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Abstract. When Si is anodically oxidized in a fluoride containing elec-
trolyte, an oxide layer is grown. Simultaneously, the layer is etched
by the fluoride containing electrolyte. The resulting stationary state
exhibits a negative slope of the current–voltage characteristics in
a certain range of applied voltage. We propose a physical model
that reproduces this negative slope. In particular, our model assumes
that the oxide layer consists of both partially and fully oxidized Si and
that the etch rate depends on the effective degree of oxidation. Finally,
we show that our simulations are in good agreement with measurements
of the current–voltage characteristics, the oxide layer thickness, the
dissolution valence, and the impedance spectra of the electrochemical
system.

1 Introduction

When a silicon electrode is electrochemically dissolved in a fluoride containing elec-
trolyte, it is covered by a layer of silica which can change its thickness in peculiar
spatio-temporal patterns [1–8]. (For a comprehensive overview of the work until 2003
see Chap. 5 in [9].) These spatio-temporal patterns make silicon in hydrofluoric solu-
tion one of the most relevant electrochemical systems for basic studies of non-linear
dynamics. The most prominent example is the chimera state in which one part of the
ensemble oscillates in synchrony, while the rest is turbulent [10–14]. Although it is
possible to find some attempt of modeling [15–17], not even the simplest, periodic,
spatially homogeneous oscillations have so far been consistently and convincingly
ascribed to a concrete physical mechanism.

When trying to model the system one has to consider the following processes.
Applying a positive voltage to a silicon electrode in an aqueous electrolyte results in
the formation of silicon dioxide [9]. As the oxidation reaction proceeds, the resulting
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Fig. 1. 1 mV/s cyclic voltammogram of a (111) p-silicon electrode of 5 to 25 Ω cm in a
solution of 0.05 M NH4F and 0.025 M H2SO4 (pH 2.3).

layer of oxide eventually passivates the electrode, inhibiting further reaction. How-
ever, if the solution contains HF or HF−2 species, the oxide layer is etched away
[18,19]. The oxide layer thickness may, thus, attain a steady state at which the rates
by which the oxide layer grows into the silicon electrode and is dissolved by the flu-
oride containing solution balance exactly. The current–voltage characteristics of this
equilibrium is very similar for a wide range of parameters [20] and can exemplarily
be seen in Figure 1 for voltages positive to the porous oxide formation. The peak
marks the voltage above which an oxide layer is formed [21,22]. This equilibrium
can become unstable at certain experimental parameter values which then leads to
spatio-temporal variations of the oxide layer thickness.

In this article, we follow the mindset that complicated dynamics bifurcate from
simple dynamics, and hence that the first step toward a comprehensive understanding
must be to find out which physical processes lead to the equilibrium properties,
for example the stationary current–voltage characteristics and the electrochemical
impedance. So far there is a model for the current–voltage characteristics in the
electropolishing regime at voltages below the current peak in Figure 1 [23]. There is
also a more abstract model for the electrochemical impedance in the resonant voltage
regime [17]. We present a physical model that explains both the current–voltage
characteristics and the impedance spectrum in the regime of negative differential
resistance. Moreover, it reproduces the dependence of the oxide layer thickness and
the dissolution valence on the applied voltage.

The central idea of our model is that the oxide is etched with a rate that depends
on its composition. This assumption was motivated by measurements of dissolution
valence [5,21,22], measurements of the current–voltage characteristics, and by the
fact that the etching is likely to occur purely chemically, i.e. without charge transfer
[21,24,25]. Then, näıvely, the applied voltage should not influence the etching of
the oxide layer. However, the rates of the purely chemical etching and the voltage
dependent oxidation have to be the same at the steady state. Hence, there has to
be an indirect dependence of the etch rate on the applied voltage. We suggest that
this indirect dependence can be explained by the change in oxide composition as the
voltage is varied. This change could arise due to the accumulation/depletion of ions
or defects moving through the oxide layer. In this article, we propose a physical model
incorporating this idea.
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First we explain our applied methods in Section 2. The model is described and
defined in Section 3. In Section 4, the predictions of the model are compared to
the experimental data which we obtained from cyclic voltammetry, ellipsometry, and
dynamic multi-frequency analysis as well as to values of the dissolution valence from
the literature [5,21,22]. Finally, we conclude the paper in Section 5.

