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Abstract. We discuss the pseudogap regime in the unitary Fermi gas
(UFG), with a particular emphasis on the auxiliary-field quantum
Monte Carlo (AFMC) approach. We discuss possible signatures of the
pseudogap, review experimental results, and survey analytic and quan-
tum Monte Carlo techniques before focusing on AFMC calculations in
the canonical ensemble. For the latter method, we discuss results for
the heat capacity, condensate fraction, energy-staggering pairing gap,
and spin susceptibility, and compare to experiment and results of other
theoretical methods.

1 Introduction

The unitary Fermi gas (UFG) describes a system of spin-1/2 fermions interacting
through a short-range interaction tuned to the limit of infinite scattering length. It
is a strongly interacting many-particle system with connections to high-Tc supercon-
ductivity [1–3], quark matter [4], QCD plasmas [5], and neutron stars [6]. The UFG
exhibits a superfluid phase transition with a high critical temperature Tc in units of
the Fermi temperature TF .

The UFG sits midway in the BCS-BEC crossover, the continuous transition
between Fermi and Bose gases obtained by varying the parameter (kFa)−1, where
a is the s-wave scattering length and kF is the Fermi wavenumber. The Bardeen-
Cooper-Schrieffer (BCS) regime, obtained for (kFa)−1 ∼ −∞, is well-described by
the BCS theory of Cooper pairs at temperatures below the superfluid critical tem-
perature Tc, and by Fermi liquid theory for temperatures above but close to Tc.
The Bose-Einstein condensate (BEC) regime, corresponding to (kFa)−1 ∼ +∞, con-
sists of a weakly interacting Bose gas of tightly bound dimers with binding energy
E = −~2/(ma2). In the unitary limit (kFa)−1 = 0, the two-body bound state in
vacuum becomes a zero-energy resonance and the s-wave scattering cross section
in vacuum is maximized. The BCS-BEC crossover has been realized experimentally
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with ultracold atomic Fermi gases of 6Li and 40K near broad Feshbach resonances
(for reviews see Refs. [7,8]).

The UFG is highly non-perturbative and presents a major challenge to theorists.
It undergoes a phase transition to a superfluid below a certain critical temperature
Tc. However, the nature of the UFG above Tc is still not completely understood, and
of particular interest is the possible existence of a pseudogap regime, in which pairing
correlations persist above the superfluid critical temperature. A pseudogap regime is
known to exist in high-Tc superconductors (e.g., the underdoped cuprates), but its
exact mechanism has eluded a precise theoretical description [3,9,10]. The difficulty
in understanding the pseudogap regime in these high-Tc superconductors provides a
strong motivation for understanding pairing correlations above Tc within the simpler
context of the UFG, in which pseudogap effects can occur via preformed pairs [3].
The possible existence and extent of a pseudogap regime in the UFG has generated
considerable debate [11]. Resolving this from a theoretical perspective requires precise
theoretical calculations with controllable errors.

In this brief review, we discuss important theoretical and experimental results
related to the pseudogap regime in the UFG, with a focus on our own recent quantum
Monte Carlo simulations [12]. Pseudogap physics in the UFG has also been discussed
in references [11,13,14].

This review is organized as follows. In Section 2, we introduce the UFG and the
continuum and lattice models used to study this system. In Section 3, we discuss pos-
sible signatures of the pseudogap regime in the UFG. In Section 4, we review landmark
experimental results. In Section 5 we present an overview of theoretical approaches,
emphasizing results related to the pseudogap regime. In Section 6, we discuss recent
canonical-ensemble quantum Monte Carlo simulations and their implications for the
pseudogap. In Section 7, we conclude and discuss future prospects.

2 Unitary Fermi gas

2.1 Scattering amplitude and the unitary limit

Neutral cold atomic gases interact at large distances via the van der Waals interaction
V = −C/r6, which is effectively a short-range interaction. At low temperatures and
densities, their scattering properties are well described by the low-momentum s-wave
expansion for the scattering amplitude

f(k) =
1

−1/a− ik + rek2/2 + · · ·
, (1)

where a is the s-wave scattering length, re is the effective range, and · · · denotes
higher-order corrections in the relative momentum ~k. This expansion is justified
for neutral cold atomic interactions in the limits r0 � 1/kF , λT where r0 is the
interaction range and λT = (2π~2/mkBT )1/2 is the thermal de Broglie wavelength.
Here kF = (3π2ρ)1/3 is the Fermi wavenumber for particle density ρ, and kB is the
Boltzmann constant. For a broad Feshbach resonance, the effective range parameter
re is of the same order as r0 [15].

