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Abstract. Interesting effects arise in cyclic machines where both heat
and ergotropy transfer take place between the energising bath and the
system (the working fluid). Such effects correspond to unconventional
decompositions of energy exchange between the bath and the system
into heat and work, respectively, resulting in efficiency bounds that may
surpass the Carnot efficiency. However, these effects are not directly
linked with quantumness, but rather with heat and ergotropy, the likes
of which can be realised without resorting to quantum mechanics.

The term “quantum thermodynamic machines” may be understood in two different
ways. One is that these are machines ruled by laws that are specific to quantum ther-
modynamics (QTD), an emerging field that attempts to combine quantum mechanics
and thermodynamics [1–22]. Such laws must depend on quantumness to qualify for
QTD.

The other possible meaning is that these machines are comprised of quantum
systems: either all or some of their ingredients are describable quantum-mechanically,
but this does not imply that these machines function in a quantum fashion. Here
we argue, based on our research over the past six years [19,23–32], that quantum
thermodynamic machines either conform to the latter meaning and do not rely on
quantumness [26,31] or they are truly quantum, exhibit “quantum advantage” [33]
but do not contradict the second law of thermodynamics [24,29,32].

The first machine we analysed [23] was deemed to be the minimal or simplest heat
machine based on a quantum system – a qubit. The qubit with resonance frequency
ω0 is the working fluid (WF) of the machine. It is permanently coupled to cold and hot
thermal baths with different, non-overlapping spectra. The qubit is driven periodically
by a classical field which acts as a piston that causes periodic modulation of the qubit
frequency ω(t) (Fig. 1). The modulation period 2π/∆ constitutes the machine cycle
time. The merit of this model is that it is amenable to a complete analysis within the
weak-coupling, Markovian approximation for the system-bath dynamics [19,23].

This analysis yields the result that the machine may act as a refrigerator (or heat
pump) under the condition

nC(ω0 −∆) > nH(ω0 + ∆), (1)
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Fig. 1. Schematic layout of a minimal heat machine modelled by a two-level working
fluid (WF) with resonance frequency ω0, driven periodically with time period 2π/∆, and
exchanging heat with a hot bath at temperature TH and a cold bath at temperature TC

[23,34].

and as a heat engine under the converse condition

nC(ω0 −∆) < nH(ω0 + ∆). (2)

Here nC(ω0 −∆) and nH(ω0 + ∆) are the cold and hot bath thermal occupancies at
the downshifted and upshifted transition frequencies, respectively. These conditions
characterise the optimal scenario wherein the qubit at the upshifted frequency only
couples to the hot bath and at the downshifted frequency to the cold bath.

Equivalently to equations (1) and (2), the machine acts as a heat engine whose
piston extracts power (P < 0) provided that the (positive) modulation frequency ∆
is bounded (from above) by

∆cr = ω0
TH − TC
TH + TC

, (3)

TH and TC being the hot and cold bath temperatures, respectively. The efficiency,
defined as the ratio of the extracted power −P to the input heat input current JH
from the hot bath, grows with ∆ until the Carnot bound is attained at ∆cr,

η =
−P
JH

=
2∆

ω0 + ∆
≤ 1− TC

TH
. (4)

As the modulation frequency exceeds the critical value, i.e., ∆ > ∆cr, the machine
becomes a refrigerator for the cold bath. It consumes power (P > 0) from the piston
and converts it into cold current JC as characterised by the coefficient of performance
(COP) that reaches its maximal value at ∆ = ∆cr,

COP =
JC
P

=
ω0 −∆

2∆
≤ TC
TH − TC

. (5)

These lucid, simple results show clearly that although the WF is a qubit, there
is nothing uniquely quantum-mechanical about the machine performance, which
adheres to the standard thermodynamic bound.