2 Methods

2.1 Experimental methods

All electrochemical measurements were performed with p-doped silicon electrodes
((111) orientation, 5–25 Ω cm). Ohmic back contact preparation, surface pretreat-
ment, and cleaning were done as described in [14]. The aqueous electrolyte was
prepared from ultra-pure water (ELGA Purelab Ultra, 18.2 MΩ cm, TOC< 3 ppb),
NH4F (Merck, p.a.), and H2SO4 (Merck, Suprapur). For all experiments shown here,
the electrolyte contained 0.05 M NH4F and the pH was adjusted to 2.3, according to
dissociation constants from the literature [25]. The counter electrode was a Pt wire
and a sat. Hg/Hg2SO4 electrode served as reference electrode.

The in situ ellipsometric measurements in Figure 4 and the cyclic voltammogram
in Figures 1 and 3 were obtained with the spectroelectrochemical set-up described in
[7]. In short, the stationary working electrode is illuminated with elliptically polarized,
blue light from an LED with 470 nm wavelength through a window in the cell wall.
After reflection at an incident angle of approximately 70◦ the polarization of the
light has changed, depending on the optical path through the oxide. The change
in polarization is converted to an intensity signal by letting the light pass through
a polarizer and is measured using a CCD camera. The experiments were controlled
with an FHI potentiostat (Fritz-Haber-Institut, Elab), and the electrolyte was stirred
with a magnetic stirrer.

The dynamic impedance measurements [26,27] in Figures 7b, 8b, 9 were done
using a rotating disk electrode set up (AFMSRCE, Pine Research Instrument, Inc.)
with a disc diameter of 5 mm. A multisine perturbation was generated with a 2-
channel waveform generator (Keysight) and added to the potential applied by the
potentiostat (BioLogic Science Instruments, SP-300) to the working electrode. For
the evaluation of the data we employed dynamic multi-frequency analysis as outlined
in [26,27]. Further experimental details of the impedance measurements and the cell
used can be found in [28].

2.2 Numerical methods

The numerical results were obtained with the proprietary finite element software
COMSOL 5.2 [29]. We solved partial differential equations numerically on a one-
dimensional spatial domain perpendicularly to the electrode, which represents the
oxide layer of finite thickness. From the available COMSOL-physics-components we
used the “General Form PDE” component for chemical species, the “Poisson’s Equa-
tion” component for the electrostatic potential, and “Moving Mesh” component to
simulate the growth and dissolution of the oxide layer. The spatial domain was split
into 2000 finite elements of the same length, which were adapted continuously as the
boundaries moved. All simulations were run with the COMSOL-study “Time Depen-
dent” and all solver configurations were left at their default except for the “Relative
tolerance” which we reduced to 10−7 for the electric impedance calculations and to
10−5 in all other cases. All the parameters, variables, and physical constants used in
the simulations are listed in Tables 1–3.
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Table 1. Default parameters used if not stated otherwise.

Notation Value Meaning

nox 4.381× 10−2 mol cm−3 Molar oxide density
n0
ion 9.36× 10−5 mol cm−3 O2− concentr. in equilib. with solution

Dion 1.1962× 10−13 cm2 s−1 Diffusion coefficient of O2−

DSiO 3.2× 10−14 cm2 s−1 Diffusion coefficient of SiO
k1 1600 cm s−1 Reac. coeff. of first oxidation step
k2 2.048× 104 cm3mol−1 s−1 Reac. coeff. of second step
k3 3× 1015 cm4mol−1s−1 Reac. coeff. of direct SiO2 production
U 2 V Electrode voltage with offset
εox 1 · ε0 Permittivity of mixed oxide
ηSiO 6× ηSiO2 Etch velocity of pure SiO
ηSiO2 2.09× 10−8 cm s−1 Etch velocity of pure SiO2

Table 2. Variables.