The cross section 4π|f(k)|2 that corresponds to the scattering amplitude in (1) is
maximized in the limit of infinite scattering length a and vanishing effective range re.
This is the unitary limit, characterized more precisely by the conditions kFa → ∞
and re � 1/kF , λT .
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2.2 Continuum model

In the vicinity of a broad Feshbach resonance, the lowest two atomic hyperfine states
of the atoms can be modeled by two spin-1/2 states that interact via a contact
interaction. The Hamiltonian of this system can be written as

Ĥ = −
∑
σ

∫
d3rψ̂†σ(r)

~252

2m
ψ̂σ(r) +

∫
d3rψ̂†↑(r)ψ̂†↓(r

′)V (r− r′)ψ̂↓(r
′)ψ̂↑(r), (2)

where ψ̂†σ(r) [ψ̂σ(r)] creates (annihilates) a fermion at position r with spin σ, and

obeys anti-commutation relations {ψ̂σ(r), ψ̂†σ′(r′)} = δ(r − r′)δσ,σ′ . An appropriate

potential in coordinate space is the regularized pseudopotential V (r) = gδ(r) ∂∂r r,

with g = 4π~2a/m [8,16]. One can also use a regularized contact interaction
V (r− r′) = V0δ(r− r′) with a bare coupling V0 chosen to produce the desired two-
body scattering length. V0 is determined from the Lippmann-Schwinger equation,
leading to

1

V0
=

m

4π~2a
−
∫ Λ d3k

(2π)32εk
(3)

with hard ultraviolet momentum cutoff ~Λ. Equation (2) with a contact interaction
is the most frequently used model in theoretical studies of the UFG pseudogap.

2.3 Lattice model

The Hamiltonian (2) for a uniform gas can be modeled with N particles on a cubic
lattice with M = N3

L lattice sites (the filling factor is defined as ν = N/M), lattice
spacing δx, and periodic boundary conditions. The lattice Hamiltonian is given by

Ĥ =
∑
k,σ

εkâ
†
k,σâk,σ + g

∑
x

n̂x,↑n̂x,↓, (4)

where the single-particle dispersion relation is usually taken to be either quadratic

εk = ~2k
2
/2m or of the tight-binding form εk = ~2

mδx2

∑3
i=1 [1− cos (kiδx)] (where i

labels the quasi-momentum components), and g = V0/(δx)3 is the lattice coupling.

The operators â†k,σ and âk,σ are, respectively, creation and annihilation operators for

a single-particle state with wavevector k and spin σ = ±1/2, and n̂x,σ = ψ̂†x,σψ̂x,σ

are on-site number operators. The lattice site creation and annihilation operators

ψ̂†x,σ, ψ̂x,σ obey the anti-commutation relations {ψ̂x,σ, ψ̂
†
x′,σ′} = δx,x′δσ,σ′ . Note that

on a lattice the Dirac delta function δ(r − r′) of the continuum model becomes the
Kronecker delta function δx,x′ .

As discussed in references [12,17], the single-particle model space should include
all states within the complete first Brillouin zone, described by a cube in momentum
space |ki| ≤ Λ (i = x, y, z) with Λ = π/δx. The bare coupling constant V0 is chosen to
reproduce the two-particle scattering length as in equation (3), where the integration
region corresponds to the complete first Brillouin zone. The UFG is reproduced from
the lattice model in the continuum limit ν → 0 and thermodynamic limit N →∞.

Exact results on the lattice are available for the three-body problem [18].
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2.4 Trapped gases

Trapped gases can be described by equation (2) with the addition of a one-body
trapping potential Vtrap(r). An isotropically trapped system with Vtrap(r) = mω2r2/2
was considered in reference [19]. A natural single-particle basis is given by the eigen-

states |n, l,ml〉 of the single-particle Hamiltonian ĥ0 = − ~2

2m∇
2 + Vtrap, where n is

the radial quantum number, l is the orbital angular momentum, and ml the magnetic
quantum number, with energy εnl = (2n+ l + 3/2)~ω. One can truncate the single-
particle basis to a total of Nmax quanta of energy, i.e., 2n + l ≤ Nmax. An effective
interaction was developed for trapped systems with fast convergence in a regulariza-
tion parameter [20,21], but it does not have a good Monte Carlo sign. We consider
only a contact interaction V (r − r′) = V0δ(r − r′), with V0 tuned to reproduce the
two-particle ground-state energy as calculated in reference [16]. We note this regular-
ization is only approximate, the methods of references [20–22] being more rigorous.
This interaction was also used in reference [23].

3 Signatures of a pseudogap

Different observables have been proposed as signatures of a pseudogap regime, and
there is no one definition which is universally accepted. Most often, the pseudogap
regime refers to a depression in the single-particle density of states ρ(ω) at the chem-
ical potential µ for temperatures above Tc. The single-particle density of states is

given by ρ(ω) =
∫

d3k
(2π)3A(k, ω), where A(k, ω) is the spectral function.

3.1 Spectral function

The spectral function A(k, ω) is given by the imaginary part of the retarded Green
function GR(k, ω) through the relation A(k, ω) = −π−1Im[GR(k, ω)]. In BCS theory,
it has the two-peak structure [24,25]

A(k, ω) = u2
kδ(ω − E

(+)
k ) + v2

kδ(ω − E
(−)
k ), (5)

where E
(±)
k = µ ± Ek and Ek =

√
(εk − µ)2 + ∆2 is the quasiparticle energy (∆ is

the excitation gap and εk = ~2k2

2m ). The amplitudes uk, vk define the quasiparticle

creation operators α̂†k↑ = ukâ
†
k↑ − vkâ−k↓ and α̂†−k↓ = ukâ

†
−k↓ + vkâk↑ with |uk|2 +

|vk|2 = 1. In a strongly correlated system, which cannot be well described by mean-
field theory, A(k, ω) will have a more complex form with broadened peaks. However,
these broadened peaks can sometimes be fit to a modified quasiparticle dispersion
[25,26]

E
(±)
k = µ±

√( m
m∗

εk + U − µ
)2

+ ∆2 . (6)

