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Abstract. A fundamental particle in physical space subject to con-
servation of momentum and energy, and characterized by its average
mass and its position is methodologically supplemented with an infor-
mation processor – a classical Turing machine – and a randomizer
both defined on an information space localized on every particle. In
this way the particle can be considered a generalized Darwinian sys-
tem on which natural selection could act steering the evolution on the
information space of the algorithms that govern the behaviour of the
particles, giving rise plausibly to emergent quantum behaviour from ini-
tial randomness. This theory is applied to an EPR-Bohm experiment for
electrons in order to analyse Bell inequality violation. A model for the
entanglement of two particles has been considered. The model includes
shared randomness – each particle stores its own randomizer and that
of its partner – and the mutual transfer of their algorithms – sharing
programs – that contain their respective anticipation modules. This fact
enables every particle to anticipate not only the possible future config-
urations of its surrounding systems, but also those of the surrounding
systems of its entangled partner. Thus, while preserving locality and
realism, this theory implies outcome dependence – through shared ran-
domness – and parameter dependence – through shared anticipation
– for entangled states and, as a consequence, the violation of the Bell
inequality in an EPR-Bohm experiment.

1 Introduction

Bell inequality violation [1] – i.e., non-classical correlations registered (and pre-
dicted by quantum mechanical calculations) for certain measurements performed
on spatially-separated composite systems in quantum entangled states – constitutes
one of the most striking phenomena ever observed in nature. It probably represents
better than any other characteristic the hard core of quantum mechanics and its
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specificity against classical theories. The work of Bell [1] was central to transforming
the metaphysical discussion, usually based on Gedanken experiments, that affected
the interpretation of the quantum theory into experimental-based debate supported
by observations that could be tested and refined in the laboratory.

The first experimental test was performed by Freedman and Clauser [2], report-
ing the violation of the Bell inequality. Then, among other landmarks [1], Fry and
Thompson [3] obtained results that agree with Bell inequality violation, reducing the
time needed to gather the experimental data, and Aspect et al. [4] confirmed Bell
inequality violations more drastically than in any previous experiment. However, the
difficulty of the experiment and the high degree of technological developments that
are required to experimentally implement the conditions to test the Bell inequal-
ity gave rise to a series of more sophisticated experiments in order to confirm Bell
inequality violations when, at the same time, closing the experimental loopholes. This
has only been achieved recently [5–7].

The central question that the violation of Bell inequality poses is whether it
implies something deep and astounding about nature. A first scrutiny of the explicit
assumptions of Bell theorem seems to imply a short list – not exempt of controversy –
of possible meanings of Bell inequality violations. Nonlocality [8], contextuality –
e.g. counterfactual indefiniteness, multiple Kolmogorov probability spaces, among
other several options [9–12] –, the presence of a background field [13–15], negative
probabilities [16] are some of the properties of nature or explanatory schemes that
might account for the non-classical correlations registered in EPR-Bohm experiments.

Delving into implicit assumptions, a larger list – although by no means exhaus-
tive – of explanations of Bell inequality violations can be enumerated. First, absence –
or at least a shortage or necessity of redefinition – of free will in experimenters1 (this
option is explored in the so-called superdeterministic theories [18,19]). Second, a
radical extension of the role played by subjectivity in quantum mechanics (e.g. in
QBism [20]). Third, enlarging reality by considering that all possible outcomes in an
experiment are effectively realized, although in different, mutually unobservable – in
principle – worlds (many worlds interpretation of quantum mechanics [21]). Fourth,
rejecting the principle of causality and admitting backward in time causation (e.g.
in time-symmetric quantum mechanics [22]). In fact, almost every interpretation of
quantum mechanics has a different way of looking at the Bell inequality violations.
The problem is that nearly every approach on its own way seems to sacrifice one –
or at least a part – out of three central pillars of classicality: realism, causality and
locality2 [23,24]. As Jennings and Leifer [25] point out, perhaps this is the message
that the Bell theorem and the other interwoven no-go theorems [26] convey about
quantum mechanics, namely, that it is not possible to recover classical reality.3 But is
there any unavoidable reason for the world to be quantum? Or “why the quantum?”
as Wheeler famously wrote.