Notation Unit Meaning

I(t) (A m−2) Externally measurable electric current
Ich(t) (A m−2) Current connected to capacitive charging
Ireac(t) (A m−2) Current connected to reactions
Jion(x, t) (mol m−2 s−1) Flux of O2−

JSiO(x, t) (mol m−2 s−1) Flux of SiO
nion(x, t) (mol m−3) Concentration of O2−

nSiO(x, t) (mol m−3) Concentration of SiO
q(t) (C m−2) Si space charge plus surface charge
r1(t) (mol m−2 s−1) Rate of the reaction in equation (R1)
r2(x, t) (mol m−3 s−1) Rate density of the reaction in equation (R2)
r3(t) (mol m−2 s−1) Rate of the reaction in equation (R3)
retch(t) (mol m−2 s−1) Rate of etching

t (s) Time coordinate
x (m) Spatial coordinate perpendicular to surface

xa(t) (m) Position of the Si/SiOx interface
xb(t) (m) Position of the SiOx/solution interface
ν(t) [1] Dissolution valence, i.e. e− transferred per Si dissolved
ϕ(x, t) (V) Electrostatic potential

∆ϕWE(t) (V) Voltage between working and reference electrode

Table 3. Physical constants.

Notation Value Meaning

F 96 485 C mol−1 Faraday constant
T 293 K Assumed room temperature
zion −2 Elementary charges per O2−

ε0 8.854×10−12 F m−1 Vacuum permittivity

3 Model description

In this section, we model the oxide layer, SiOx, that covers the Si anode in hydrofluoric
solution. We aim to reproduce the negative differential resistance, i.e. dI/dϕWE < 0,
where I is the electric current and ϕWE is the potential of the working electrode.
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Fig. 2. A sketched band diagram of the model described in Section 3 with all the variables
that define a state: interface positions xa(t) and xb(t), concentration of O2− ions nion(x, t),
concentration of intermediate oxide nSiO(x, t), and electric potential ϕ(x, t). The bandgap of
SiOx (solid black line) is smaller than that of pure SiO2 (dashed black line) [30]. Furthermore,
the reaction that allows O2− to enter the oxide layer is assumed to be fast compared to the
transport inside the layer, so that the chemical potential of O2− at xb(t) is prescribed by
the electrolyte.

3.1 Concept

We assume the electrodissolution of Si to occur in three steps which are sketched in
Figure 2. The initial step is silicon oxidation at the interface between the silicon and
the oxide layer. In this step, the oxide layer grows into the silicon electrode. The pure
silicon is, thus, replaced by a partially oxidized silicon species, e.g. SiO.

The second step happens inside the layer volume and transforms the partially
oxidized silicon, SiO, into the final oxidation state, SiO2. The transformation from
Si to SiO2 is likely to involve several sub-steps and further intermediate oxidation
states, correspondingly. Our model merges these sub-steps for simplicity. In the third
and final step, the layer is etched away purely chemically. The etch rate is assumed
to depend on the oxide composition and to be faster if the fraction of partial oxide
is higher.

One possible way to realize the mechanism we stated above is given by the
following set of reactions. Ions O2− enter the oxide layer by a reaction like:

(H2O)solution � 2(H+)solution + (O2−)layer (R0)

Under the present high electric fields (V/nm) the ions travel through the layer and
oxidize the silicon in two steps

Si + 2h+ + O2− k1→ SiO (R1)

SiO + αh+ + O2− k2→ SiO2 + (2− α)e−, with 0 < α < 2 (R2)

or in just a single step

Si + 4h+ + 2O2− k3→ SiO2 (R3)
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Reaction (R1) occurs at rate r1(t) at the boundary between silicon and a mixed layer
of SiO and SiO2. This mixture is referred to as SiOx in the following. Inside the
mixed oxide layer the SiO created in Reaction (R1) can be further oxidized to SiO2

in Reaction (R2) at rate r2(x, t). Alternatively, Si can be directly oxidized to SiO2 in
Reaction (R3) at rate r3(t).

The last step is the etching of oxide at the boundary between oxide and solu-
tion, named SiOx/solution interface, with a rate retch(t) depending on the oxide
composition right at the boundary. The corresponding reaction reads

SiOx + 6HF → SiF2−
6 + xH2O + 2H+ + (2− x)H2 (R4)

with some x between 1 and 2. The dissolution of SiO2 in hydrofluoric solution is well
investigated [19,25] and more complicated than Reaction (R4), but our simplification
will serve the purpose.

Although the reactions that we assumed above lead to good predictions, the
mechanism could probably also be implemented with other reactions. One could for
example consider OH− ions and Si(OH)x instead of O2− ions and SiOx.