Here m∗ is the effective mass and U is a Hartree shift parameter. A nonzero ∆ for
T > Tc indicates the existence of gapped quasiparticle excitations due to preformed
pairs as in reference [26]. However, a more general signature of a pseudogap is a
suppression of A(k, ω) near the chemical potential ω = µ. The E(−) branch of (5)
bends toward lower energies as the momentum is increased; this “backbending” is
also sometimes cited as a signature of a pseudogap.
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One can define a temperature scale T ∗ as the temperature at which signatures
of pairing first appear as the temperature is lowered. Note that in general no phase
transition occurs at T ∗. In BCS theory, the onset of pairing and condensation occur
simultaneously and T ∗ = Tc, where the gap parameter ∆ is the order parameter
describing the phase transition. In the BEC regime, however, the pairing temperature
T ∗ is the temperature scale associated with the formation of dimers and is distinct
from the much lower condensation temperature Tc of the dimers. For the UFG, the
value of T ∗ (T ∗ ≥ Tc) is still debated in the literature.

3.2 Thermodynamics

Several thermodynamic quantities have been studied for signatures of pseudogap
effects.

3.2.1 Heat capacity

The heat capacity CV = (∂E/∂T )V can be affected by pseudogap physics. Under-
doped cuprate high-Tc superconductors, which display pseudogap effects, are seen to
exhibit a suppression of γ = CV /T for T > Tc [10], indicating deviation from Fermi
liquid theory. On the other hand, it has been argued that in the UFG the specific
heat should be enhanced above Tc (either relative to the BCS and BEC regimes, or
by showing an upward trend as T approaches Tc from above) due to the existence of
T > Tc precursor pairing correlations [27,28]. The specific heat was measured across
the superfluid phase transition in the UFG [29] (see Sect. 4).

3.2.2 Spin susceptibility

The uniform static spin susceptibility χs

χs =
1

kBTV
〈(N̂↑ − N̂↓)2〉 (7)

provides another interesting signature of pseudogap effects [1,2]. Pairing correlations
tend to suppress χs as pair breaking excitations become energetically unfavor-
able. The spin susceptibility is therefore expected to drop below T ∗, similar to
the exponential suppression of the spin susceptibility for a BCS superfluid at low
temperatures.

3.2.3 Pairing gap

A model-independent pairing gap can be defined from the staggering of the energy
with particle number

∆E=[2E(N/2− 1, N/2)− E(N/2− 1, N/2− 1)− E(N/2, N/2)]/2 , (8)

where E(N1, N2) denotes the energy of a system with N1 spin-up and N2 spin-down
particles, and N = N1 + N2 is the total number of particles [8,30]. For attractive
pairing one has ∆E ≥ 0. This definition is used for atomic nuclei [31] at zero temper-
ature. We expect the onset of such even-odd effects in the thermal energy to occur
below a temperature for which pairs with a finite binding energy begin to form. In a
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Fig. 1. Photoemission spectroscopy (PES) data [37] for the homogeneous Fermi gas near
unitarity [(kF a)−1 = 0.1] at T > Tc. Color shows the normalized PES signal I(p,E)
(see text) as a function of the single-particle momentum p and energy E. The white line
indicates the free particle dispersion E ∝ p2, and the circles are the peak positions. Adapted
from the supplementary material of reference [37].

BCS superfluid this occurs below the critical temperature Tc, while in the UFG we
expect this to occur below T ∗.

The thermal energy E(N1, N2) in equation (8) is defined in the canonical ensemble
of fixed particle numbers N1 and N2. This canonical-ensemble formulation has been
implemented in AFMC using particle-number projection [12,19] and reprojection [32].
For more details, see Section 6.

3.2.4 Equation of state

The equation of state has been studied in the normal phase and compared with
predictions of Fermi liquid theory. In particular, the pressure of a Fermi liquid is
expected to vary linearly with (kBT/µ)2, when properly normalized. This has been
investigated experimentally, as discussed in Section 4.

4 Experimental results

Effects of pairing correlations were observed in early spectroscopic measurements of
trapped Fermi gases [33,34]. These experiments did not directly address pseudogap
physics, but provided the first experimental evidence of pairing in the unitary regime.

The 2010 experiment of reference [35] appears to have been the first attempt to
directly address pseudogap physics by measuring the spectral function of a trapped
gas. A BCS-like dispersion, with backbending near kF , was observed in photoemis-
sion spectra at temperatures above Tc. These results were subsequently analyzed in
several papers with contradictory conclusions being drawn, one group describing a
Fermi-liquid behavior [36], and another group explaining these results in terms of a
pseudogap [27].
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Fig. 2. Spectral intensity near unitarity [(kF a)−1 = 0.1] computed using a T -matrix approx-
imation and compared with the experimental data in Figure 1. Color shows the computed
intensity I(p,E) (see text) including effects of the trap. The calculated peak position (black
solid line) is compared to the experimental peak positions (white circles). Adapted from
reference [38].

