsible; it is conceivable that a device with similar capac-
ities, but based on a different physical mechanism, is more accurate. Regardless of
these complications, the procedure is informative, in the sense that it does allow one
to determine expectation values of both measured observables for an ensemble of
measured particles.
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