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Abstract. We analyze a trade-off between thermal activation (TA) and
quantum tunneling in the problem of supercurrent decay in supercon-
ducting junctions with highly transparent barriers. In such systems –
unlike in conventional tunnel junctions – the supercurrent decay is
essentially influenced by low energy Andreev levels forming an intrin-
sic quantum dissipative environment for the Josephson particle. We
evaluate the temperature dependent supercurrent decay rate Γ(T ) and
elucidate a variety of different regimes for such a decay. We demon-
strate that no classical-to-quantum crossover exists in the limit of fully
transparent barriers, in which case quantum tunneling always prevails
over TA.

1 Introduction

It is well known that both thermal and quantum fluctuations can fully suppress super-
conductivity in ultrasmall Josephson tunnel junctions [1]. This process can be viewed
as a result of an escape of the Josephson “particle” with “coordinate” ϕ from its
effective potential well due to either thermal activation (TA) or macroscopic quan-
tum tunneling (MQT). The Josephson phase ϕ plays the role of a collective quantum
variable that can also interact with other degrees of freedom forming an effective
environment. This quantum environment can be treated phenomenologically as a set
of harmonic oscillators [2–4] or microscopically [1,5] as electron sea in a disordered
metal. Tracing out the environment degrees of freedom one arrives at the Feynman–
Vernon influence functional (or effective action) describing quantum dissipation. More
sophisticated versions of the influence functional [6,7] also account for Fermi statistics
for electrons in a metal forming an effective environment “for themselves”.

Dissipation can strongly affect MQT of the Josephson phase in superconduct-
ing tunnel junctions [3,4]. There dissipation at subgap energies can only occur
extrinsically as no states with energies below the superconducting gap ∆ exist in
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such systems. In contrast, subgap bound states (Andreev levels [8,9]) do occur in
superconducting weak links with higher (non-tunnel) transmissions. Recently, we
demonstrated [10] that such low energy Andreev states can form an intrinsic effective
quantum dissipative environment for the Josephson phase ϕ which can strongly mod-
ify quantum dynamics of superconducting weak links with respect to that for tunnel
junctions. For instance, MQT process of the Josephson phase ϕ acquires a number
of novel features [10–12].

In this paper, we will further investigate both TA and MQT effects in highly
transparent superconducting contacts. We will develop a detailed analysis of the
temperature dependent supercurrent decay rate Γ(T ) influenced by intrinsic quantum
dissipative environment formed by low energy Andreev levels. In particular, we will
demonstrate that in the limit of fully transparent barriers quantum tunneling always
prevails over TA.

2 Low energy Hamiltonian and effective action

Let us consider a short superconducting junction characterized by geometric capaci-
tance C0 and an arbitrary distribution of normal transmissions Tn amongN transport
channels. As long as fluctuations of the Josephson phase ϕ can be neglected the junc-
tion may conduct the supercurrent IS described by the current-phase relation [13–15]

IS(ϕ) =
e∆2 sinϕ

2

∑
n

Tn
εn(ϕ)

tanh
εn(ϕ)

2T
, (1)

where

εn(ϕ) = ∆

√
1− Tn sin2(ϕ/2) (2)

defines the energies of subgap Andreev bound states ±εn(ϕ) inside the weak link.
In the tunneling limit Tn � 1 equation (1) reduces to the standard dependence
IS(ϕ) = IC sinϕ with the critical current IC(T ) defined by the Ambegaokar–Baratoff
formula [16]. However, in contacts with higher transmissions Tn ∼ 1 both the temper-
ature dependence of the critical current IC(T ) and the low temperature current-phase
relation IS(ϕ) in equation (1) differ substantially from those for conventional tunnel
barriers, as it was demonstrated experimentally in a variety of junctions includ-
ing, e.g., junctions with carbon nanotubes [17–19], atomic point contacts [20,21],
graphene-based weak links [22–24], high transparency Al/BiTe/Al double barrier het-
erostructures [25], InAs nanowire Josephson junctions [26–28], as well as both 2d and
3d topological insulators [29–31] where effective channel transmissions with values
close to unity were reached.