A more recent measurement accounted for trapping effects by focusing atten-
tion to the center of the cloud [37]. This experiment measured the photoemission
spectral intensity I(p,E) ∝ p2A(p,E)f(E), where f(E) is the Fermi-Dirac function
and A(p,E) is the single-particle spectral function. The result is shown in Figure 1
(normalized to

∫
dp dE I(p,E) = 1) near unitarity [(kFa)−1 = 0.1] and slightly above

the critical temperature. The experimental data, including effects of finite resolution,
is well-modeled by a fermionic quasiparticle spectral function plus an incoherent back-
ground thermal distribution of bound pairs. The weight of the quasiparticle signal
decays to zero beyond kFa ≈ 0.28. The results of a T -matrix theory [38] (see Sect. 5.1)
which display a pseudogap are shown in Figure 2 and compared with the experiment.

A measurement of the equation of state in 2010 found Fermi-liquid behavior of the
pressure as a function of temperature [39]. The magnetic susceptibility in the normal
phase was subsequently determined [36] and also shown to be consistent with a Fermi-
liquid behavior. However, shortly afterward a measurement of the specific heat CV
across the superfluid phase transition [29] indicated non-Fermi-liquid behavior, in
that CV was not found to be linear in T in the normal phase. The same experiment
also found a Fermi-liquid-like behavior in the pressure above Tc; see Figure 3.

5 Theoretical approaches

5.1 Strong-coupling theories

Early analytical approaches to the BCS-BEC crossover include those of Eagles [42]
and Leggett [43], and Nozières and Schmidtt-Rink (NSR) [44]. NSR included pair-
ing fluctuations to determine the dependence of Tc on the interaction strength.
Reference [45] obtained similar NSR equations for Tc using Gaussian fluctuation
theory.

Subsequently, various theories have emerged treating pairing correlations in the
strong-coupling regime beyond the mean field by summing infinite series of certain
diagrams in perturbation theory. A general difficulty with these theories is that they
include uncontrolled approximations whose errors cannot be estimated a priori. The
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Fig. 3. Pressure of the homogeneous UFG as a function of (kBT/µ)2. The vertical axis
shows the local pressure P (µ, T ) of the trapped gas, normalized by the pressure P0(µ, 0) of
a non-interacting Fermi gas at zero temperature. The red solid circles are the experimental
results of reference [29], the red line is a linear fit, and the solid blue line is the zero-
temperature limit. Open circles are the earlier experimental results from reference [40]. The
offset between the two experimental results is not fully understood but might be in part due
to uncertainties in the Feshbach resonance position [41]. The linear behavior above T ∼ Tc

is as expected for a Fermi liquid. Adapted from the supplemental material of reference [29].

two-species spin-balanced Fermi gas with contact interaction provides a useful testing
ground for such theories, since it is experimentally accessible and permits quantum
Monte Carlo simulations that are free of the sign problem (see Sects. 5.2 and 6).

A number of other theories addressing the pseudogap which we do not discuss
here can be found in references [46–49].

5.1.1 Non-self-consistent T -matrix approaches

One of the earlier strong-coupling theories employed a non-self-consistent T -matrix
approximation to describe the pseudogap in cold atomic Fermi gases [50]. Similar
methods were applied in references [27,38,51–53]. In particular, the spectral func-
tion was calculated in references [27,51,53] at unitarity and compared to experiment
in references [27,38]. It agrees well with the recent experiment of reference [37]
(see Fig. 2). The T -matrix approximation of reference [50] predicts Tc = 0.24 TF
at unitarity, while an extended version used in references [54,55] predicts
Tc = 0.21 TF [55]. A recent development of this method can be found in reference [56].

Another approach, which describes a finite-temperature extension of the work of
Leggett, is discussed in reference [57] and is referred to as the extended BCS-Leggett
theory. In comparison with that of reference [50], it is less accurate in the BEC
regime, but more accurate in the BCS regime. It yields Tc = 0.26 TF at unitarity.
References [57,58] provide detailed comparisons between the extended BCS-Leggett
theory and the T -matrix approximations discussed above.

Figure 4 shows a comparison from reference [58] of the spectral function computed
in the T -matrix approximation (left panel) and the extended BCS-Leggett theory
(right panel), both at T = 0.24TF , which is near Tc for these theories. Both theories
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Fig. 4. Comparison of the spectral function A(k, ω) of the UFG for two strong-coupling
theories at T = 0.24TF (which is near Tc for these theories). The left panel shows a T -matrix
approximation similar to reference [50], and the right panel is obtained in the extended
BCS-Leggett theory. Adapted from reference [58].

Fig. 5. Spectral function A(k, ω) at unitarity for T = Tc computed using a self-consistent
Luttinger-Ward theory. At Tc, this theory shows only a weak two-branch structure. Adapted
from reference [25].

show clear pseudogap effects, with the BCS-Leggett theory showing a more pro-
nounced effect that includes backbending of the lower branch of the spectral function
in addition to the two-peak structure.

5.1.2 Self-consistent Luttinger-Ward theory

A self-consistent theory was developed for the BCS-BEC crossover based on the
Luttinger-Ward functional [25,59–62]. In this approach Tc = 0.16(1)TF at unitarity.
When compared with other strong coupling theories, this value is closer to the exper-
imental and quantum Monte Carlo values. Figure 5 shows the UFG spectral function
calculated in this self-consistent approach at Tc. It exhibits only weak evidence of a
pseudogap.