In this article, we adopt a constructive standpoint, as advocated by Khrennikov
[27], and develop a model of entanglement4 in the framework of a Darwinian approach

1This possibility was explicitly mentioned by Bell [17].
2These three basic principles can be briefly defined, following Mückenheim [23], as realism or the

possibility of an observer-independent description of nature, causality or the existence of a definite
time ordering for cause and effect, and locality (or separability) or the propagation of interactions
with a finite speed limit.

3The explicit definition for the term “classical” theory adopted by Jennings and Leifer [25] is that
such a theory is local, non-contextual and the non-orthogonal pure states, in this kind of theory, are
characterized by overlapping statistical distributions on some state space.

4This model of entanglement shares with other models the widespread idea that the informa-
tion travels with the particles. This idea will be further explained in Section 2. See the article by
Nieuwenhuizen [12] for a discussion about this idea in other models. In particular, our approach
fits very well in the Allahverdyan-Balian-Nieuwenhuizen approach [28,29] to quantum measurement
combined with the properties known from EPR quantum measurements.
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to quantum mechanics (DAQM) [30–33] that allows us to rebuild, if not a complete
classical reality, at least a close sketch of it (a realist, local and quasi-causal theory)
that, at the same time, enables to outline an explanation of why the world is the way
it is.

The two main non-classical elements that DAQM incorporates to describe a fun-
damental physical system are defined on an information space associated with every
system, assuming that matter is complex and that the state of a particle cannot be
completely described by position and momentum.5 These two non-classical properties
are intrinsic randomness and information processing capability. Intrinsic randomness
is implemented through the ascription of a random number generator R to every
fundamental particle and the information processing capability through a classical
Turing machine [34] associated with every fundamental particle on which a program
P controls the behaviour of the system. These two characteristics ascribed to matter
in DAQM endow physical systems with the capacity of anticipating the configuration
of their surrounding systems. This feature applied to entangled systems leads to a
new perspective on Bell inequality violations in the framework of a realist and local
theory (DAQM).

In Section 2, an EPR-Bohm experiment for electrons is analysed by means of a
model of entanglement in the framework of DAQM. A short overview of DAQM is
summarized in Section 3. Finally, the conclusion is drawn in Section 4.

We remark that our approach can be considered as a contribution to questioning
the fundamental role of physical space in quantum physics. Mathematically it is mod-
elled as R3, where R is the real continuum. This space was borrowed from Newtonian
mechanics and practically unquestionably incorporated in the structure of quantum
theory. We just say that dynamics of quantum systems cannot be described by using
solely spatial coordinates. The physical space time has to be extended to include addi-
tional degrees of freedom responsible for randomness and anticipation. These degrees
of freedom have the informational nature. Thus the physical space R3 is extended to
fibre bundle E with the base space B = R3 and the fibre F which is the information
space. Although such a fibre bundle can have a complicated geometric structure, this
is still a classical state space. Thus in our approach “classicality” is recovered not
straightforwardly. By trying to restrict the model to the Newtonian physical space,
one confronts nonlocality and variety of other problems and paradoxes.

2 Analysis of an EPR-Bohm experiment for electrons in DAQM

An information-theoretic model for entanglement in the framework of DAQM [30–33]
is devised and applied to the study of an EPR-Bohm experiment with electrons.

2.1 Constitution of a fundamental system in DAQM

A fundamental system is characterized in DAQM as a particle in three-dimensional
physical space complemented by a methodological classical Turing machine and
a random number generator both defined on an information space located on
every particle. The magnitudes that identify the particle i in physical space are
its average mass mi and its position Xi (t) at time t. Particles follow continuous
trajectories constrained to the conservation of energy and momentum in the pro-
cesses of absorbing and emitting energy-momentum carriers. These carriers convey

5In fact, this is a basic assumption in orthodox quantum mechanics reflected on the characteri-
zation of the state of a system by means of a wave function.
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information about the position of the emitter. After absorbing a carrier the infor-
mation is transferred to the classical Turing machine of the receiver defined on its
information space.

A key point of the model is the fact that the information space associated with
every particle – a different space for every one – is localized at any time on the
position occupied by such particle and given that the trajectory followed by any
particle in physical space is continuous, then the information (received data and
computed data) stored on the information space of every particle travels continuously
with the corresponding particle in physical space. Therefore, the data stored on the
information space of particle i are located at any moment on the position Xi (t)
occupied by such particle i in physical space.