In the presence of fluctuations of the phase ϕ one can work out a general effective
action approach that holds at arbitrary transmission values Tn [32]. Unfortunately,
this technique turns out to be rather involved. Simplifications occur if we assume
that phase fluctuations remain sufficiently weak [33,34] in which case we can split the
phase variable into constant and fluctuating parts ϕ(t) = χ + φ(t) with |φ(t)| � 1.
It is possible to demonstrate that, provided both temperature T and typical phase
fluctuation frequencies ωφ remain sufficiently small, T, ωφ � ∆, our superconducting
weak link is described by an effective Hamiltonian [10]

Ĥ = −2e2

C

∂2

∂φ2
+ U(χ+ φ) +

∑
n

[
P̂ 2
n

2Mn
+
Mnω

2
n

2

(
Qn −

cnφ

Mnω2
n

)2
]
. (3)
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The first two terms in the right-hand side of equation (3) describe the Josephson
“particle” with effective “mass” C/(2e)2 propagating in the potential

U(ϕ) = −2T
∑
n

ln

[
cosh

εn(ϕ)

2T

]
− Iϕ

2e
, (4)

where the first term in the right-hand side defines the 2π-periodic potential and the
second term produces a tilt due to the presence of a current bias I. Setting the
derivative of the potential energy U in equation (4) with respect to the phase ϕ equal
to zero, one arrives at the equation IS(χ) = I fixing the equilibrium phase value χ.

The last term in equation (3) accounts for an effective environment formed
by subgap Andreev levels. It consists of N harmonic oscillators with frequencies
ωn = 2εn(χ) coupled to the “particle coordinate” φ. The coupling constant values cn
are determined by the condition [10]

c2n
Mn
≡ γn = T 2

n(1− Tn)
∆4

εn(χ)
sin4 χ

2
tanh

εn(χ)

2T
. (5)

What remains is to include the effect of quasiparticles with overgap energies which
in the limit T, ωφ � ∆ provide renormalization of the geometric capacitance C0 [33].
Depending on the parameters this renormalization can be significant. For example,
in the limit 1− Tn � 1 and π − χ� π we get [10]

C ' C0 + e2N/(4∆). (6)

Employing the effective Hamiltonian in equation (3) it is straightforward construct
the grand partition function for our weak link Z. Expressing Z in terms of the
path integral over both φ and the oscillator coordinates Qn and integrating out all
Qn-variables, we obtain

Z = Spe−βĤ =

∫
Dφ exp (−Seff [φ(τ)]) , (7)

where here and below β ≡ 1/T ,

Seff =

∫ β

0

dτ

[
Cφ̇2

8e2
+ U(χ+ φ(τ))

]
+

β∫
0

dτ1

β∫
0

dτ2Y (τ1 − τ2)φ(τ1)φ(τ2) (8)

is the imaginary time effective action for our superconducting contact and

Y (τ) =
∑
n

γn
8εn

(
δ(τ)

εn
−

cosh
[
2εn

(
|τ | − 1

2T

)]
sinh[εn/T ]

)
. (9)

Expanding the kernel (9) in the Fourier series Y (τ) = T
∑
ωm

Yωm
e−iωmτ , we get

Yωm
(χ) =

∑
n

γn(χ)

8ε2n(χ)

ω2
m

ω2
m + 4ε2n(χ)

, ωm = 2πmT. (10)
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3 Decay rate

Provided the bias current value I gets sufficiently close to the critical current IC
the zero resistance state of our superconducting weak link becomes unstable and can
decay into a resistive state implying that the phase variable ϕ overcomes the potential
barrier U(ϕ) due to either TA or MQT.

Following [10,11] below we will stick to the limit of large number of channels
N � 1 in our weak link and assume that all barrier transmissions have the same
value Tn = T and, hence, εn(χ) ≡ ε(χ), cf. equation (2). We also define the reflection
coefficient r = 1− T � 1 and the parameter q(T ) = 1− I/IC(T )� 1.