Yet, the field of quantum-thermodynamic machines has been propelled by inge-
nious proposals to benefit from quantum resources embodied by non-thermal baths
[6,26,31,35–42]. Schematically, such machines have the same ingredients as conven-
tional Carnot heat engines (Fig. 2). However, at least the hot bath, which is the source
of energy, may have non-thermal properties that stem from its quantum-mechanical
preparation. The question has been posed whether a cycle energised by such a bath
must abide by the Carnot efficiency bound derived in 1824 for steam engines [43],

η =
−W
QH

≤ 1− TC
TH

=: ηC, (6)
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Fig. 2. Universal heat-machine cycle modelled by a WF energized by a hot bath, and
dumping heat in a cold bath. The WF is driven cyclically by a classical field which acts as
a piston that extracts work.

a

b
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b
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Fig. 3. Left – the Carnot bound ηC for a micromaser cycle fuelled by a bath of two-level
atoms. Right – the same for a bath of three level “phaseonium” atoms. Here A and φ are
the modulus and phase of the coherence induced between the nearly-degenerate levels b
and c. This bound may exceed ηC [6].

where the efficiency is the ratio of the work output −W to the heat input QH. Two
crucial assumptions have been made in equation (6): (i) that the input from the “hot”
(better: energising) bath is indeed heat and (ii) that this bath has a “temperature”
TH, although a non-thermal bath need not have one.

Before addressing these issues, we consider the specific setups which have pro-
moted our general investigation of these issues [26,31]. The first setup, whose study
by Scully et al. [6] pioneered the field, consists of an engine that is energised by
“phaseonium” fuel. The latter are three-level atoms whose lower two near-degenerate
levels are coherently superimposed with a phase φ (Fig. 3). The consecutive inter-
actions of these atoms with the WF (a single cavity-field mode) conform to the
micromaser model whereby the bath appears to be at temperature TH(φ), which is
now φ-dependent. Consequently, whenever a φ is chosen such that TH(φ) exceeds TH
in the absence of coherence, then the resulting Carnot bound becomes higher than
the standard (incoherent) Carnot bound. Is this a quantum advantage? Not from
the point of view of the WF (cavity field mode) that interacts with a bath at a
temperature TH(φ) – the WF has no other bath except the phaseonium.

We next turn to another setup that was proposed by Roßnagel et al. [38]: an
Otto cycle that is energised by a squeezed-thermal bath. In this cycle the strokes are
realized by adiabatic compression and expansion of the WF, its consecutive coupling
to and decoupling from the cold and the hot baths, the only difference from the
standard cycle being that the hot bath is not in a thermal state (at temperature TH)
but rather in a squeezed-thermal state (described by the temperature TH and the
squeezing parameter r).

How does the squeezing affect the cycle efficiency? The tendency of most works
on the subject [36–39,41] has been to identify the entire energy delivered by the hot
bath to the WF as heat. If we attribute to this definition and the extra (squeezing)
energy to an effective temperature TH(r) that increases with the squeezing parameter,



2046 The European Physical Journal Special Topics

then we may again deduce from this analysis that the cycle may surpass the standard
Carnot bound provided TH(r) is higher than TH without squeezing [38,39].

However, there is a missing piece in this puzzle: can we really claim that heat and
squeezing are interchangeable resources?

To answer this question, we have to properly unravel the energy exchange between
a quantum system and a quantum bath, namely, reach better understanding of the
first law of thermodynamics in the quantum domain. To this end, we start from
Alicki’s pioneering decomposition [4] of the change in the mean energy of a quantum
system that is both driven by a time-dependent system Hamiltonian H(t) and is
coupled to a quantum bath. Such a change in the mean system energy

E(t) = Tr[ρ(t)H(t)] (7)

for the reduced system density operator ρ(t) was decomposed by Alicki as

∆E(t) = E(t) +W (t), (8a)

and split into heat

E(t) :=

∫ t

0

Tr[ρ̇(t′)H(t′)]dt′ (8b)

and work

W (t) :=

∫ t

0

Tr[ρ(t′)Ḣ(t′)]dt′. (8c)

Here ρ(t) is the reduced density operator of the system obtained by tracing out the
bath degrees of freedom and H(t) is the controlled Hamiltonian for the system. In
references [2,3], equation (8c) is interpreted as work because it is associated with a

change Ḣ(t) in the driving Hamiltonian. Alternative definitions of quantum work in
the literatures include, for example, the concept of “work operator” in the context of
quantum measurement processes [44–54].

Here, we are interested in the question whether (8b) necessarily correspond to
entropy change (in the regime of weak coupling between the system and the baths,
neglecting correlations between the system and the baths [55]). On the face of it, it
does, because it arises from a change in the state of the system ρ̇(t) that may con-
tribute to entropy change. However, as shown below, this is not always the case.
In fact, there are isentropic processes associated with ρ̇(t) 6= 0, which physically
correspond to work rather than heat exchange.

