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Abstract. Open quantum walks (OQWs) are a class of quantum walks,
which are purely driven by the interaction with the dissipative environ-
ment. In this paper, we review theoretical advances on the foundations
of discrete time OQWs, continuous time OQWs and a scaling limit of
OQWs called open quantum Brownian motion. The main focus of the
review is on the results and developments of discrete time OQW, cov-
ering general formalism, quantum trajectories for OQWs, central limit
theorems, the microscopic derivation as well as possible generalisations
and applications of OQWs.

1 Introduction

Classical random walks (CRWs) [1] are an important tool for understanding various
physical phenomena, with wide applications in computer science, biology and eco-
nomics. The trajectory and probability of finding a CRW walker is fully determined
by the transition matrix of the underlying graph. Unitary quantum walks (UQWs),
a quantum counterpart of CRWs were introduced almost three decades ago [2,3] and
they found numerous applications in quantum information processing and communi-
cation science [4]. In this case, the trajectory of the UQW walker depends on both
the transition matrix of the underlying graph and the state of the internal degree of
freedom of the walker, i.e. spin or polarisation. The probability of finding the UQW
walker is the result of quantum interference between different trajectories. This leads
to a very different asymptotic distribution of UQWs as compared to the CRW case.

Discrete time open quantum walks (OQWs) were introduced as a quantum Markov
chain on an underlying graph [5,6]. In OQWs, the transition between the nodes is
driven purely by the dissipative interaction with an environment. As for the case of
UQWs, the probability of finding the walker on a particular node is determined by
the state of the internal degree of freedom and the transition matrix of the underly-
ing graph. The crucial difference between UQWs and OQWs is that OQWs do not
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rely on the quantum interference between the nodes and admit central limit theo-
rems. Essentially, OQWs start as quantum walks and in a long time limit become
CRWs. Utilisation and generalisation of methods of classical Markov chains to OQWs
led to recent results in the field, which include various central limit theorems, site
recurrence criteria, definition of exit and passage times. Discrete time OQWs have
been generalised to continuous time OQWs and the scaling limit of OQWs has been
formulated.

The review has the following structure. In Section 2, we review the discrete time
OQWs. We start by reviewing the formalism of OQWs and introducing the unrav-
elling of OQWs. We continue by reviewing the results of the application of methods
from the theory of classical Markov chains to the quantum trajectories of OQWs. This
includes central limit theorems, ergodic properties, passage time, exit time and site
recurrence criteria. We review possible generalisations and applications of OQWs. We
conclude Section 2 by outlining the microscopic derivation of OQWs. In Section 3,
we briefly introduce continuous time OQWs and review recent results. In Section 4,
we briefly describe the scaling limit of OQWs – open quantum Brownian motion
(OQBM). In Section 5 we conclude.

2 Discrete-time open quantum walks

2.1 Discrete-time open quantum walks: general formalism

Discrete-time OQWs were formulated by Attal et al. as a quantum Markov chain on a
graph [5,6]. Physically, OQWs are quantum walks where the transitions between the
nodes are driven by the dissipative interaction with an environment. Mathematically,
OQWs are defined on the finite or countable set of vertices or nodes V with oriented
edges {(i, j) : i, j ∈ V}. The space of states corresponding to the dynamics on a set of
nodes V will be denoted by K = CV . If the number of nodes in V is countably infinite
then K is any separable Hilbert space with an orthonormal basis {|i〉}i∈V indexed
by V. The internal degree of freedom of the quantum walker, e.g. the spin, OAM,
polarisation or n-energy levels, is described by a vector in a separable Hilbert space
H attached to each node of the graph, such that any state of the walker at any time
is described by a density matrix ρ on the direct product of the Hilbert spaces H⊗K.