3.2 Kinetic description

We transcribed the ideas from Section 3.1, which are sketched in Figure 2, to a set
of coupled partial differential equations of time t and of one spatial dimension x
which points perpendicularly away from the electrode surface. These partial differen-
tial equations describe the transport and the reactions inside the oxide layer and at
its boundaries. As etching (R4), reaction (R1) and reaction (R3) proceed, the corre-
sponding interfaces move. Let xa(t) and xb(t) be the time-dependent position of the
Si/SiOx and SiOx/solution interfaces, respectively. Assuming a constant molar oxide
density nox for simplicity, the velocities can be written in terms of the respective
reaction rates:

∂txa(t) = − 1

nox
(r1(t) + r3(t)) (1)

∂txb(t) = − 1

nox
retch(t) (2)

where the rates per unit area r1(t), r3(t), and retch(t) are defined below in
equations (3), (4), and (5).

Since we exclusively consider situations where the silicon surface is covered with
some (though possibly thin) oxide layer, the rates r1(t) and r3(t) are assumed to be
limited solely by a lack of O2− ions. Silicon and h+, the other reactants involved, are
present in high concentrations because we consider p-type silicon under anodic bias.
The etch rate retch(t) for a certain oxide mixture is linearly interpolated between the
etch rate of pure SiO2 and the etch rate of pure SiO with proportionality coefficients
ηSiO2 , ηSiO:

r1(t) = k1nion(xa(t), t) (3)

r3(t) = k3nion(xa(t), t)2 (4)

retch(t) = ηSiOnSiO(xb(t), t) + ηSiO2
[nox − nSiO(xb(t), t)] (5)

where nox is the molar density of silicon in the oxide, and nSiO(x, t), nion(x, t) are the
molar densities of SiO and O2−, respectively. The concentration of SiO2 is expressed
as nox − nSiO(x, t). Hereby, we assume SiO2 to be the non-SiO fraction of the entire
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molar oxide density nox. The rate coefficients k1 and k3 depend on the potential drop
across the space charge layer which is assumed to be constant in our model, because
the differential capacity of the space charge layer is large under forward bias [32].
Thus, k1 and k3 are constant as well.

Unlike the reactions (R1) and (R3) which are interface reactions, reaction (R2)
occurs inside the oxide volume. From the participating species we expect elec-
trons/holes to leave/enter the oxide quickly via direct tunneling or trap hopping
which has been observed in the electroluminescence spectra of electrically biased
oxide films [31]. The remaining degrees of freedom in the oxide layer are then the
concentrations of SiO and O2−. The dynamics of these two species is dictated by
their respective mass balance equations which contain transport and reaction terms:

∂tnion(x, t) = −∇Jion(x, t)− r2(x, t) (6)

∂tnSiO(x, t) = −∇JSiO(x, t)− r2(x, t) (7)

where Jion(x, t) and JSiO(x, t) are the molar fluxes of O2− and SiO, respectively.
Let ϕ(x, t) be the electrostatic potential. Since O2− is the only charged species

considered inside the oxide, the total charge density in the layer is zionFnion(x, t),
where zion is the number elementary charges per ion, i.e. −2, and F is the Faraday
constant. Poisson’s equation thus reads:

∇2ϕ(x, t) = −zionF
εox

nion(x, t). (8)

Introducing the diffusion constants Dion, DSiO and the rate coefficient k2, the
transport and reaction terms in equations (6) and (7) can be modeled as:

Jion(x, t) = −Dion∇nion(x, t) +
DionzionF

RT
nion(x, t)∇ϕ(x, t) (9)

JSiO(x, t) = −DSiO∇nSiO(x, t) (10)

r2(x, t) = k2nion(x, t)nSiO(x, t) (11)

where diffusive transport was assumed to be Fickian in the equations (9), (10) and
the Einstein–Smoluchowski relation was used to derive the ionic migration term in
equation (9). R and T are the gas constant and temperature.

The diffusion of SiO reflects the thermal restructuring of the solid oxide which
we expect to be relevant on the considered length scales of some nanometers, after
trying various diffusion coefficients for SiO.