The Turing machine of particle i stores an algorithm Pi that governs the behaviour
of the particle by calculating the parameters of the energy-momentum carrier to
be emitted after every run of the program. This algorithm includes a module of
anticipation Ai whose function is to calculate the possible future positions Xj of the
particle’s surrounding systems6 – in fact, as in a radar-like problem, a probability
density function ρj(X) for the position occupied by the particle j. The randomizer7

Ri completes the software that is stored on the information space of every particle.
Let us assume that Pi, Ai and Ri are able to generate in real time quantum

behaviour on the particle i that is controlled by them.8 Then the model might be
envisaged as a kind of generalization of Bohmian mechanics in which every particle
is controlled by its own probabilistic classical Turing machine. However, as we are
going to show, in this model, in contradistinction to Bohmian mechanics, there is no
trace of nonlocality thanks to anticipation.

2.2 An information-theoretic model for entanglement

Two particles in contact at time t in physical space are entangled (see Fig. 1) by
sharing and storing their programs (P1, P2), anticipation modules (A1, A2), random-
izers (R1, R2) and wave functions (ψ1, ψ2) on their respective information spaces. At
time t + ∆t, after separation in physical space, each particle conveys its own soft-
ware (P1(2), A1(2), R1(2)) and that of its partner (P2(1), A2(1), R2(1)), in addition to
the entangled wave function (ψ) of the bipartite system.

Each particle of the entangled pair is now able to anticipate, at time t+ ∆t, the
possible locations of its surrounding systems, at time t + 2∆t, but also that of the

6When the surrounding systems of particle i are microscopic systems (particles) the computed –
on the anticipation module Ai – future positions of these systems at time t+ ∆t can differ from the
actual positions that the systems finally occupy at that time t+ ∆t, not only because the programs
and data stored on the Turing machines of these surrounding systems are not stored, in general, on
the Turing machine of particle i, but mainly because the intrinsic randomness of these microscopic
systems represented by the randomizers stored on these particles cannot be anticipated by the
particle i. However, the anticipation for the future positions of surrounding macroscopic systems,
like meters, is usually straightforward, since they obey classical equations.

7The randomizer is the methodological representation of the intrinsic randomness that is postu-
lated in DAQM as a fundamental property of matter. In this sense, it is not necessary to formulate
an operational characterization of an underlying mechanism. However, it is possible to give a descrip-
tion of a random generator in terms of classical information processing that could theoretically bring
about randomness for all practical purposes. This can be done through a deterministic algorithm
G(t) [35] stored in the Turing machine that calculates the next digit of, say, an unknown trascen-
dental number when the algorithm is called by the main program. The starting point at time t = 0
in the sequence of digits is unknown. G(t) must be computationally irreducible [36]. These features
ensure that the output of G(t) cannot be anticipated even by the own system. See Baladrón [32]
and references therein for a deeper discussion.

8This key issue will be analyzed in Section 3.
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Fig. 1. (a) Two particles of average masses m1 and m2 in contact at time t, X1(t) = X2(t),
are entangled by sharing their programs (P1, P2), anticipation modules (A1, A2), randomizers
(R1, R2) and wave functions (ψ1, ψ2) on their respective information spaces. (b) At time
t+ ∆t, after separation in physical space, X1(t+4t) 6= X2(t+4t), each particle conveys
its own software (P1(2), A1(2), R1(2)) and that of its partner (P2(1), A2(1), R2(1)), in addition
to the entangled wave function (ψ) of the bipartite system, e.g. the singlet state.

surrounding systems of its partner on its space-separated region. Besides, each particle
gets the random number generated by its own randomizer and that of its partner,
at the same time t+ ∆t (shared randomness). And, finally, both particles obtain the
output of its program – determining the parameters of the energy-momentum carrier
to be emitted – and that of its partner at the same time t+ ∆t.

Notice that, for an entangled pair (X1,X2), present (t+ ∆t) and possible future
(t + 2∆t) information9 on events – in physical space: current positions of systems
X1(t + 4t), X2(t + 4t) and Xj(t + ∆t), denoting j surrounding systems to the
entangled pair, or emitted energy-momentum carriers; and on information space:
possible future positions of systems X1(t + 24t), X2(t + 24t) and Xj(t + 2∆t) or
random numbers generated by the randomizers R1 and R2 of the entangled pair –
that are happening or will possibly happen in a space-separated region is generated by
both entangled particles at the same time (instantly) without involving any nonlocal
transfer of matter, energy, information or influence. That information on present and
possible future events is generated through local computation on the information
space that is located at any time on the position occupied by its corresponding
particle.