To describe the dynamics of the walker, for each edge (i, j) we introduce a bounded

operator Bji ∈ B(H). This operator describes the change in the internal degree of
freedom of the walker due to a “quantum jump” from vertex i to vertex j (see
Fig. 1). By restricting that for each node j,∑

i

Bi†j B
i
j = Ij , (1)

we make sure that for each node j ∈ V there is a corresponding completely positive
trace-preserving map on the operators of B(H):

Mj(τ) =
∑
i

BijτB
i†
j . (2)

The transition operators Bij act only on the internal state Hilbert space H and do
not perform transitions of the quantum walker from the node j to node i, therefore
they can be straightforwardly dilated to operators M i

j ∈ B(H⊗K) acting on the total

Hilbert space as M i
j = Bij ⊗ |i〉〈j|. It is obvious that, if the transition operators Bij
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Fig. 1. A schematic representation of a discrete time OQW on a graph with nodes i and j.
The operators Bj

i and Bi
j represent the transition operators of the walk.

satisfy equation (1), then
∑
i,jM

i†
j M

i
j = I. This normalisation condition defines a

completely positive trace preserving map for density matrices on H⊗K, i.e.,

M(ρ) =
∑
i,j

M i
jρM

i†
j . (3)

This map defines the discrete time OQW [5–7]. It is easy to see that, for an arbitrary
initial state the density matrix

∑
i,j ρi,j ⊗ |i〉〈j| will take a diagonal form after one

step of OQW, namely,

M

(∑
p,q

ρp,q ⊗ |p〉〈q|

)
=
∑
i,j,p,q

Bij ⊗ |i〉〈j| (ρp,q ⊗ |p〉〈q|)B
i†
j ⊗ |j〉〈i|

=
∑
i,j,p,q

Bijρp,qB
i†
j ⊗ |i〉〈i|δj,pδj,q

=
∑
i

∑
j

Bijρj,jB
i†
j

⊗ |i〉〈i|. (4)

Therefore, we will assume that the initial state of the system is given by the den-
sity matrix diagonal in the node space, i.e., ρ =

∑
i ρi ⊗ |i〉〈i|. One can see that

the iteration formula for OQWs from the step [n] to the step [n + 1] is as follows:

ρ[n+1] =
∑
i ρ

[n+1]
i ⊗ |i〉〈i|, where ρ

[n+1]
i =

∑
j B

i
jρ

[n]
j Bi†j . This iteration formula pro-

vides a clear physical meaning of the map M: the state of the walker at the node i
is determined by the conditional “quantum jumps” from all connected nodes j and
the state of the internal degree of freedom of the walker on that node described by
the operator ρj .

2.2 Example: open quantum walk on Z

As an illustration of the OQW, we consider OQWs on the line where the walker
is allowed to jump only between adjacent sites (Fig. 2a). In this case, the generic

OQW iteration formula reduces to ρ[n+1] =
∑
i ρ

[n+1]
i ⊗ |i〉〈i|, where ρ

[n+1]
i =

Bii+1ρ
[n]
i+1B

i†
i+1 + Bii−1ρ

[n]
i−1B

i†
i−1. For simplicity we consider a homogenous OQW

(which means that ∀i, Bi+1
i ≡ B and Bi−1i ≡ C). For a walker initially localized
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Fig. 2. OQWs on Z. (a) A schematic illustration of the homogeneous OQWs on Z: all
transitions to the right are induced by the operator B, while all transitions to the left
are induced by the operator C; (b–d) the probability distribution to find the walker on a

particular site for initially localised walker ρ[0] = |−〉〈−| ⊗ |0〉〈0| and transition operators
given by equation (5) after 15, 40, 100 steps, respectively.

at the vertex 0: ρ[0] = ρ
[0]
0 ⊗ |0〉〈0|, the total density matrix after one and two steps

is given by,

ρ[1] = Bρ
[0]
0 B

† ⊗ |1〉〈1|+ Cρ
[0]
0 C

† ⊗ | − 1〉〈−1|,

and

ρ[2] = Bρ
[1]
1 B

† ⊗ |2〉〈2|+
(
Cρ

[1]
1 C

† +Bρ
[1]
−1B

†
)
⊗ |0〉〈0|+ Cρ

[1]
−1C

† ⊗ | − 2〉〈−2|.