3.3 Boundary conditions

Continuity yields equations (12) and (13) as boundary conditions for the Si/SiOx

interface at xa:

Jion(xa(t), t) = −r1(t)− 2r3(t) + nion(xa(t), t) ∂txa(t) (12)

JSiO(xa(t), t) = r1(t) + nSiO(xa(t), t) ∂txa(t). (13)

For the SiOx/solution interface at xb(t) we assume a certain fixed concentration n0ion
of O2− that is tantamount to assuming that Reaction (R0) is always in equilibrium.
The oxide dissolution is accounted for by the movement of the SiOx/solution interface
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in equation (2). Thus, the flux of SiO at the boundary should be set to zero:

nion(xb(t), t) = n0ion (14)

JSiO(xb(t), t) = 0. (15)

To come up with the boundary conditions for the electrostatic potential φ(x, t),
we made the following simplifying assumption about the space charge layer. The
differential capacity of the space charge layer of p-type silicon under strong anodic
bias is very large, like in the case of a metal-insulator-semiconductor capacitor [32].
The same is true for the Helmholtz layer which also has a large capacity. Therefore,
any change in the total applied voltage will drop on the much smaller capacitor
formed by the oxide layer. Thus, the oxide sees the externally applied voltage with an
offset that is fixed. Under these assumptions we end up with the following boundary
conditions for the electrostatic potential:

ϕ(xa(t), t) = U(t) (16)

ϕ(xb(t), t) = 0 (17)

where U(t) equals the externally applied voltage plus/minus a constant offset.

3.4 Total electric current

The total electric current I(t) that flows into the working electrode is the sum of the
reaction current Ireac(t) and capacitive charging current Ich(t).

I(t) = Ireac(t) + Ich(t). (18)

The current I(t) is used in Section 4 to predict a cyclic voltammogram and an
impedance spectrum and compare them to electrochemically measured data.

The reaction current Ireac(t) is calculated from the reaction rates r1(t), r3(t), and
r2(x, t), where r1(t), r3(t) were defined as rates per surface and r2(x, t) as a rate per
volume.

Ireac(t) = 2F

r1(t) + 2 · r3(t) +

xb(t)∫
xa(t)

dx r2(x, t)

 . (19)

Remember that we assumed that the electrons/holes created/consumed in the bulk
at rate r2(x, t) leave/enter the oxide via trap hopping or direct tunneling, more or
less immediately. Thus, the current resulting from r2(x, t) is contributing to Ireac(t)
without any further delay.

The capacitive charging current Ich(t) is calculated from the electric potential
ϕ(x, t) as

Ich(t) = −εox ∂t
[

lim
h↘0

∂xϕ(xa(t) + h, t)

]
(20)

which is simply the time derivative of the integrated space charge in the semicon-
ductor. Equation (20) was obtained by integrating Poisson’s equation from −∞ to
xa(t) + h and differentiating both sides of the equation by t.
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3.5 Discussion on free parameters

There are quite some tunable parameters in the model. The electrochemical potential
of ions in equilibrium and the transport and reaction rates were chosen somewhat
arbitrarily, but for the remaining parameters one can make an educated guess. For
the molar density nox and the permittivity εox one can approximately take known
values of thermal oxide. The etch rates of partial and stoichiometric oxide ηSiO, ηSiO2

can be roughly estimated from the experimentally observed etch rates. The offset
between the model voltage parameter U and the actual voltage across the interface
can be estimated considering the dependence of the space charge layer’s differential
capacity on the voltage drop across it.

4 Results and discussion

4.1 Current–voltage characteristics

The model is supposed to reproduce the negative slope in the current–voltage char-
acteristics. In an electrochemical set up, this negative slope is measured between the
broad current peak and the resonant current plateau in Figure 1, if the applied volt-
age is cycled. We simulated such cyclic voltammetry by making the model parameter
U a periodic triangular function of time, since U represents the potential differ-
ence between the silicon electrode and the electrolyte. The parameter U differs
from the actual applied voltage by an offset due to the space charge layer and the
Helmholtz layer, which are discussed in Section 3.3, but are not quantified in this
model.

After an initial transient the resulting voltammogram is robust for a wide range
of initial conditions. Figure 3 shows a simulated voltammogram with a scan rate
of 1 mV s−1 and the corresponding electrochemical measurement. In both curves,
the current decreases with higher electrode potential. With faster scan rates we
observed that the hysteresis of both the simulated and the electrochemically mea-
sured cyclic voltammogram become larger and that the measured clockwise direction
of the hysteresis is matched in the simulations. If the scan rate is low enough, the simu-
lated cyclic voltammogram converges to a single line, corresponding to the stationary
current–voltage curve, again in agreement with experiments.