At T → 0 the effective potential (4) reduces to a simple form

U(ϕ) = −Iϕ/2e−N∆

√
1− T sin2(ϕ/2). (11)

For q �
√
r equation (11) can be expanded in powers of φ around χ = χc = π −

arccos[(1−
√
r)2/T ], where the phase value χc is defined by the equation IS(χc) = IC .

Dropping an unimportant constant we obtain

U(χc + φ) ' ∆Nν
2

[
qφ− φ3

6

]
, ν = 1−

√
r. (12)

Observing a strong inequality r � 1, below we will set ν ' 1. For q &
√
r the

expansion (12) is no more sufficient, and the exact form of U (11) should be employed.
One of the important features of the problem under consideration is that at small

enough values of r the potential energy U(ϕ) (4) essentially depends on temperature.
For example, at r → 0 we obtain

U(ϕ) = −2TN ln

[
cosh

∆ cos(ϕ/2)

2T

]
− Iϕ

2e
. (13)

At r > 0 and high enough temperatures ∆r1/4 � T � ∆ we have χc = π −
(2T/∆)W (2∆2/T 2) (with W (z) defined by the equation W exp(W ) = z) and the
approximation (12) with ν = 1 applies without any further restrictions.

Following the standard procedure [4,35,36] we define the supercurrent decay rate
Γ as:

Γ = −2ImF, T < T0;

Γ = −2
β

β0
ImF, T > T0, (14)

where β0 ≡ 1/T0 and F = −T lnZ is the system free energy. For a detailed rela-
tion between the ImF -method to be employed here and its derivation based on
the semi-classical multidimensional periodic-orbit-WKB approach covering the whole
temperature range on a unified basis see, e.g., the work [37].

The quantum-to-classical crossover temperature T0 is determined as [10,11]

T0 =
Ω
[
ω0, α, ε

2(χc)/ω
2
0

]
2π

, α =
γ(χc)NEC

2ε4(χc)
, (15)

Ω
[
ω0, α, ε

2(χc)/ω
2
0

]
=

ω0√
2

√√√√θ +

√
θ2 + 16

ε2(χc)

ω2
0

, θ = 1− (1 + α)
4ε2(χc)

ω2
0

,
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where EC = e2/2C is the junction charging energy and ω0 =
√

2e2∆N (2q)1/2/C is
the plasma oscillation frequency near the bottom of the potential well. One should
bear in mind that the arguments of the function Ω are also temperature dependent,
i.e. equation (15) determines T0 in an implicit form.

Provided the geometric capacitance C0 is large we immediately recover the stan-
dard result [35] T0 = ω0/(2π). In the opposite limit of small geometric capacitance in
equation (15) we may set C = e2N/(4∆). Then it is straightforward to demonstrate
that for any relation between the system parameters the crossover temperature T0

obeys the condition [10,11]

∆(8q)1/4r1/8/π = Tmin
0 ≤ T0 ≤ Tmax

0 = ∆(8q)1/4/π, (16)

where q = q(T0). In the limit T0 � ∆r1/4/π and at small enough q we have T0 = Tmin
0 ,

whereas for T0 & ∆r1/4/π the crossover temperature approaches the r-independent
result T0 = Tmax

0 .

3.1 Arrhenius regime

Deep in the classical Arrhenius regime T � T0 the decay rate Γ is given by the
standard expression

Γ =
ω0

2π
exp(−βU0), (17)

where U0 = U(
√

2q)−U(−
√

2q) = ∆N (2q)3/2/3 is the effective potential barrier and
the phase values φ = ±

√
2q correspond respectively to the maximum and minimum

of the potential (12). As the temperature gets closer to T0 quantum corrections to
the classical activation result (17) become progressively more pronounced. In order
to include the effect of quantum fluctuations we will follow the standard approach
[4,38].