To illustrate the dynamics of the probability distribution of finding the walker on a
particular node, we chose B and C as

B =
1

6

(
4
√

2√
2 5

)
, C =

1

2
√

3

(
2 −

√
2

−
√

2 1

)
, (5)

so that the normalisation condition equation (1) is satisfied, i.e. B†B+C†C = I. If we
pick the initial state of the walker to be localised at the site 0 with the internal degree
of freedom in the “minus” state (|−〉 = (|1〉 − |0〉) /

√
2), i.e. ρ[0] = |−〉〈−| ⊗ |0〉〈0|,

then by iteration we can find the state of the walker after an arbitrary number of steps.
In Figures 2b–2d, we show the probability of finding a walker on a particular node for
a various number of steps. After 40 steps (Fig. 2c), one can clearly see the formation
of a “soliton”-like distribution and a Gaussian moving in different directions. For the
greater number of steps (100 on Fig. 2d), this behaviour is even more obvious.

2.3 Unravelling OQWs

An interesting property of OQWs is that they can be simulated by means of
quantum trajectories [5,7]. To demonstrate the formalism we choose the initial
state of the walker to be localised on the node i with an arbitrary internal state,
namely ρ[0] = ρ ⊗ |i〉〈i|. After one step of the OQW, the state of the walker is

ρ[1] =
∑
j

(
Bji ρB

j†
i

)
⊗ |j〉〈j|. The probability of finding the walker at the node j

is as follows pj = Tr
(
Bji ρB

j†
i

)
. If we measure the position of the walker at node j
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the reduced state walker is given by 1
pj

(
Bji ρB

j†
i

)
⊗ |j〉〈j|. Repetition of this proce-

dure gives rise to a classical Markov chain, valued in the set of states of the form
ρ⊗ |i〉〈i|.

Let us calculate the average over the trajectories generated by the procedure
described above and show that it will simulate an OQW map M defined in
equation (3). We assume that in the step [n] the walker is localised at the node i
and the state of the walker is given by ρ[n] = ρn ⊗ |i〉〈i|. If we monitor the posi-
tion of the walker, after one step the walker will jump randomly to the node j

with probability pj = Tr
(
Bji ρnB

j†
i

)
and the state of the walker will be given by

ρ[n+1] = ρn+1(j) ⊗ |j〉〈j| = 1
pj

(
Bji ρnB

j†
i

)
⊗ |j〉〈j|. The ensemble average over all

possible trajectories will simulate an OQW map M:

E [ρ[n+1]] =
∑
j

pjρn+1(j)⊗ |j〉〈j|

=
∑
j

pj
1

pj

(
Bji ρnB

j†
i

)
⊗ |j〉〈j| =

∑
j

(
Bji ρnB

j†
i

)
⊗ |j〉〈j| =M[ρ[n]].

A quantum trajectory of the OQW after n steps can also be denoted as
(ρn, Xn)n≥0, where ρn is the density matrix of the internal degree of freedom and Xn

is a random variable tracing the position of the walker.
The initial pure state ρ[0] = |φ〉〈φ| ⊗ |i〉〈i| will remain in the pure state for the

whole realisation of the OQW. It is clear that an arbitrary initial pure state |φ〉 ⊗ |i〉
will randomly jump to a state 1√

pji
Bji |φ〉 ⊗ |j〉 with probability pji = ||Bji |φ〉||2. This

procedure leads to a classical Markov chain valued in the space of wavefunctions of
the form |φ〉 ⊗ |i〉. On average, this random walk simulates an OQW master equation
driven by M. Examples of unravelling of OQWs can be found in [5,7].