As a simple example of such a process, which may constitute part of a cycle,
consider a single-mode cavity field initially prepared in a coherent state |α0〉. It leaks
out of the cavity through the front mirror, until at long times the cavity-field state
becomes the vacuum |0〉 (Fig. 4). The point is that the state has changed and so
has its mean energy E(t) but not its purity or entropy. This is an example of a
system that is transformed from a non-passive state, here a coherent state with non-
zero amplitude |α(t) 6= 0〉, to a passive state, here the vacuum state |0〉. A passive
state is a state that does not allow to extract work from the system under cyclic
unitary transformations [2,3]. As long as the Hamiltonian is non-degenerate, there is
a unique passive state for each non-passive state: the two are unitarily related. Thus,
the leakage of the field from the cavity is a change in the degree of non-passivity but
not in entropy. Such a change has been dubbed ergotropy change [7]. We note that
ergotropy cannot be readily measured, as any measurement would cause back-action
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Fig. 4. Energy transfer from a relaxing cavity mode initially prepared in a coherent
state |α0〉 cannot be associated with heat transfer, because it is isentropic. Figure adapted
from [31].
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Fig. 5. Transformation of an initial non-passive state ρ to its passive state π via a unitary
reshuffeling of the eigenvalues. (a) Ergotropy release by a unitary transformation from Fock
state |1〉 to |0〉, the latter being passive. (b) The same for an arbitrary initial mixture of
Fock states.

which is typically not unitary [44]. It would thus be interesting to study the issue of
back-action on ergotropy [56].

Passivity of a quantum state implies a monotonically-decreasing distribution of
energy eigenvalues. For details please see references [2,3]. As shown in Figure 5, a
unitary transformation from a Fock state |n 6= 0〉 to the vacuum |0〉 (Fig. 5a) or from
a non-monotonic distribution of Fock states to a reshuffled monotonic distribution
with the same Fock-state ingredients (Fig. 5b) releases all the ergotropy of the initial
non-passive state ρ, resulting in the passive state π. Being isentropic, it should be
distinguishable from dissipative change in passive energy.

Such distinction is effected by the decomposition of the energy exchanged between
the system and the bath into

E(t) =

∫ t

0

Tr[ρ̇(t′)H(t′)]dt′ = Q(t) + ∆W|diss(t), (9a)

where the non-unitary changes in passive energy and system ergotropy are given by
[31]

Q(t) :=

∫ t

0

Tr[π̇(t′)H(t′)]dt′ (9b)
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Fig. 6. Universal layout of a cyclic machine powered by either a thermal or non-thermal
(e.q. squeezed) bath.

and

∆W|diss(t) :=

∫ t

0

Tr
[(
ρ̇(t′)− π̇(t′)

)
H(t′)

]
dt′, (9c)

respectively. The instantaneous passive state π(t) and its derivative π̇(t) are
obtained by unitary transformations from the time evolution of ρ(t). Hence, equa-
tion (9b) is always associated with a change in the von Neumann entropy S(ρ(t)) =
−kBTr[ρ(t) ln ρ(t)] because S of a non-passive state ρ(t) is same as that of its unitarily
transformed passive state π(t). In accordance with the existing literature, we consider
the von-Neumann entropy to be relevant in thermodynamic settings, whether in or
out of equilibrium [4,18,21,57,58]. Thus, in analogy to thermodynamics, we hereafter
refer to equation (9b) as heat transfer because of its entropy-changing character.

The above decomposition of the energy exchange with the bath into heat and
ergotropy exchange has led us to suggest the following inequalities for the entropy
change over long times t→∞ of the system (assuming the bath is thermal, i.e., its
temperature T to be immutable) [31,32],

∆S ≥ Q
T

(10a)

for a system governed by a constant Hamiltonian or

∆S ≥ E
′

T
, (10b)

for a system driven by a time-dependent Hamiltonian, where E ′ is the energy which
would be exchanged with the bath under such driving if the initial state were the
passive counterpart π(0) of the actual initial state ρ(0). It is clear, particularly from
(10a), that ∆S is here bounded from below only by heat exchange.