4.2 Oxide layer properties

The thickness of the oxide layer as obtained during the simulated cyclic voltammetry
is plotted in Figure 4, together with the corresponding electrochemical measurement
which shows an in situ ellipsometric signal. The ellipsometric signal is approximately
proportional to the oxide layer thickness but also depends on the refractory index
inside the layer and in front of it. It can be used as a qualitative estimation of the
layer thickness [7]. In both plots, the thickness increases with the applied voltage.

The main idea of the model is that the etch rate of the oxide depends on its
composition. Thus, let us have a look at Figure 5a which shows the stationary oxide
composition for some voltages U . With increasing voltage U the stationary layer
thickness xb(t)− xa(t) increases. Consider the four cases in Figure 5a. The concen-
tration of partial oxide nSiO(x, t) is the highest at the Si/SiOx interface xa(t), where
the partial oxide is created. Closer to the SiOx/solution interface xb(t) the fraction
of partial oxide becomes smaller as it is used up in reaction (R2). The remaining
fraction right at the SiOx/solution interface xb(t) determines the etch rate by equa-
tion (5). Note that this fraction of partial oxide is much smaller at the SiOx/solution
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Fig. 3. Comparison of simulated and measured cyclic voltammograms. Orange: cyclic
voltammogram obtained from the model described in Section 3 at a scan rate of 1 mV/s,
using the parameters in Table 1. Blue: cyclic voltammogram at 1 mV/s of a (111) p-silicon
electrode of 5 to 25 Ω cm in a solution of 0.05 M NH4F and 0.025 M H2SO4 (pH 2.3).

Fig. 4. Comparison of the simulated oxide layer thickness during a slow voltage scan and
the corresponding experimental in situ ellipsometric signal which is proportional to the
layer thickness [7]. Orange: oxide layer thickness versus voltage U during simulated cyclic
voltammetry using the model described in Section 3 at a scan rate of 1 mV/s, with the
parameters of Table 1. Blue: ellipsometric intensity representing the oxide layer thickness
during a 1 mV/s cyclic voltage scan of (111) p-silicon of 5 to 25 Ω cm in a solution of 0.05 M
NH4F and 0.025 M H2SO4 (pH 2.3).

interface if the layer is thicker and U is larger. This comes from an increased volume
that is available for the ions nion(x, t) to participate in the bulk reaction (R2), which
consumes partial oxide. Consequently, if U is larger, the layer is etched more slowly,
according to equation (5).

The concentration of ions nion(x, t) is the highest at the SiOx/solution interface
xb(t) where the electrochemical potential of O2− in the oxide and the electrochemical
potentials of protons and water in the electrolyte are assumed to be in equilibrium.
With increasing distance from the SiOx/solution interface xb(t), which corresponds
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(b)

Fig. 5. Stationary distributions of several space-dependent quantities are shown at different
voltages U . At each voltage U there is a different stationary layer thickness xb(t) − xa(t)
which is reflected by the respective domain of definition.

to going left in Figure 5a, the concentration of ions decreases. This is because the
ions enter the oxide at the SiOx/solution interface xb(t) and are then used up in the
oxide volume by Reaction (R2) and at the Si/SiOx interface xa(t) by Reactions (R1)
and (R3). The concentration of ions in the layer determines the curvature of the
electrostatic potential ϕ(x, t) in Figure 5b by Poisson’s equation. Its derivative gives
us the electric field −∂xϕ(x, t), which monotonically increases from about 0.2 V/nm
at the SiOx/electrolyte interface to 2–3 V/nm at the Si/SiOx interface.

4.3 Dissolution valence

We calculated the reaction valence ν(t) in the presented model in terms of the reaction
current Ireac(t), the Faraday constant F , the Si/SiOx interface position xa(t), and
the molar density of Si-atoms in the SiOx layer nox:

ν(t) =
Ireac(t)

F ∂txa(t)nox
. (21)
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Fig. 6. The dissolution valence as defined by equation (21) is plotted over the voltage U(t)
during simulated cyclic voltammetry using the model described in Section 3 at a scan rate
of 1 mV/s, with the parameters in Table 1. As the voltage is increased the valence increases
from somewhere around 3 to 4, as reported in the literature [21,22].

The calculated reaction valence during simulated cyclic voltammetry is shown in
Figure 6. Due to the slow scan rate there is no noticeable hysteresis, if there is one at
all. The simulated valence increases monotonically with the voltage from a value of
about 3.4 close to the current peak to 4 at the plateau where it saturates. The same
behavior has been confirmed by gravimetric measurements [21] and by rotating ring
disc measurements [5,22]. The exact value of the valence in the limit U → 0 can be
adjusted by changing the rate constant of Reaction (R3).