2.4 Connection to classical random walks and unitary quantum walks

It is interesting to mention that the OQWs contain, as a special case, CRWs
[5,7]. To illustrate this, let us consider the case H = K = CV and define a stochastic
matrix P = {Pi,j} of classical transition probabilities on the graph V with standard
normalisation condition

∑
i Pj,i = 1 and add an arbitrary set of unitary operators

U ji ∈ B
(
CV
)
. To recover CRWs, we need to consider the transition operators Bji to

be Bji =
√
Pi,jU

j
i . For an arbitrary initial state ρ[0] =

∑
k ρk ⊗ |k〉〈k|, the probability

of finding a walker after one step on the node i is as follows,

p[1](i) = Tr
(
M(ρ[0])|i〉〈i|

)
=
∑
k

Pk,iTr (ρk) , (6)

after two steps, the probability of finding a walker at the node i reads,

p[2](i) = Tr
(
M(M(ρ[0]))|i〉〈i|

)
=
∑
k,m

Pm,kPk,iTr (ρm) . (7)

One can see that the probability of finding a walker on the site i does not depend on
the internal degree of freedom and is fully determined by the stochastic matrix P , as
expected for a CRW.
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UQWs can be recovered for the set of transition operators Bji satisfying an

extended normalisation condition
∑
iB

i†
j B

i
j′ = δj,j′Ij and using the “realisation”

procedure. The detailed description of the link between Hadamard quantum walks
and OQWs can be found in [5].

2.5 Central limit theorem, reducibility and ergodic properties of OQWs

Several numerical experiments with various QOWs [5–7] seem to indicate that the
asymptotic distribution of positions of the OQW walker converges to a Gaussian
distribution or sum of Gaussian distributions. For the case of nearest neighbour
homogeneous OQWs on Zd with a unique invariant state Attal et al. proved the
central limit theorem (CLT) [8].

Here, we demonstrate the application of the CLT to an OQW on Z. Consider a
homogeneous OQW on a line with a generic setup as described in Section 2.2. The
state of the walker for the arbitrary step n+ 1 is given by the iteration formula

ρ[n+1] =
∑
i

ρ
[n+1]
i ⊗ |i〉〈i|,where ρ

[n+1]
i = Cρ

[n]
i+1C

† +Bρ
[n]
i−1B

†. (8)

To satisfy the CLT, OQW should have a unique invariant state which means that
the density matrix acting on the Hilbert space of the internal degree of freedom
ρ∞ ∈ B(H) admits the unique solution for the equation ρ∞ = Cρ∞C

† +Bρ∞B
†.

For a quantum trajectory (ρn, Xn)n≥0 corresponding to the OQW equation (8),
where ρn denotes the state of the internal degree of freedom and Xn the position
of the walker after n steps, the CLT guarantees that (Xn − nm) /

√
n converges

to a Gaussian distribution N
(
0, σ2

)
, where parameter m is as follows m =

limn→∞
Xn

n . The CLT also allows the calculation of the parameters of the asymp-
totic distribution. For an OQW given by equation (8) the parameter m is given
by m = Tr(Bρ∞B

†) − Tr(Cρ∞C
†) and the variance σ2 reads σ2 = 1 − m2 +

4
(
Tr(ρ∞B

†LB)− Tr(Bρ∞B
†)Tr(ρ∞L)

)
, where operator L satisfies the following

equation L−B†LB − C†LC = 2B†B − (1 +m)I.
For example, an OQW with transition operators

B =
1√
3

(
1 1
0 1

)
and C =

1√
3

(
1 0
−1 1

)
(9)

admits a unique invariant state ρ∞ = 1
2I, which leads to a parameter m = 0 and

variance σ2 = 8
9 [8].

Using the CLT [8] Konno and Yoo studied limit distributions for various OQWs
[9]. They introduced a dual process for the OQWs in the Fourier space, which allows
one to find the formal expression for the probability distribution of the OQWs. Konno
and Yoo apply the developed formalism to a range of OQWs and explicitly calculate
the mean and variance of the corresponding asymptotic distributions [9].

Sadowski and Pawela consider a generalisation of the CLT for the case of non-
homogenous OQWs [10]. They consider OQWs on Zd with a finite number of classes
of nodes. Different classes of nodes are characterised by a different set of 2d transition
operators. First, they assign the classes in a regular pattern. Second, they assign to
each node a random class with transition invariant distribution. In both cases the
CLT is proven.