Our suggested inequality (10) must be contrasted with Spohn’s [57]

∆S ≥ E
T

=
Q+ ∆W|diss

T
, (11)

where ∆S is bounded from below by the sum of heat and ergotropy exchange.
Although inequality (11) is as much consistent with the second law (the Clausius
inequality [59]) as our inequality (10), the latter is much tighter than the former,
because, for an initial non-passive state, ∆W|diss ≤ 0 in a relaxation process of the
system towards its thermal steady-state.

These considerations have been used by us to derive a generalised efficiency bound
for cycles in which the WF may be energised by either a thermal or a non-thermal bath
[26,31]. As shown schematically in Figure 6, such a cycle consists of time-dependent
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periodic change of the coupling between the WF and the energising (thermal or
non-thermal) bath (right ellipse) and entropy dumping into a cold thermal bath
(left circle).

Our general efficiency bound [31] is

η ≤ 1− TC
TH

E ′h
Eh

=: ηmax ≤ 1. (12)

On the r.h.s, the temperature ratio of the two baths is multiplied by the ratio of
the heat exchange E ′h to the total energy exchange Eh, which combines both heat
and ergotropy exchange. Here E ′h is the heat that the WF would have obtained in
the same cycle if the hot bath was thermal. It then follows that in the absence
of ergotropy transfer from the bath to the WF, as for a thermal bath, the Carnot
bound is recovered. By contrast, if the heat exchange with the energised bath is much
less than total energy exchange, because ergotropy transfer dominates, the efficiency
bound approaches 1 and surpasses the Carnot efficiency. This, however, should in
no way imply a surpassing of the Carnot bound: it means that the Carnot bound
is inapplicable to such a scenario, wherein ergotropy rather than heat is exchanged
with the bath. In fact, the second law, from which the Carnot bound follows, only
relates to entropy-changing processes, whereas ergotropy exchange is isentropic. Here
we have not considered the cost of producing the state of the bath. By the same token,
it is customary not to consider the cost of producing thermal baths for conventional
heat engines [60].

Can the cycle described above, wherein ergotropy and non-passivity play a central
role, be deemed genuinely quantum, or at least exhibit quantum advantage? Not
necessarily, since the energising bath in question is in a squeezed-thermal state and
such a state exhibits genuine quantumness only if the temperature TH associated
with its thermal component is low enough, such that the state approximates the
squeezed-vacuum state [26,61].

Although we have explicitly considered above “semiclassical” engines whose cycle
is effected by a classical periodic driving field (“piston”), similar conclusions hold
for fully quantised machines, wherein the quantum state of the piston is explic-
itly accounted for [25,29,30]: In the latter class of machines it is the ergotropy
(non-passivity) of the piston state and its heating (thermalisation), which are not
exclusively related to quantumness, that determine the efficiency and power output
of the machine.

Since our discussion has revolved around the decomposition of system-bath energy
exchange into work and heat transfer, it should be stressed that we cannot identify
any alternative, physical, quantifiers of these processes. Namely, we find the physical
arguments in favour of the uniqueness of the present quantifiers to be compelling.

To sum up, interesting effects arise when one considers cyclic machines where both
heat and ergotropy transfer take place. Such effects correspond to unconventional
decompositions of energy exchange between the bath and the WF into heat and work,
resulting in efficiency bounds that may exceed Carnot’s. This is allowed because the
thermodynamic Carnot bound is only valid for machines energised by heat transfer.
However, these effects are not directly linked with quantumness, but rather with heat
and ergotropy exchange, the likes of which can be constructed without resorting to
quantum mechanics.

These conclusions have to be revised when heat machines based on multi-
ple quantum-correlated (e.g. entangled) systems are compared to their classical
counterparts [62].
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45. E. Bäumer, M. Lostaglio, M. Perarnau-Llobet, R. Sampaio, Fluctuating work in coherent

quantum systems: proposals and limitations, arXiv:1805.10096 (2018)
46. P. Talkner, E. Lutz, P. Hänggi, Phys. Rev. E 75, 050102 (2007)
47. P. Hänggi, P. Talkner, Nat. Phys. 11, 108 (2015)
48. M. Campisi, P. Hänggi, P. Talkner, Rev. Mod. Phys. 83, 771 (2011)
49. M. Campisi, P. Hänggi, P. Talkner, Rev. Mod. Phys. 83, 1653 (2011)
50. M. Campisi, P. Talkner, P. Hänggi, Phys. Rev. Lett. 102, 210401 (2009)
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