Let us denote the contributions to the partition function Z originating from the
phase fluctuations near the potential minimum and maximum respectively as Z0 and
Zb. In order to evaluate both these contributions let us express the function φ in the
vicinity of φ = ±

√
2q as

φ = −
√

2q +
∞∑

n=−∞
Xn exp(iνnτ), φ =

√
2q +

∞∑
n=−∞

Yn exp(iνnτ). (18)

Then we get

S[X] =
Cβ

8e2

∞∑
n=−∞

λ(0)
n XnX−n, λ(0)

n = ν2
n + ω2

0 + α
4ε2(χc)ν

2
n

4ε2(χc) + ν2
n

(19)

and

S[Y ] =
Cβ

8e2

∞∑
n=−∞

λ(b)
n YnY−n, λ(b)

n = ν2
n − ω2

0 + α
4ε2(χc)ν

2
n

4ε2(χc) + ν2
n

. (20)

As usually, the eigenvalue λ
(b)
0 is found negative which signals instability and results

in the imaginary part of Zb which can be established with the aid of a standard
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analytic continuation procedure [4]. Combining the second equation (14) with

ImF = −T ImZb
Z0

(21)

and evaluating ImF , at T > T0 we obtain

Γ = T0cqm exp(−βU0), (22)

where

cqm ≡
∞∏
n=1

λ
(0)
n

λ
(b)
n

=
sinh(πλ+

+) sinh(πλ+
−)

sinh(πλ−+) sin(πλ−−)
, (23)

λ+
± =

√
p+ ±

√
p2

+ − p2, λ−± =

√
±p− +

√
p2
− + p2,

p± =
1 + α

2π2T 2

[
ε2(χc)± (ω0/2)2

]
, p =

ε(χc)ω0

2π2T 2
.

In the weak coupling limit of small α and for ω0 6= 2ε(χc) from equations (22), (23)
we get

Γ =
ω0

2π

(
1− α

2

4ε2(χc)

ω2
0 + 4ε2(χc)

)
(24)

×
sinh

[
βω0

2

(
1 + α

2
4ε2(χc)

ω2
0−4ε2(χc)

)]
sinh

[
βε(χc)

(
1− α

2
4ε2(χc)

ω2
0−4ε2(χc)

)]
sin
[
βω0

2

(
1− α

2
4ε2(χc)

ω2
0+4ε2(χc)

)]
sinh

[
βε(χc)

(
1 + α

2
4ε2(χc)

ω2
0+4ε2(χc)

)] exp(−βU0),

whereas in the adiabatic limit ω0 � 2ε(χc) one finds

Γ =
ω0

2π
√

1 + α

sinh
(

βω0

2
√

1+α

)
sin
(

βω0

2
√

1+α

) exp(−βU0). (25)

In the limit α→ 0 both expressions (24) and (25) reduce to the standard result for
the decay rate in the absence of dissipation [4].

3.2 Crossover regime

Let us note that the eigenvalue λ
(b)
1 vanishes at T = T0 as λ

(b)
1 ∝ (T − T0). This

observation implies that at temperatures in the immediate vicinity of T0 it is necessary
to also include higher orders in Y±1 in the expansion (20). Expressing the potential
energy U near φ =

√
2q in the form

U = Ub −
ω2

0

16EC

(
φ−

√
2q
)2

− ω2
0

48EC
√

2q

(
φ−

√
2q
)3

, (26)
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at T > T0 we get

S[Y ] = βUb +
Cβ

8e2

∞∑
n=−∞

(
λ(b)
n YnY−n −

ω2
0√
2q

(
Y−2Y

2
1 + Y2Y

2
−1 + 2Y0Y−1Y1

))
. (27)

After integrating over Y0 and Y±n with n ≥ 2 the contribution to the effective action
from the remaining modes becomes

∆S
(b)
1 =

Cβ

8e2

(
2λ

(b)
1 Y1Y−1 +B4Y

2
1 Y

2
−1

)
, B4 =

ω2
0

2q

(
1− ω2

0

2λ
(b)
2

)
. (28)

The result (28) implies that in order to recover the correct expression for Γ in

the crossover region the term 1/λ
(b)
1 in equation (22) should be replaced by the

combination (
πCβ

8e2B4

)1/2

erfc

[
λ

(b)
1

(
Cβ

8e2B4

)1/2
]

exp

[
λ

(b)2
1

Cβ

8e2B4

]
, (29)

where erfc(x) ≡ 2√
π

∞∫
x

dy exp(−y2) is the complementary error function. As a result

we obtain

Γ = T0

√
πz erfc(z) exp(z2)cqm exp(−βU0), (30)

where

z = λ
(b)
1

(
Cβ

8e2B4

)1/2

. (31)

Making use of the property limz→∞
√
πz erfc(z) exp(z2) = 1, at high temperatures

we again recover equation (22) that holds in the Arrhenius regime.
Note that while deriving the result (30) we always implied T > T0. Analogous

derivation can also be worked out for T < T0 [4] which leads to the same result. The
dependence of the decay rate Γ on temperature in the crossover region is illustrated
in Figure 1.