5.2 Quantum Monte Carlo methods

Several quantum Monte Carlo approaches have been used to study the UFG and
its properties at finite temperature. There have also been a number of quan-
tum Monte Carlo calculations of the UFG ground state (T = 0) studying the
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Fig. 6. Spectral function A(k, ω) computed using AFMC at T = 0.15TF (the critical tem-
perature reported by the authors of this work is Tc . 0.15(1)TF [63]). The horizontal axis
is (ω − µ)/εF and the vertical axis is (p/pF )2, where µ is the chemical potential and pF is
the Fermi momentum. Adapted from reference [26].

Bertsch parameter [64,65], Tan’s contact [66], the superfluid pairing gap [30,67],
finite-size effects [68], and effective-range dependence [69–71]. Here we focus on
finite-temperature approaches that are relevant to pseudogap phenomena.

5.2.1 Diagrammatic Monte Carlo methods

The diagrammatic quantum Monte Carlo approach stochastically samples the contri-
butions of Feynman diagrams to correlation functions in the interaction picture. This
has been implemented on a lattice and used to calculate thermodynamic properties
of the normal and superfluid phases, extrapolating to the continuum and thermo-
dynamic limits. In particular the critical temperature [72,73], and more recently
the temperature dependence of the contact [74] have been computed and compared
with experiment [75]. The lattice diagrammatic approach is described in detail in
references [76,77].

The bold diagrammatic approach [78–81] works with fully dressed Green’s func-
tions directly in the continuum and thermodynamic limits. It was used to calculate
the equation state of the UFG, in very good agreement with experiment. To date this
method has been applied only above Tc.

5.2.2 Auxiliary-field Monte Carlo method

The auxiliary-field quantum Monte Carlo (AFMC) method [82,83] is based on the

Hubbard-Stratonovich transformation [84,85], in which the thermal propagator e−βĤ

is written as a path integral of propagators of non-interacting particles in exter-
nal auxiliary fields. The sum over the auxiliary-field configurations is then sampled
stochastically. Finite-temperature lattice AFMC in the grand-canonical ensemble
has been used to calculate both thermodynamic and dynamic properties of the
UFG [26,63,86,87]. Unlike the diagrammatic methods, the computational cost of
AFMC has so far prevented the extraction of observables in the full thermodynamic
and continuum limits.

The spectral function has been computed for small lattices [26,86,87]. Figure 6
shows the result of reference [26] for N = 50 − 55 particles on a lattice of size
83 at T = 0.15TF , which is essentially at their estimated critical temperature
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Tc . 0.15(1)TF . The result shows a clear gapped structure. The modified BCS
dispersion in equation (6) was fitted to extract an effective gap parameter, giving
∆ ≈ 0.22 εF at this temperature.

The static spin susceptibility was also computed [87] and seen to have substantial
suppression for T ≥ Tc, indicating a pseudogap regime where the pairing temperature
scale is estimated to be T ∗ = 0.20− 0.25TF .

We note, however, that the calculations of references [26,63,86–88] used a spherical
cutoff in the single-particle space |k| ≤ Λ rather than the complete first Brillouin zone
[see Eq. (4)]. As discussed in references [12,17], this approximation affects the two-
particle scattering and does not reproduce the scattering properties of the UFG even
in the continuum limit. See also Section 6.4.

5.2.3 Dynamical cluster Monte Carlo approach

The dynamical cluster quantum Monte Carlo approach [89–91] treats correlations on
the lattice exactly for clusters of lattice sites up to a certain size, with longer-range
correlations treated in a mean-field description. This approach has been applied to
study the normal state spectral function with a lattice filling factor of ν = 0.3 for sev-
eral scattering lengths [92]. No clear pseudogap regime above the critical temperature
was seen for the UFG.

6 Canonical-ensemble auxiliary-field quantum
Monte Carlo methods

AFMC methods were developed in the canonical ensemble of fixed particle number
for trapped Fermi gases of cold atoms using the CI shell model approach [19] and for
uniform Fermi gases using a lattice formulation [12]. These approaches are inspired
by AFMC methods developed for nuclei [93,94] in which the number of protons and
neutrons are fixed; for reviews see references [95–97]. An advantage of the canonical
ensemble is that it allows the model-independent calculation of a pairing gap from
the staggering of the energy in particle number, equation (8). Canonical-ensemble
quantum Monte Carlo calculations were also discussed in reference [98] and used to
study finite-size effects in the Hubbard model. The direct implementation of particle-
number projection is computationally intensive. In references [12,19] this technique
was extensively optimized so it does not significantly increase the overall computation
time.

For the lattice calculations of reference [12] we use the model of Section 2.3 with
fixed numbers of N↑ and N↓ fermions on discrete lattices with lattice spacing δx
and NL points in each dimension (except when calculating the spin susceptibility
χs, where only the total number of particles N = N↑ + N↓ is fixed). We use the
quadratic single-particle dispersion relation εk = ~2k2/2m and include all single-
particle momentum states ~k within the first full Brillouin zone. For trapped gases,
reference [19] used the model of Section 2.4 with fixed numbers ofN↑ and N↓ fermions.

6.1 AFMC method

The AFMC method uses the representation of the thermal propagator e−βĤ as a
functional integral over auxiliary fields. We sketch below the derivation.

The Hamiltonian can be written in the form Ĥ = Ĥ0 + V̂ , where Ĥ0 is a one-body
operator and V̂ =

∑
α λαÔ

2
α is the sum of squares of one-body operators Ôα. In the
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lattice case, Ĥ0 = K̂ − gN̂/2, where K̂ is the kinetic term, λα = g/2, and Ôα are the
on-site number operators n̂(x) = n̂x,↑ + n̂x,↓. In the trapped case, the Hamiltonian
can be decomposed in an angular-momentum-conserving formalism [19,95,99,100].