4.4 Impedance spectra

To obtain the impedance spectra for our model described in Section 3, we set the
parameter U to a different function for each investigated angular frequency ω, denoted
by Uω(t):

Uω(t) = 1 mV · sin(ω t) + U0. (22)

The model equations were solved for many periods of Uω(t) such that the result-
ing electric current Iω(t) converged and became sine-shaped. We calculated the

corresponding analytical signals Ũω(t) and Ĩω(t) with the Matlab R2017b function

hilbert(...) [33]. This means that Ũω(t) and Ĩω(t) are obtained from Uω(t) and Iω(t)
by removing the negative and zero frequency components. The impedance Zω(t) is
then calculated as

Zω(t) =
Ũω(t)

Ĩω(t)
(23)

which would be constant in time if the current response was perfectly linear. Zω(t)
is, of course, not completely constant in our non-linear small amplitude case. Thus,
we determined the value for the impedance Zω at a certain angular frequency ω by
time-averaging Zω(t) over some periods. Alternatively one could have calculated the
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Fig. 7. A comparison of the Nyquist plots of simulated and electrochemically measured
impedance spectra. There is an offset in the voltage U which is qualitatively discussed in
the text (see also Fig. 3). In the simulation, both semi-circles grow as the voltage is increased,
which is also the case in the measured spectra. The measured spectra have a ‘kink’ which is
not found in the simulated spectra. The ‘kink’ becomes more prominent for larger voltages.

impedance from the values of the Fourier transformed signals at ω, which is equivalent
for a linear response.

The impedance spectra obtained are plotted in Figures 7a and 8a and the corre-
sponding electrochemically measured impedance spectra in Figures 7b and 8b. The
plots in Figure 9 exemplarily compare one simulated impedance spectrum to one
measured impedance spectrum. It can be seen that the simulated spectrum looks
similar to the measured spectrum around 2 V versus SHE.

The model allows us to assign a physical meaning to some features of the mea-
sured impedance spectra which are illustrated in the equivalent circuit in Figure 10.
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Fig. 8. Comparison of Bode plots of the same data as in Figure 7.

For example, when omitting the charging term Ich(t) in the numerical calculation
[see Eq. (20)], the small semi-circle at high frequencies in the Nyquist plot disap-
pears. Thus, it is clear that the small semi-circle emerges due to interfacial charging,
which means that opposing charges accumulate at the Si/SiOx interface and at the
SiOx/solution interface. Hence, any equivalent circuit would require a capacitor C1,
see Figure 10.

At an intermediate frequency at which the small and the large semi-circle merge,
the impedance is almost perfectly Ohmic. This means that this frequency is suffi-
ciently low for the layer capacity to be negligibly small but high enough so that the
oxide thickness is not affected. Thus, the impedance at this frequency corresponds to
the resistivity of the layer for a fixed thickness. This is represented in the equivalent
circuit by a resistor R1. Since the simulated impedance spectra at low frequencies
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Fig. 9. One simulated impedance spectrum at voltage U = 0.4 V and one measured
impedance spectrum at voltage U = 2.2 V versus SHE are exemplarily compared. Fits are
represented by solid lines for the absolute value |Z| and by dashed lines for the complex
phase of Z. The equivalent circuit can be seen in Figure 10. The circuits fit the simulated
spectrum well but do not reflect all features of the measurement. These features become
more/less dominant at higher/lower voltage, as can be seen in Figure 7b.

Fig. 10. Equivalent circuit fitted to the spectra in Figure 9. It fits the simulated spectra
quite well, but for the measured spectra it neglects the ‘kink’ at around 0.2 Hz and it does
not describe the complex phase at ω →∞.

resemble a semi-circle which ends at a real and negative value when ω → 0, we fit
a capacitor C2 � C1 in parallel with a negative resistance R2. This approximation
seems to be valid for the electrochemically measured impedance spectra in Figure 7b,
at U ≈ 2 V versus SHE.