As pointed out by Timpson [37], information, although central to physics as has
become patent, is an abstract noun that is not bound to a continuity equation in
physical space or to conservation constraints. In our model, information is generated
by events in physical space – like the emission of momentum-energy carriers, and
therefore it is related to past and current positions and momenta of particles, but it

9Future information refers to calculated possible future events or properties. Since this data are
not about objective, factual events or properties, but potential ones, then this future information
might also be named as subjective believes, taking the term from QBism [20], where it is only applied
to rational observers.
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is also generated on the information spaces of particles through the execution of the
algorithms on the probabilistic classical Turing machine associated to every particle,
and therefore it is related to possible future positions and momenta of systems. Infor-
mation carriers in physical space are constrained by local causality, in the sense of
Bell – basically, that these physical carriers transport momentum, energy and infor-
mation subject to continuity in physical space and the finite transmission rate limit
of c (speed of light). However, the information elaborated by the Turing machines’
algorithms, in particular by the anticipation modules under the specified conditions
for the model of entanglement in DAQM, is not subject to local causality, i.e. these
outputs locally calculated at X1(2) (t) may generate at this place information about
possible physical events that are happening at the same time in a space-separated
region occupied by the entangled partner X2(1)(t), bringing about the appearance of
nonlocality. Roughly speaking calculations about possible propagation of a system in
the physical space can be performed quicker than real physical propagation, so to say
“calculations can be quicker than speed of light”.

We also remark that both spaces discussed above, “physical space” and “infor-
mation space” are just mathematical models serving for representation of physical
phenomena, one model is based on the real continuum and another on discrete
binary representation of information. In particular, one has not to forget that the
real Cartesian or Minkowsky spaces are just mathematical constructions.

2.3 Theoretical analysis of an EPR-Bohm experiment for electrons

Let us apply the information-theoretic model of entanglement in DAQM to explain
an EPR-Bohm experiment with electrons. A schematic representation of such an
experiment is sketched in Figure 2. A source of entangled electron pairs is located
between two analysers – Stern-Gerlach apparatuses where their characteristic axes, â

(left) and b̂ (right), represent the directions of their respective magnetic fields along
which the spin component of the impinging electron is measured – on the left and
right wing of the setup. The pair of electrons that travel in opposite directions from
the source towards the analysers are generated in the singlet state:

|ψ〉 =
1√
2

(| ↑1↓2〉 − |↓1↑2〉 ) . (1)

A Lorentz frame is assumed for the analysis of the experiment in which the elec-

tron 2 reaches the right analyser (b̂-axis) at time t, whereas the electron 1 travelling
towards the left analyser (â-axis) arrives at time t+4t.

Let us first consider a configuration of the setup in which the axes of the analysers
are parallel, i.e. the axes form an angle θ = (θ1 − θ2) = 0◦ (see Fig. 2). At time t on
the right side of the setup, the random number generated by R2, the randomizer
on the probabilistic Turing machine of electron 2, has determined whether the spin

component10 of electron 2 along the axis b̂ is +1 (↑) or −1 (↓) with 50% of the
values11 yielding the output +1 and the other 50% producing −1, in accordance
with the fact that the program P2 that controls electron 2 self-interactions induces

10The eigenvalues of the spin component operator are written taking ~/2 as unity, where ~ is the
Planck constant divided by 2π.