The propagator e−βĤ is factorized using a Trotter decomposition e−βĤ =

(e−∆βĤ)Nτ , where we have divided the imaginary time β into Nτ time slices of

length ∆β = β/Nτ . For each time slice, we use e−∆βĤ = e−∆βĤ0/2e−∆βV̂ e−∆βĤ0/2 +

O((∆β)3) for our lattice calculations, and e−∆βĤ = e−∆βĤ0e−∆βV̂ + O((∆β)2) for
our trapped calculations. The overall error is then O((∆β)2) or O(∆β), respectively.

Introducing an auxiliary field σα(τn) for each Ôα and at each time slice n, we express

exp(−∆βλαÔ
2
α) as a Gaussian integral over σα(τn) to obtain a discretized functional

integral

e−βĤ ≈
∫
D[σ]GσÛσ, (9)

where D [σ] is the integration measure and Gσ is a Gaussian weight. Ûσ is the many-

particle propagator Ûσ = ÛNτ · · · Û1, a time-ordered product in which each Ûn is a
product of exponentials of one-body operators.

The expectation value of an observable Ô can be written as a functional integral

〈Ô〉 =

∫
D [σ] 〈Ô〉σWσΦσ∫
D [σ]WσΦσ

, (10)

where 〈Ô〉σ = Tr(ÔÛσ)/Tr(Ûσ) is the expectation value of Ô for a given

auxiliary-field configuration σ, Wσ = Gσ|Tr(Ûσ)| is a positive-definite weight, and

Φσ = Tr(Ûσ)/|Tr(Ûσ)| is the Monte Carlo sign. The high-dimensional integral in
equation (10) is calculated by Monte Carlo sampling, for which we use the Metropolis-
Hastings algorithm [101,102], updating one time slice at a time. The traces in the
equations above are calculated in the canonical ensemble, as discussed in the next
section.

The advantage the AFMC framework is that Ûσ in equation (9) is a one-body

propagator, so the expectation values of observables with respect to Ûσ can be com-
puted using matrix algebra in the single-particle space. In this single-particle space
Ûσ is represented by a chain of matrix products. For a large number of time slices,
this product must be numerically stabilized [95]. This stabilization is achieved by a

QDR decomposition: the matrix Uσ representing Ûσ is stored in a decomposed form
Uσ = QDR where Q is unitary, D is diagonal with positive entries, and R is unit
upper triangular.

6.2 Particle-number projection

For each auxiliary-field configuration we project onto fixed particle number using a
discrete Fourier transform [103], with projection operator

P̂Nσ =
e−βµNσ

M

M∑
m=1

e−iϕmNσe(βµ+iϕm)N̂σ (11)

for σ= ↑ or ↓. Here ϕm = 2πm
M are quadrature points, M = N3

L is the number of
lattice points (in the lattice case) or the number of single-particle harmonic oscillator
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states (in the trapped case), and the chemical potential µ is introduced for numer-
ical stability. The traces above are then evaluated in the canonical ensemble using
TrN↑,N↓(X̂) = TrGC(P̂N↑ P̂N↓X̂) which allows us to write the canonical-ensemble trace
as a sum of grand-canonical traces (with complex chemical potentials). The grand-
canonical trace is calculated in the single-particle space for the one-body propagator
Ûσ using the relation

TrGC[e(βµ+iϕm)N̂ Ûσ] = det[11 + e(βµ+iϕm)Uσ] . (12)

The canonical projection usually requires O(M4) operations to compute, partic-
ularly when combined with numerical stabilization. A canonical-ensemble algorithm
allowing O(M3) scaling was introduced in references [19,104]. In the lattice calcula-
tions of reference [12], we have further reduced the computational time using several
methods which effectively reduce the dimension of the single-particle model space for a
given field configuration. In particular, the D factor of the decomposition Uσ = QDR
contains information on the numerical scales in Uσ, and can be used to truncate the
model space by omitting the eigenspace of Uσ that corresponds to unoccupied states.
At temperatures of interest this reduces the model space dimension to the order of a
few hundreds and substantially speeds up the calculation of observables.

6.3 Canonical-ensemble observables

A number of observables were studied for a finite-size trapped Fermi gas [19] and for
the uniform Fermi gas [12] to better understand their pairing correlations across the
superfluid phase transition.

6.3.1 Condensate fraction and critical temperature

The condensate fraction describes the extent of off-diagonal long-range order

(ODLRO) in the two-body density matrix ρ2(i ↑, j ↓; k ↑, l ↓) = 〈â†i↑â
†
j↓âl↓âk↑〉 [105].

For the trapped gas the indices i, j, k, l refer to harmonic oscillator states, and for the
uniform Fermi gas they refer to momentum states. When ODLRO is present, ρ2 will
acquire a maximal eigenvalue λ2 which scales with the system size and corresponds to
the occupation of a pair state. The value of λ2 is bound by [N(M −N/2 + 1)/(2M)] ≤
N/2, where M is the number of single-particle states (M = N3

L for a lattice). The
condensate fraction can then be defined as n = 〈λ2〉/[N(M − N/2 + 1)/(2M)] or
n = λ2/(N/2).