There are some measurable features that the model does not reproduce. It can
be seen in the Bode plot in Figure 8b that at high frequencies the measured spectra
approach a phase that differs from −π/2, where −π/2 would correspond to an ideal
capacitor. This is probably caused by an uncompensated resistance in series, which
leads to a complex phase of zero at ω →∞.
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Another feature in the measured spectra, which is not reflected by the model,
is the kink at frequencies between 0.1 Hz and 1 Hz. This kink becomes a loop that
grows for higher voltage until at some voltage it possibly causes the resonance that is
known to occur in the system [34], by touching the origin in the Nyquist plot. If the
impedance becomes zero at a certain frequency, it corresponds to a Hopf bifurcation
[35], which could explain the emergence of oscillations that are observed in the system
[5,36]. However, the loop is not explained by the model and the scenario in the
electrochemical set up is probably even more complicated, as can be guessed from
earlier impedance measurements at other parameters [34]. Unfortunately, measuring
the impedance of the steady state in the resonant regime appears to be challenging.

A third discrepant feature is measured at smaller anodic voltages. As the voltage
is decreased in the electrochemical set up, one eventually passes the current peak
and arrives at the electropolishing regime where the differential resistance is positive.
Thus, the presumed contact point between the impedance curve and the real axis
at zero frequency in the Nyquist plot moves from the left half plane to the right, as
shown in Figure 7b. The model, in contrast, is not valid for voltages this low, as there
is no oxide layer of relevant thickness.

4.5 Origin of the negative differential resistance

From our model, we can extract the necessary physical conditions leading to the
negative differential resistance. First we note that in order to obtain the negative slope
in the current–voltage characteristics only the reactions (R0), (R1), (R2), and (R4)
are required. Reaction (R3), in contrast, was only introduced to adjust the valence to
above 3 at very small layer thicknesses, where volume Reaction (R2) hardly occurs.

Let us assume that the system is in a steady state on the negative differential
branch. An increase in the voltage U leads to an increase in the amount of O2−

ions pulled into the oxide layer by reaction (R0) which increases the rate of the first
oxidation step (R1), as the latter requires O2− ions. The resulting thickening of the
oxide layer works against (R1) because the path that the O2− ions have to travel
in order to reach the Si/SiOx interface becomes longer. Therefore, the thickening of
the oxide layer partly compensates the rate increasing effect of the larger voltage
U on the first oxidation step (R1). The second oxidation step (R2), however, which
happens inside the layer volume, is supported by the thicker layer, or at least it is less
suppressed compared to the first oxidation step (R1), which happens at the Si/SiOx

interface. Thus, the oxide layer now contains a higher fraction of fully oxidized silicon,
SiO2, as compared to a smaller applied voltage U . Consequently, the oxide layer is
etched more slowly by Reaction (R4). This thickens the oxide layer even further
such that the rate increasing effect of the larger voltage U on the first step (R1) is
overcompensated.

Note that without considering reaction (R2), any increase in voltage is compen-
sated by a thicker oxide layer in such a way that the electric field inside the oxide layer
as well as the current remain constant, independently of the ratios or the absolute
vales of the rate constants of SiO (R1) and SiO2 (R3) formation.

In short, the negative differential resistance is the result of the interplay between
the further oxidation of partially oxidized SiOx inside the oxide layer and the
dependence of the etch rate on the stoichiometry of the oxide.

5 Conclusion

We presented a physical model that reproduces the cyclic voltammogram in the region
of negative differential resistance for voltages below the resonant current plateau,
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the monotone increase in the valence, and the monotone increase in the oxide layer
thickness. Moreover, our simulations reproduce our measured impedance spectra,
which were obtained via dynamic multi-frequency analysis.

The model is built on principles of non-equilibrium thermodynamics, solid state
chemistry, and semi-conductors physics. It is constructed in a way to capture the
behavior qualitatively and semi-quantitatively with minimal complexity. To this end,
we could reproduce all measured trends assuming that the reaction is completely
limited by migration of ions in the oxide layer. Hence, potential dependences of the
electrochemical reaction rates or changes in the potential drops across the space
charge layer in the Si or the Helmholtz layer could be neglected. On the other hand,
a dependence of the chemical etch rate of SiOx on the oxide stoichiometry and on
the (slow) further oxidation of SiOx within the oxide layer are crucial elements for
reproducing the negative differential branch in the current–voltage characteristic.

This model presents a basis on which one can build to further uncover nonlinear
features of the Si electrodissolution dynamics, such as current oscillations or the
patterns observed with n-type Si electrodes. For this it is likely that some of the
simplifying assumptions entering our base model have to be relaxed.
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