11For simplicity, it can be assumed that the randomizer yields a random digit within the range
0–9 at every run. See Footnote 7 for details.
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Fig. 2. An EPR-Bohm experiment is schematically represented. A source of entangled
electrons is located between two analysers (Stern-Gerlach apparatuses) whose axes â (left

wing) and b̂ (right wing) are parallel. The angles formed by these axes with respect to the
x-axes of reference are θ1 = θ2 = 90◦. The electron 2 that travels towards the right analyser
(analyser 2) reaches the analyser at time t, whereas the electron 1 travels in opposite direction
towards the left analyser (analyser 1) and arrives at time t+4t. Both entangled electrons
share its software (P1(2), A1(2), R1(2)) and that of its partner (P2(1), A2(1), R2(1)). Shared
randomness and anticipation are the key elements of the model of entanglement.

quantum behaviour on electron 2 as previously assumed.12 Let us suppose that the

output of P2 is −1(P2 → ↓2) along axis b̂ at time t.
At the same time t on the left side, the electron 1 has not yet reached the

analyser 1. However, the Turing machine of electron 1 not only stores and executes
P1, A1 and R1, but as a consequence of the entanglement between both electrons
(see Sect. 2.2), the electron 1 also stores and executes P2, A2 and R2. Therefore,

the output of P2 (P2 → ↓2) along axis b̂ at time t has also been calculated on the
Turing machine of electron 1 whose location is X1(t) close to the analyser 1 on the
left side of the setup. This implies parameter dependence – i.e. the orientation of the

analyser’s axis b̂ on the right wing of the setup is known at time t and position X1(t)
on the Turing machine of electron 1. In addition, the output of R2 at time t is also
at disposal on the Turing machine of electron 1 located at X1(t). This shared ran-
domness (every entangled particle stores its own randomizer and that of its partner)
implies outcome dependence.13

Therefore at time t + ∆t, the program P1 drives electron 1 to the outcome +1
(P1 → ↑1) for the spin component value, provided that the output of P2 was −1

(P2 → ↓2) along axis b̂ at time t, yielding perfect anticorrelation for the outcomes on
both sides of the setup for this configuration in which the axes of the analysers are
parallel (θ = 0◦) in accordance with the standard quantum mechanical calculation.

12Technically, the description of the measurement of the spin component of an electron in DAQM
would be similar to the description in Bohmian mechanics [38,39], more precisely, to the Bohm-
Vigier version [40] of Bohmian mechanics in which a random term is incorporated to the guiding
equation. In DAQM, the random term is generated using the randomizer stored on the information
space of the particle. As in Bohmian mechanics, the result of the measurement could be described
in terms of the coupling of the system to the meter and its final configuration, i.e. the positions of
the particle and the Stern-Gerlach apparatus.

13See, for example, Shimony [1], Vervoort [15] and the text below for a general characterization
of the concepts of parameter independence and outcome independence.
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Fig. 3. An EPR-Bohm setup as described in Figure 2, but now the axes of the analysers
are not parallel (θ1 6= θ2).

Let us consider now a generic configuration of the setup in which the axes of the
analysers are not parallel and therefore form an angle θ = (θ1 − θ2) 6= 0◦ (see Fig. 3).
The analysis proceeds in a quite similar way as for the case θ = 0◦. As outcome
dependence and parameter dependence are ensured in this model of entanglement in
DAQM, then the correlations C for the outcomes on both sides of the setup in DAQM
in the general case of a configuration for which the angle θ formed by the analysers’
axes takes any value also coincide with the ordinary quantum mechanical calculation
C = −cos θ.

Let us check that result. At time t (see Fig. 3) on the right wing of the experiment,
the randomizer R2 yields 50% of occasions an output +1 for the spin component of

electron 2 along axis b̂(θ2) and 50% an output −1, according to the program P2

that reproduces quantum behaviour on electron 2. Let us assume that the result has

been −1 (P2 → ↓2) along the axis b̂ forming an angle θ2 with the reference x-axis.
As both electrons are entangled, according to our model this output has also been
computed on the Turing machine of electron 1 located at X1(t) on the left wing of
the experiment at the same time t, very close to analyser 1. This implies parameter

dependence, since electron 1 has registered the orientation (θ2) of axis b̂ at time t
by means of its copy of P2 and A2, and outcome dependence, since electron 1 has
also obtained the output of R2 at time t and, therefore, has calculated as well by
means of its copy of P2 the result of the measurement performed on electron 2 by the
analyser on the right side of the setup at time t. Now, at time t+ ∆t, the program P1

can calculate the orientation (θ1) of axis â and the angle θ = (θ1 − θ2) 6= 0◦ between
both axes. Then, applying the expression for the outcomes correlations14 C = −cos θ,
along with the result of the measurement performed on electron 2 at time t (stored
on the information space of electron 1) and the output of the randomizer R1 at time
t+∆t, the program P1 drives electron 1 to the particular outcome that will contribute
to reproduce the orthodox quantum statistics for the experiment when applied to a
sequence of entangled pairs.