Sinayskiy and Petruccione studied the properties of OQWs on Z for the case
of simultaneously diagonalisable transition operators B and C [11]. They derive a
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general form of the probability distribution to find the walker on a particular site.
They found that the asymptotic distribution consists of maximally two “soliton”-
like distributions and a certain number of Gaussian distributions. They establish a
connection between the explicit form of the transition operators B and C and the
number of Gaussian distributions as well as their mean and variance.

Using the fact that OQW quantum trajectories can be seen as classical Markov
chains, Carbone and Pautrat introduce notions of irreducibility, period, communi-
cating classes for OQWs [12] and apply these generic definitions to a homogeneous
OQW on Zd [13]. In [12], Carbone and Pautrat apply the notion of the irreducibil-
ity and aperiodicity of positive maps to the case of OQWs. This leads to a proof
of the ergodic behaviour of irreducible OQWs. They continue the analysis for the
case of reducible OQWs and derive a general form of stationary states for OQWs.
In the follow-up study, they apply these generic results to the case of homogeneous
OQWs on Zd [13]. They prove the CLT and formulate the large deviation principle
for a quantum trajectories of OQWs. They fully characterise OQWs on Zd with a
two-dimensional internal degree of freedom.

2.6 Passage times, exit times, site recurrence, hitting times for OQWs

The strong analogy between OQWs and Markov chains is the main driver of the
results, which are summarised in this section. Bardet et al. studied the probability
of visiting a given node in a finite time, expected number of visits, expected return
time, and their relation with the Dirichlet problem, as well as exit probabilities and
exit times for any finite subset of the graph [14].

Lardizabal and Souza considered the special case of OQWs, where transition
operators Bij are given by the Kraus operators of PQ-channels [15]. For this scenario,
they studied return probability, recurrence and positive recurrence. In the follow-up
study, they utilised the analogy between OQWs and quantum Markov chains [16,17]
and prove an ergodicity criterion in terms of singular values. By using quantum
trajectories Lardizabal and Souza defined a notion of hitting time for OQWs (first
time visit) and calculated it explicitly for certain cases [18]. Furthermore, Lardizabal
continued the study of the relations between the mean hitting time formula from
classical probability theory and quantum hitting time for OQWs [19]. He derived
a relation between mean hitting time for OQWs and the fundamental matrix of an
ergodic OQWs. Carvalho et al. investigated similarities and differences in site recovery
for UQWs and OQWs [20]. They proved an equivalence between monitored-recurrence
and SJK-recurrence for OQWs. By constructing orthogonal matrix polynomials Jacq
and Lardizabal studied OQWs on Z+ and described transition probability for certain
classes of OQWs via the matrix Karlin–McGregor formula [21]. They discussed an
open quantum version of Foster’s theorem for the expected returns.

Dhahri and Mukhamedov [22] studied recurrence properties of OQWs from the
perspective of quantum Markov chains [23]. Grünbaum and Velázquez introduced
an FR-function as a generalisation of Schur functions [24]. They demonstrated the
application of FR-functions to the study of recurrence for UQW and OQW.

2.7 Generalisations and applications of OQWs

Xiong and Yang introduced a generalisation of OQWs called the partially open
quantum random walks (POQRW) [25]. POQRWs are parametrised by a parameter
p (0 ≤ p ≤ 1), such that for p = 0 POQRWs become UQWs, while for p = 1 POQWs
recover the OQW formalism. With the help of the quantum Fourier transform and
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basis of the generalised Gell-Mann matrices they proved a limit theorem for POQRWs
on Z.

Pawela et al. studied a generalised OQW on Apollonian Networks [26]. Their
formalism assumes for every edge (i, j) of the graph one can introduce a completely
positive trace non-increasing map Ei,j . Maps Ei,j are defined such that the sum of all
maps leaving one node j of the graph is completely positive trace-preserving map.
Conventional OQWs are recovered in the case when maps Ei,j are rank one.