In Figure 7 we show the condensate fraction n = λ2/(N/2) for a finite-size trapped
gas with N = 20 particles and for a maximal number of oscillator shells Nmax = 11,
which is sufficient to reach convergence in Nmax at T = 0.125TF [99]. For the trapped
case TF = εF = 4~ω (using units with kB = 1). The condensate fraction begins to rise
steeply below T ≈ 0.175TF , showing a signature of the superfluid phase transition,
which in a finite-size system is more precisely a smooth crossover.

In Figure 8 we show the condensate fraction n = 〈λ2〉/[N(M −N/2 + 1)/(2M)]
for the uniform gas with N = 80, 130 particles on 113, 133 lattices, and compare to
the experimental result of reference [29].

For the uniform gas we use finite-size scaling for the condensate fraction [72,73,
106,107] to estimate the critical temperature. We find Tc = 0.130(15) TF at the finite
filling factor ν ' 0.06. This density corresponds to a sizable ratio of the effective
range to the Fermi wavelength kF re ' 0.41, where re = 0.337 δx for the lattice model
we simulated [17]. The zero-density limit results of references [72,73] are given by
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Fig. 7. Condensate fraction n for a trapped UFG with N = 20 particles as a function of
T/TF . The solid circles are the AFMC results, the solid line describes the noninteracting
case, and the dashed line is the zero-temperature noninteracting limit n = 2/N . Adapted
from reference [19].

Fig. 8. Condensate fraction n for the uniform UFG vs. T/TF . AFMC results [12] (solid sym-
bols) are compared to the experimental result of reference [29] (open circles). The agreement
between the experimental result and the N = 130 result is remarkable. We note, however,
that our estimated critical temperature (for a filling factor of ν = 0.06) Tc ∼ 0.13TF is
lower than the experimental Tc = 0.167(13)TF due to finite-range effects. Adapted from
reference [12].

Tc = 0.152(7)TF and Tc = 0.173(6)TF , respectively. Extrapolating to zero density
using AFMC would be useful in future work to remove the finite-range contribution.

6.3.2 Heat capacity

The heat capacity calculations of references [12,19] are based on the method of ref-
erence [108], in which statistical errors are substantially reduced by using the same
auxiliary-field configurations to compute E(T + ∆T ) and E(T −∆T ) when calculat-
ing (∂E/∂T )V numerically, taking into account correlations in the statistical errors.
In Figure 9, we show the result for the trapped case with 20 particles and Nmax = 11,
for which C is converged at T ≤ 0.2TF . This heat capacity exhibits a clear signature
of the superfluid phase transition.

In Figure 10 we show the result for the heat capacity of the uniform gas with
N = 40 and N = 80 particles on lattices of size M = 93 and M = 113, respectively,
and compare to experiment [29], the Luttinger-Ward result of references [109,110] (the
data of Ref. [110] was used for the normal phase result), a non-self-consistent T -matrix
calculation [27], and NSR theory [28]. The results of references [27,28] seem to differ
significantly from the experimental data and from the AFMC results of reference [12].
However, we note that the agreement between these results and experiment is better
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Fig. 9. Heat capacity for a trapped UFG with N = 20 particles as a function of T/TF .
Symbols and solid line are as in Figure 7. Adapted from reference [19].

Fig. 10. AFMC heat capacity per particle for the UFG [12] (solid symbols) vs. T/TF

compared with the experiment of reference [29] (open circles) as well as the Luttinger-Ward
result of references [109,110] (solid line), the T -matrix result of reference [27] (dotted line),
and the NSR result of reference [28] (dashed line). Adapted from reference [12].

when plotted as a function of T/Tc, accounting for the differing values of Tc. The
AFMC results of reference [12] agree well with experiment.

6.3.3 Pairing gap

The energy-staggering pairing gap ∆E was computed in the canonical ensemble using
equation (8) for both the trapped [19] and uniform [12] gases. ∆E has the advantage
of providing a model-independent signature of pairing correlations without the need
for analytic continuation of Monte Carlo results.

In Figure 11 we show ∆E for the trapped case for N = 20 and Nmax = 9; it is
converged in Nmax for T ≤ 0.2 TF . The gap is slightly larger than zero at high tem-
peratures due to finite-size effects. It begins to rapidly increase below T ∼ 0.175 TF ,
the same temperature at which features in n and C appear, showing no evidence of
a gap prior to condensation for this finite number of particles.

In Figure 12 we show ∆E for the uniform UFG for N = 40, 80, 130 on lattices of
size M = 93, 113, 133, respectively. We also show the T = 0 quantum Monte Carlo
result of reference [67] and the low-temperature experimental result of reference [112].
These results are consistent with the spatially resolved radio-frequency spectroscopy
result ∆E/εF = 0.44(3) of reference [111]. The energy-staggering pairing gap ∆E

vanishes (or is very weak) for temperatures greater than the critical temperature
Tc ≈ 0.13 TF which we estimate for the finite filling factor of ν = 0.06.
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Fig. 11. Energy-staggering pairing gap ∆E (in units of εF ) for the trapped UFG
with 20 particles vs. T/TF , computed using canonical-ensemble AFMC. Adapted from
reference [19].