Finally, let us consider the experimental arrangement of Figure 3, but now with the

axes of the analysers (â and b̂) rotating, i.e. the parameters θ1 and θ2 are function of
time. These functions θ1(t) and θ2(t) may be selected by the experimenter, therefore,
reflecting their free will or may be controlled by a random – for all practical purposes –

14Notice that it has been assumed that the programs stored on the Turing machines of the particles
generate orthodox quantum behaviour.
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number generator. In any case, it is assumed that θ1(t) and θ2(t) are continuous
functions and their variation is smooth. Under these conditions, the values of θ1(t)
and θ2(t) at the moment in which the entangled pair is generated at the source are
different from those encountered by the particles when arriving at the analysers. As
a consequence, the computation by the anticipation module A2, that is also stored
on electron 1, of the particular value of θ2(t) when the electron 2 arrives at the right
wing analyser (analyser 2) must be updated all along the way from the source to
the left wing analyser (analyser 1) for the electron 1, by means of the information
carriers emitted by the analyser 2 and the entangled partner (electron 2). Notice that
the violation of parameter independence is caused not by any nonlocal process, but
through anticipation by on-site computation on the Turing machine of the particles.
A process that is completely local.

The on-site computation of the parameter θ2(t) by the copy of P2 on the Turing
machine of electron 1 at the location occupied by this electron 1 (left wing of the
setup) at time t in which the electron 2 arrives at the analyser 2 (right wing of the
setup) may be performed, in spite of the random selection of the function θ2(t), thanks
to the fact that the analysers are macroscopic systems, therefore obeying classical
equations of motion that can be straightforwardly solved by the anticipation modules
(A2 in this particular case), and the additional plausible conditions of continuity and
smooth15 variation imposed on the functions θ1(t) and θ2(t).

The theoretical analysis of an EPR-Bohm experiment for electrons in the frame-
work of DAQM can be summarized in terms of the mathematical characterization of
outcome independence (OI) and parameter independence (PI).

Let us denote by p (σ1 |â, λ) the probability for finding the outcome σ1 (+1 or −1)
(in this example the outcome for the measurement of the spin component of electron
1 on the left wing of the experiment) given the conditions â (in this example the
orientation for the analyser axis on the left wing as previously defined) and λ (in this
example the hidden variables of the model) and so forth. Then, outcome independence
and parameter independence are characterized by the following expressions:

p (σ1

∣∣∣σ2, â, b̂, λ) = p (σ1

∣∣∣â, b̂, λ) (OI) (2)

p (σ1

∣∣∣b̂, â, λ) = p (σ1 |â, λ) and equivalently for σ2 (PI). (3)

The conjunction of both properties defines local causality (or the so-called locality
condition) as considered by Bell [15]. DAQM satisfies OI and PI when these proba-
bilities are calculated averaging on the information space variables of every electron,
i.e. when only physical space time degrees of freedom are considered. However, when
the information spaces of every particle are included in the description, then outcome
independence and parameter independence are violated in DAQM. Let us incorporate
the information space degrees of freedom to the calculation of probabilities, enclosing
the information space entities (randomizers, R, and anticipation modules, A) between

15Since the analysers are macroscopic objects, the angles θ1(t) and θ2(t) should vary in time several
orders of magnitude slower than both the speed of light and the speed of the entangled electrons
travelling from the source to their respective analysers in an hypothetical EPR-Bohm experiment
with electrons. Although it is assumed that the functions may vary randomly, the variation cannot be
instantaneous, but continuous and smooth in comparison with the variation rate of the parameters
of the electrons in physical space and the calculation time on the information space of the electrons.
Therefore, the position that a rotating analyser axis is going to occupy in a future instant of time (in
particular, at the arrival time of the entangled pair at their respective analysers) can be extrapolated
from the anticipation modules of the programs and the information carriers that reach the electrons
and continuously allow them to update and improve the estimation.
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square brackets. Now, OI and PI are no longer satisfied:

p(σ1 |σ2
[
A1

2, R
1
2

]
, â, b̂, λ) 6= p(σ1|â, b̂, λ) (OD) (4)

where A1
2 represents the anticipation module for electron 2 and its environment that

is stored on the Turing machine of electron 1. Notice that A1
2 = A2

2 (the superscript
just indicates the Turing machine at which the anticipation module for the electron
identified by the subscript is located) due to the entanglement between both particles.
The same terminological description is equivalently valid for the randomizers (R1