Wang et al. studied OQWs from the perspective of quantum Bernoulli noise [27].
They have shown that for an initial localised state the limit probability distribu-
tion coincides with the probability distribution for a corresponding CRW. They also
established a connection of quantum Bernoulli based open walks with a UQW. In
a sequence of papers, Ampadu studied the time-dependent generalisation of OQWs
[28–30]. He considered examples of OQWs on Z with transition operators B(n) and
C(n) changing for every step. In the investigated cases, the limit distribution and
return probability were found. Liu suggested a scheme for a dilation of OQWs on a
lattice and a finite graph into a UQW [31]. Using this approach, he studied the mean
probability of finding a walker at a node. In a recent study, Lardizabal used a matrix
representation of completely positive maps to study OQWs and associated quantum
trajectories of the position of the walker [32]. In the case when the CP-map acting
of the internal degree of freedom of the walker is given by the primitive quantum
channel he derived expressions for the mean hitting time and expected return time.

It is well known that the dissipative effects can be used to create complex entan-
gled states [34–38] and to perform universal quantum computation [39]. Sinayskiy
and Petruccione have demonstrated that OQWs can be used to create complex quan-
tum states [6] and to implement a dissipative quantum computing model [33]. It is
remarkable that the proposed OQW implementation of the dissipative quantum com-
puting model outperforms the traditional implementation of this model of quantum
computation.

2.8 Microscopic derivation of OQWs

Originally, OQW have been formulated as a particular type of a completely positive
trace-preserving map [5,6]. According to Stinespring’s theorem every CPTP map can
be dilated in an extended space into a unitary operation, which in principle can be
implemented experimentally. However, this theorem only guarantees the existence of
such a physical system but does not give a recipe how this system can be constructed.
Sinayskiy and Petruccione suggested two possible ways to implement OQWs: first by
using an effective operator formalism they suggested a quantum optics implemen-
tation of OQWs [40], second they followed the traditional theory of open quantum
systems approach and derived OQWs based on the microscopic system-environment
model [41,42].

In the quantum optical implementation of OQWs, Sinayskiy and Petruccione used
an example of the two-level system in the cavity in the dispersive regime [40]. This
setup realised an OQW on the line with a two level system as the internal degree of
freedom and the Fock states of the cavity mode as a 1D lattice.

In the remaining part of this section, we will outline the basic idea of the micro-
scopic derivation of OQWs [42]. OQWs are quantum walks where the transition
between the nodes is fully driven by the interaction with the dissipative environ-
ment. This implies that one could apply methods of the theory of open quantum
systems to derive OQWs [43]. From the microscopic point of view the Hamiltonian
of the total system is given by

H = HS +HB +HSB , (10)
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where HS , HB and HSB denote the Hamiltonian of the system, bath and system-bath
interaction, respectively. OQW is defined as a completely positive trace-preserving
map equation (3) on both internal and external degrees of freedom of the quantum
walker. This means that the Hamiltonian of the system HS should describe the local
free evolution of the internal degree of freedom of the quantum walker and underlining
graph, namely,

HS =
∑
i

Ωi ⊗ |i〉〈i|. (11)

Each vertex of the graph corresponds to a possible position of the walker. The basis
of the corresponding Hilbert space (K) is given by the set of orthogonal vectors {|i〉}.
The state of the inner degree of freedom of the walker is described by the Hamiltonians
in the N -dimensional Hilbert space, i.e. Ωi ∈ B(H).

OQWs are formulated such that the transitions between different nodes are uncor-
related. To facilitate transition between sites i and j one needs to have at least
one local environment between these nodes. This leads to the following form of the
Hamiltonian of the bath HB ,

HB =
∑
i6=j

∑
n

ωi,j,na
†
i,j,nai,j,n, (12)

where a†i,j,n and ai,j,n denote bosonic creation and annihilation operators describing
the nth mode of the local environment between nodes i and j.