3.3 Quantum tunneling

Let us finally address the MQT regime T < T0. In references [10,11], we demon-
strated that – depending on the barrier transmission – in the limit T → 0 the
supercurrent decay can be described by three different regimes: (i) weak intrinsic
dissipation, (ii) strong intrinsic dissipation and (iii) strong capacitance renormaliza-
tion. The regime (i) sets in for q �

√
r and is characterized by weak coupling between

the fluctuating phase φ and the effective bath of Andreev oscillators. In this case,
MQT process occurs in the effective potential (11) and is weakly affected by intrin-
sic dissipation. For q .

√
r coupling to Andreev oscillators become stronger and we

obtain

Γ ' 6
√

6U0ω̃0/π exp[−36U0/(5ω̃0)], (32)
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Fig. 1. Temperature dependence of the decay rate Γ (normalized to its value Γ0 at T = T0)
in the vicinity of the crossover. The system parameters are set to be (π/3)(ω2

0q/ΩEC) = 15
and 4ε2(χc)/ω

2
0 = 1. The curves are plotted for α = 5, 2 and 0.5 (magenta, blue and red,

respectively). The corresponding values of Ω are 0.44ω0, 0.64ω0 and 0.88ω0.

where ω̃0 ' ω0 for C ' C0 and [10,11]

ω̃0 = 2∆

√
Z

2
+

√
Z2

4
+
√

8qr, Z =
√

8q −
√
r − r1/4, (33)

in the opposite limit of vanishing geometric capacitance C0, i.e. for C ' e2N/(4∆).
In the latter limit, the strong dissipation regime (ii) takes place for

√
r & q > qc =√

r/32 + (r3/4 + r)/8, while at q < qc the adiabatic regime (iii) of strong capacitance
renormalization with C∗ = C + e2N/(4∆r1/4) sets in.

In order to determine the temperature dependence of Γ one should bear in mind
that in weak links with small values of r the critical current IC(T ) essentially depends
on temperature also at T � ∆, as it is illustrated, e.g., in Figure 2 (left panel).
Accordingly, the MQT rate Γ(T ) increases with temperature because q(T ) decreases
with increasing T and, hence, the potential barrier U0 ∝ q3/2 becomes lower. Extra
temperature dependence could occur due to coupling to Andreev oscillators provided
T exceeds the interlevel distance 2ε(χc) = 2∆r1/4 for these oscillators. Obviously,
this latter mechanism can be totally ignored at least as long as Tmax

0 < 2∆r1/4, i.e.
for q(T ) < 2π4r. In this case, the result (32) with q = q(T ) remains applicable at any
T < T0.

On the other hand, following the same line of reasoning one could conclude that
for Tmin

0 > 2∆r1/4 (implying
√
r/q(T ) < 1/(2π4)� 1) temperature effects originat-

ing from the Andreev bath could possibly be expected. Note, however, that the above
condition simultaneously implies very weak coupling between φ and Andreev oscil-
lators. Hence, in this regime the bath effects can be disregarded as well and the
temperature dependence of the MQT rate is determined solely by the potential pro-
file U(ϕ) that now changes with T , see, e.g., equation (13) and also Figure 2 (right
panel).

In order to investigate this dependence below we set r → 0. In this case, the phase
variable φ is completely decoupled from Andreev oscillators and, hence, the quantum
tunneling rate Γ can be evaluated by means of the standard semiclassical methods of
quantum mechanics.
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Fig. 2. Left panel: critical current IC(T ) versus temperature (solid line) for a weak link
with r → 0. Horizontal lines correspond to bias current values I = 0.85IC(0), 0.9IC(0) and
0.95IC(0) (indicated respectively by dashed-dotted, dotted and dashed lines). Right panel:
temperature dependence for both plasma frequency ω0 and potential barrier U0 for three bias
current values. All curves correspond to the following parameters: N = 100, ∆ = 200µeV,
EC = 0.1µeV and TC = 1.32 K.