2).
The presence of A1

2 and R1
2 (copies of A2

2 and R2
2) on the Turing machine of

electron 1 implies that the outcome σ2 measured on the right wing of the experiment
(electron 2) is instantaneously at disposal of the program P 1

1 that controls electron 1
and is stored on the Turing machine of the same electron 1 located on the left wing
of the experiment. As a consequence, outcome independence is not satisfied.

A similar discussion explains parameter independence violation in DAQM when
the information space elements are considered. The fact that the anticipation module
for electron 2 and its environment is stored not only on the information space of elec-
tron 2 (A2

2) but also on the Turing machine of electron 1 (A1
2) enables to extrapolate

on the information space of electron 1 the orientation for the axis of the analyser on

the right wing of the experiment (b̂) at the moment in which the electron 2 arrives
at the right wing. In this case, the condition that indicates the presence of parameter
dependence (PD) in DAQM is:

p(σ1

∣∣∣b̂ [A1
2

]
, â, λ) 6= p(σ1 |â, λ) (PD). (5)

As a final point, let us remark that DAQM is compatible with the free will of
the experimenter for selecting the orientations of the analysers axes (this property is
usually named measurement independence, e.g. see Hall [41] and Vervoort [15]). The
particles self-interactions that are determined by the outputs of the programs stored
on the information spaces of the particles do not depend exclusively on past events
(events in the past light cones of the particles) and the outputs of their respective ran-
domizers. The actions of the particles also involve the analysis of the possible future
configurations of the surrounding systems (through the anticipation modules) and,
as it will be further discussed in Section 3, the assessment of the different potential
options with respect to the stability expectations for the particle. Thus, in DAQM,
there are free choice elements for the microscopic systems that come from the future,
but not travelling backward in time in physical space (so that the classical principle
of causality is preserved). The freedom of choice resides in a possible future that is
computed on the particle information space. Therefore, the key component is again
the anticipation module stored on the information space of every particle. DAQM
presents an explicit mechanism that might explain the central role that potentiality
seems to play in quantum mechanics. This microscopic model of free choice for fun-
damental physical systems16 in the framework of DAQM could establish the basis for
free will in complex biological systems.

3 Overview of DAQM

As analysed in Section 2, the model of entanglement developed in the framework of
DAQM is able to explain Bell inequality violations preserving locality and realism

16See Baladrón [32] for a deeper discussion of this microscopic free-choice model in DAQM.
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by introducing randomness and information processing capability as intrinsic proper-
ties of matter, provided that the program stored on every particle induces quantum
behaviour on the particle.

The central tenet of DAQM is that assuming intrinsic randomness and the capa-
bility of processing information as fundamental properties in nature, then quantum
mechanics would emerge from an otherwise classical scheme as a consequence of Dar-
winian evolution under natural selection acting on physical systems that have become
generalized Darwinian systems precisely through the incorporation to every system
of an information space endowed with a randomizer and a classical Turing machine.
The possibility that physical and biological systems admit a unified description in a
generalized information-theoretic Darwinian framework is explored [31,33].

The antecedents of this theory can be traced back to the works of Lotka [42] –
who considered the possible key role played by natural selection in physics, Whitehead
[43] – who studied the possibility of the evolution of physical laws and the importance
of the concept of anticipation in the physical world, and Wheeler [44] – whose well-
known aphorisms (e.g. law without law, it from bit or why the quantum? ) summarize
his deep influence in the recent development of quantum information and the foun-
dations of quantum mechanics. In addition, Darwinism has been previously applied
to study several fundamental problems in physics (e.g. Smolin [45] and Zurek [46]).