Fig. 12. Energy-staggering pairing gap ∆E (in units of εF ) for the uniform UFG vs. T/TF

using canonical-ensemble AFMC. The shaded vertical band shows our estimate of Tc calcu-
lated from the condensate fraction data using finite-size scaling. Also shown are the T = 0
quantum Monte Carlo result of reference [67] (open square), the experiment of reference [111]
(open down triangle) and the recent experimental result of reference [112] (open up triangle).
Adapted from reference [12].

6.3.4 Spin susceptibility

In Figure 13 we show our AFMC results for the spin susceptibility χs of the uni-
form gas in units of the zero-temperature free Fermi gas susceptibility χ0 = 3ρ/2εF
with particle density ρ = ν/(δx)3, along with several other theoretical results. For
this observable we use a single particle-number projection onto the total number
N = N↑ +N↓ of particles. As discussed in Section 3, a decrease in the spin suscepti-
bility is expected as the temperature is lowered below T ∗. Comparing the temperature
scale where this decrease occurs to the critical temperature Tc allows a determination
of the pseudogap regime [2]. The strong-coupling calculations of references [55,113]
are consistent with pseudogap physics, showing a “spin-gap” emerging via suppression
in χs for T > Tc. The AFMC result of reference [87] also shows clear suppression in
χs for temperatures below ∼0.25TF , a value significantly higher than the estimated
Tc . 0.15(1)TF [63]. The result obtained in the self-consistent Luttinger-Ward the-
ory of reference [62] does not show a clear signature of a pseudogap and is consistent
with the spectral function result for T = Tc shown in Figure 5. The calculation of
reference [114], which uses an NSR-based approach, also shows no clear indication of
a pseudogap or decrease in the spin susceptibility as the temperature is lowered.

Our results show a weak signature of a spin-gap above Tc. We observe a moderate
decrease in the spin susceptibility for N = 130 particles below T ≈ 0.17 TF , which is
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Fig. 13. Spin susceptibility χs for the uniform UFG computed using our canonical-ensemble
AFMC (solid symbols), the AFMC result of reference [87] (open squares), the T -matrix result
of reference [113] (dotted line), the T -matrix result of reference [55] (dashed line), the fully
self-consistent Luttinger-Ward result of reference [62] (solid line), and the self-consistent
NSR result of reference [114] (dashed-dotted line). Adapted from reference [12].

Fig. 14. Canonical-ensemble AFMC results for the spin susceptibility of N = 20 particles
calculated with no cutoff on lattice sizes 93, 113 and with a spherical cutoff (SC) on lattice
sizes 93, 113, 133. There is a substantial difference between the no cutoff and spherical cutoff
results as the continuum is approached for lower filling factors. The solid line is the result
of reference [62].

greater than our estimated Tc. However, while we estimated Tc in the thermodynamic
limit for a filling factor ν = 0.06 using finite-size scaling, no such thermodynamic limit
has been taken with χs, and the trend for larger systems seems to indicate that the
effect will be smaller in this limit.

6.4 Spherical cutoff

A spherical cutoff in the single-particle momentum of the uniform gas does not
reproduce the two-particle scattering properties of the UFG even in the continuum
limit [12,17]. The spin susceptibility provides a useful observable for testing the effects
of a spherical cutoff on the many-particle physics. In Figure 14 we show the spin sus-
ceptibility for a fixed number N = 20 of particles on several lattice sizes, with and
without a spherical cutoff in the single-particle momentum space. Even at the lowest
filling factors studied, ν = 0.015, 0.009 (corresponding, respectively, to lattice sizes of
113, 133), the spherical cutoff effects survive and affect predictions for the value of T ∗

and pseudogap physics.
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7 Conclusion

The nature of the UFG above the critical temperature Tc for superfluidity has
attracted much interest, both theoretically and experimentally. Some of the measured
observables are consistent with Fermi liquid behavior above Tc (e.g., the pressure,
Fig. 3), while others are not (e.g., the spectral function observed in photoemission
spectroscopy, Fig. 1). Results of theoretical calculations still vary considerably, with
some predicting pronounced pseudogap effects and others not. In particular, the heat
capacity in Figure 10 and the spin susceptibility in Figure 14 vary widely among
different theories.

Measurements of the temperature dependence of the spin susceptibility and
model-independent pairing gap would shed light on the pseudogap regime of the
UFG. Past experiments have used trapped systems to infer the properties of the uni-
form gas, but an experimental setup of a uniform gas was recently reported [115]. Such
experiments, expected in the near future, will address more directly the properties of
the uniform gas and might provide better insight into pseudogap physics.

Quantum Monte Carlo methods have provided accurate calculations of the critical
temperature and thermal energy, but results for the pseudogap are either less reliable
or incomplete. Within the framework of AFMC, a reliable extrapolation for both the
thermodynamic and continuum limits would be a very significant achievement, par-
ticularly if the spectral function could be computed using the full first Brillouin zone
of the lattice. This would provide a benchmark for strong-coupling theories and other
methods, such as the bold diagrammatic Monte Carlo, whose convergence properties
are not well known. The canonical-ensemble AFMC calculations of reference [12] have
made progress toward this goal by carefully fixing the filling factor, studying conver-
gence, and computing new observables (the energy-staggering pairing gap and heat
capacity). We have seen that it is important to take into account the complete first
Brillouin zone of the lattice in momentum space. However, AFMC calculations on
larger lattices are still computationally very challenging.
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