To begin with, we determine the energy levels En in the potential well U(ϕ). This
task can be accomplished with the aid of the usual Bohr–Sommerfeld quantization
rule: ∫ ϕ2(En)

ϕ1(En)

dϕ

√
En − U(ϕ)

2
√
EC

= π

(
n+

1

2

)
. (34)

Here, ϕ1(E) and ϕ2(E) are two different solutions of the equation E = U(ϕ), as it is
illustrated in Figure 3 (left panel).

As a next step, we evaluate the quantum mechanical tunneling rate for the particle
with energy En according to the standard formula

Γn =
ω0

2π
exp

[
− 1√

EC

∫ ϕ3(En)

ϕ2(En)

√
U(ϕ)− En

]
, (35)

where ϕ3(En) is the third solution of the equation En = U(ϕ), see Figure 3 (left
panel). The total equilibrium escape rate of the particle from the potential well can
then be determined as [39]

Γ(T ) =
N∑
n=0

PnΓn, Pn =
e−En/T∑N

n′=0 e
−En′/T

. (36)

Here, N = N(I, T ) is the total number of energy levels in the potential well. At
sufficiently high temperatures T � ω0/2π this expression approaches the classical TA
formula (17), where now both values ω0 and U0 essentially depend on temperature,
see Figure 2 (right panel).

The total escape rate (36) was evaluated numerically. The corresponding results
are displayed in Figure 3 (right panel) demonstrating that no quantum-to-classical
crossover exists in the fully transparent barrier limit r → 0. This observation requires
a comment.

It is well known [4,35] that the crossover between TA and MQT regimes always
takes place, e.g., in Josephson tunnel barriers both with and without dissipation. The
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Fig. 3. Left panel: the effective potential profile U(ϕ) at T = 0 and the energy levels in
the potential well. Right panel: decay rate Γ versus temperature for three values of the
bias current: I = 0.85IC(0) (green), I = 0.9IC(0) (red) and I = 0.95IC(0) (blue). Solid
lines with symbols indicate the total decay rate (36). Thermal activation escape rate (17)
(dashed lines) is presented for comparison. Here, the system parameters are set to be Nch =
100, ∆ = 200µeV and EC = 0.1µeV.

physical nature of this crossover is obvious: the classical TA rate (17) (dominating
the decay at higher T ) decreases exponentially with temperature and eventually (at
T < T0) becomes lower than the MQT rate which remains non-zero down to T = 0.
In other words, at T < T0 the system favors quantum tunneling under the barrier
whereas at T > T0 the classical Arrhenius decay mechanism takes over, as it is already
discussed above in Sections 3.1 and 3.2.

Note that, while this scenario applies for a “quadratic+qubic” potential (12), it
may not work for some other potential profiles. For instance, earlier it was already
demonstrated [40,41] that in the case of a non-quasiclassical potential of the type
“quadratic+linear” and at any relevant temperature quantum tunneling prevails
over TA and no quantum-to-classical crossover exists at all. Our results in Figure 3
(right panel) indicate that a similar situation occurs here in the full transmission
limit r → 0. Indeed, we observe that at all relevant T the supercurrent decays quan-
tum mechanically with the rate Γ(T ) which remains bigger than the classical TA
one (17) and gradually approaches the latter only in the high temperature limit. In
other words, in the case of the potential (13) the system always “prefers” to tun-
nel under the barrier rather than to overcome it classically. In a way this behavior
is understandable, since the overall shape of the potential energy (13) resembles
that investigated in [40,41], in particular at sufficiently low T , cf. Figure 3 (left
panel). At the same time, the situation considered here is quite different because
of a strong dependence of the potential profile U(ϕ) (13) on temperature which does
not exist in the model [40,41]. More detailed analysis of this issue will be published
elsewhere.
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