There are not universal laws in DAQM. Every physical system at time t = 0 is
controlled by its randomizer R. As time increases the information conveyed by the
randomly emitted energy-momentum carriers reaches the absorbers, and through a
process of variation, selection and retention, characteristic of Darwinian systems,
those systems that develop the fittest programs (P ) will survive. In this information-
theoretic Darwinian scenario, it is assumed that the optimization, against the system
stability, of the information flows – past, present and anticipated information – would
lead to the emergence of quantum behaviour. This process is studied by DAQM
[30–33]. Darwinian natural selection would act as a meta-law that would determine
the way in which the physical laws or regularities – the programs that control the
behaviour of the systems – would evolve.

The general principle of optimization of the information flows in physical sys-
tems would shape the regulating principles that would determine the structure, the
dynamics and the interaction for physical systems.

Principle 1 (structure): The complexity of a system is optimized (maximized).

Principle 2 (dynamics): The outwards information flow of a system is optimized
(minimized).

Principle 3 (interaction): The interaction established between two subsystems opti-
mizes (maximizes) the complexity of the composite system.

There are several definitions of complexity17 and information. In DAQM, a con-
textual definition of complexity [33] seems well adapted to conceptually study the
possible emergence of quantum behaviour from the enunciated regulating principles.
The complexity of a system is then defined as the capability of the system to antici-
pate the positions that its surrounding systems will occupy after a certain increment
of time. This definition is suited for a qualitative analysis.

As for information in the Principle 2, it refers to the Fisher information mea-
sure [47,48] of the probability distribution function of the system’s position. Roughly
speaking, it quantifies the sharpness of the function.

DAQM aims to deduce the postulates of quantum mechanics from these three
regulating principles. This is a work in progress, but several interesting results have

17See Baladrón and Khrennikov [31] for a brief discussion on the adequacy of several definitions
of complexity from the point of view of DAQM.
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been already obtained. Applying the Principle 1, taking into account the particular
definition of complexity that has been adopted, then the maximization of complexity
directly implies the maximization of the system’s predictive power. Several stud-
ies [49–53] analyse the way in which optimal statistical inference capability would
induce the complex Hilbert space structure for the space of states of a system. The
Principle 2 is basically a rephrasing of the minimum Fisher information or maximum
Cramer-Rao bound [47]. Frieden [47] deduces the Schrödinger equation applying the
minimum Fisher information principle on the probability distribution function for
the position of the system. Therefore, the Principle 2 implies the Schrödinger equa-
tion for the dynamics of a system. The Principle 3 should lead to the appearance of
entanglement as a basic natural phenomenon in the formation of composite systems
as a consequence of the tendency to increase the complexity.

From this analysis, it stands out that the two most characteristic quantum proper-
ties, contextuality and entanglement, would be naturally suited in DAQM as features
that increase the stability of systems endowed with the capability of processing infor-
mation. Contextuality in DAQM reflects the fact that a system in physical space has
not identity parameters, apart from its location, that the values of magnitudes are
computed on the information space depending on the context in which the system
is immersed and aiming to maximize the stability of the system. Entanglement is a
resource for improving the anticipation or predictive power of a composite system
that increases the stability of the system.

Some studies support the interest of analysing the implications of DAQM. First,
the experimental observation of certain quantum-like properties for a macroscopic liq-
uid drop that is coupled with the surface waves produced by itself when bouncing on a
vibrating bath [54,55]. Second, some computer simulations [56] demonstrate that evo-
lution by means of certain mechanisms might perform exponential-time tasks, when
accomplished by most evolutionary processes, in polynomial-time. This is considered
a distinctive quantum characteristic. Third, certain cosmological tests proposed to
check Bohm-like theories [57] could also be adapted in the future to experimentally
investigate DAQM. Fourth, DAQM could constitute a physical basis for quantum
information biology (QIB) [58,59] by explaining the crucial role played by quantum
information for certain bio-systems at the macroscopic level, and QIB in turn could
supply a macroscopic testing ground to DAQM.

4 Conclusion

Bell inequality violation has been analysed in the framework of DAQM in which
every fundamental particle is supplemented with a randomizer and a classical Turing
machine on an information space locally associated with every particle. A natural
model of entanglement in this theory, based on shared randomness and anticipation,
explains Bell inequality violations while preserving locality and realism. DAQM clar-
ifies in a constructive manner the reason why randomness, objective indefiniteness,
and the relationship between potentiality and actuality are fundamental elements in
the quantum mechanical description of nature.

The authors are very grateful to Edward S. Fry for a conversation about the experimental
tests of Bell inequalities.
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