The system-bath HamiltonianHSB describes bath assisted transitions of the quan-
tum walker between the sites. The simplest form of such a Hamiltonian includes
operators acting on the internal and external degrees of freedom of the walker and
degrees of freedom of the local environment in the linearly coupled way. Without loss
of generality one could assume that the Hamiltonian of the system-bath interaction
is given by,

HSB =
∑
i6=j

∑
n

Ai,j ⊗Xi,j ⊗Bi,j , (13)

where Ai,j ∈ B(H) denotes operators acting on the internal degree of freedom of the
walker. The operator Xi,j ∈ B(K) describes the transition between the nodes i and j.
The simplest Hermitian choice of these operators is given by Xi,j = |i〉〈j| + |j〉〈i|.
The coupling of the quantum walker to a local environment is described by the oper-

ator Bi,j =
∑
n gi,j,nai,j,n + g∗i,j,na

†
i,j,n, where gi,j,n denotes the coupling constants of

the system-bath interaction. The set of these coupling constants gi,j,n satisfies the
following condition

∑
n |gi,j,n|2 <∞ and in the continuum limit this sum converges

to a local spectral density Ji,j(ω).
Having specified the Hamiltonian of the total system, one can proceed and derive

the reduced master equation for the quantum walker and the lattice. It is assumed
that the system is weakly coupled to the local environments, such that the Born–
Markov approximation is valid [43]. Under these assumptions, the reduced dynamics
of the system in the interaction picture is given by the following equation:

d

dt
ρs(t) = −

∫ ∞
0

dτTrB [HSB(t), [HSB(t− τ), ρs(t)⊗ ρB ]] , (14)
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where ρs(t) is the reduced density matrix of the system (quantum walker and under-
lying graph) and ρB is the state of the bath. To guarantee that the master equation
(14) describes a completely positive trace-preserving evolution one needs to perform
an additional rotating-wave approximation [43]. This rotating wave approximation
can be easily implemented if one decomposes the system-bath Hamiltonian HSB in
the basis of eigenoperators of the system Hamiltonian HS . For each site |i〉 one can
introduce the set of orthonormal Hermitian projectors {Πi(λ

(i))} onto the eigenvalues
λ(i) of each Hamiltonian Ωi, such that

Ωi =
∑
λ(i)

λ(i)Πi(λ
(i)). (15)

In this notation, the system-bath Hamiltonian HSB in the interaction picture reads,

HSB(t) =
∑
i,j

∑
ω

eitωA†i,j(ω)⊗ |i〉〈j| ⊗Bi,j(t) + h.c.

+
∑
i,j

∑
ω′

e−itω
′
Ai,j(ω

′)⊗ |i〉〈j| ⊗Bi,j(t) + h.c., (16)

where the operator Bi,j(t) is given by

Bi,j(t) =
∑
n

gi,j,nai,j,ne
−itωi,j,n + h.c. (17)

and the operators A†i,j(ω) and Ai,j(ω
′) are defined as,

A†i,j(ω) =
∑

λ(i)−λ(j)=ω>0

Πi(λ
(i))Ai,jΠj(λ

(j)),

A†i,j(ω) = Ai,j(−ω). (18)

Using the explicit form of the system-bath Hamiltonian equation (16) one can
substitute it into the master equation for the reduced density matrix equation (14)
and trace out the environment degrees of freedom. Here, one assumes that the envi-
ronment is in a thermal equilibrium state at the inverse temperature β = (kBT )−1,
namely ρB = exp(−βHB)/Tr[exp(−βHB)]. After a straightforward transformation
and the application of the rotating-wave approximation for the transition frequencies
ω and ω′ [43,44] the master equation (14) can be written as,

d

dt
ρs(t) =

∑
i,j

∑
ω

γi,j(−ω)L (Ai,j(ω)⊗ |j〉〈i|) ρs(t) + γi,j(ω)L
(
A†i,j(ω)⊗ |i〉〈j|

)
ρs(t)

+
∑
i,j

∑
ω′

γi,j(−ω′)L (Ai,j(ω
′)⊗ |i〉〈j|) ρs(t)

+ γi,j(ω
′)L
(
A†i,j(ω

′)⊗ |j〉〈i|
)
ρs(t), (19)

where L(A)ρ denotes the semigroup generator in the Gorini–Kossakowski–
Sudarshan–Lindblad form (GKSL) [43–46]:

L (A) ρ = AρA† − 1

2

{
A†A, ρ

}
(20)
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and γi,j(ω) is the real part of the Fourier transform of the bath correlation functions

〈B†i,j(τ)Bi,j(0)〉,

γi,j(±ω) =
γsei,j
2

(
coth

(
βω

2

)
∓ 1

)
, (21)

where γsei,j is the coefficient of the spontaneous emission in the corresponding local
environment. In the equation (19), the Lamb-type shift terms are neglected. These
terms describe shifts in energy levels of the system due to the dissipative inter-
action with the thermal bath. Typically, the value of Lamb shifts is smaller than
other characteristic parameters of the system Hamiltonian and traditionally they are
dropped [43]. If one writes the reduced density matrix ρs(t) from equation (19) as
ρs(t) =

∑
i ρi(t)⊗ |i〉〈i|, where |i〉〈i| is a projection on the site i, then the quantum

master equation (19) reduces to the system of differential equations:

d

dt
ρi(t) = Ki ({ρj}j) , (22)

where Ki are given by

Ki ({ρj}j) =
∑
j,ω

γj,i(−ω)Aj,i (ω) ρjA
†
j,i (ω)− γi,j(−ω)

2
{A†i,j (ω)Ai,j (ω) , ρi}

+
∑
j,ω

γi,j(ω)A†i,j (ω) ρjAi,j (ω)− γj,i(ω)

2
{Aj,i (ω)A†j,i (ω) , ρi}

+
∑
j,ω′

γi,j(−ω′)Ai,j (ω′) ρjA
†
i,j (ω′)− γj,i(−ω′)

2
{A†j,i (ω′)Aj,i (ω′) , ρi}

+
∑
j,ω′

γj,i(ω
′)A†j,i (ω′) ρjAj,i (ω′)− γi,j(ω

′)

2
{Ai,j (ω′)Ai,j (ω′)

†
, ρi}.

(23)

This system of differential equations (22,23) defines the continuous time OQWs.
Continuous time OQWs were introduced by Pellegrini as the continuous time limit
of OQWs [47].

To obtain a discrete-time OQW one needs to replace the time derivative by
the finite difference with a small time step ∆ in equations (22,23) as dρi/dt →
(ρi(t+ ∆)− ρi(t)) /∆. This substitution leads to the following transition operators,

B
i(1)
j (ω) =

√
∆γj,i(−ω)Aj,i(ω), B

i(2)
j (ω) =

√
∆γi,j(ω)A†i,j(ω),

B
i(1)
j (ω′) =

√
∆γi,j(−ω′)Ai,j(ω′), B

i(2)
j (ω′) =

√
∆γj,i(ω′)A

†
j,i(ω

′),

Bii = IN −
∆

2

∑
j,ω

(
γi,j(−ω)A†i,j(ω)Ai,j(ω) + γj,i(ω)Aj,i(ω)A†j,i(ω)

)
− ∆

2

∑
j,ω′

(
γj,i(−ω′)A†j,i(ω

′)Aj,i(ω
′) + γi,j(ω

′)Ai,j(ω
′)Ai,j(ω

′)
)
. (24)
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It is clear that this set of transition operators satisfy normalisation conditions
equation (1) up to O(∆2). The iteration formula for the discrete time OQW reads,

ρ
[n+1]
i = Biiρ

[n]
i Bi†i +

2∑
k=1

∑
j,ω

B
i(k)
j (ω)ρ

[n]
j B

i(k)†
j (ω) +

2∑
k=1

∑
j,ω′

B
i(k)
j (ω′)ρ

[n]
j B

i(k)†
j (ω′).

(25)
The transition operators, equation (24), show a connection between the dynamical
properties of the OQW and the thermodynamical parameters of the environment.

3 Continuous time open quantum walks

Continuous time OQWs have been introduced by Pellegrini as a continuous time
limit of discrete-time OQWs [47]. Pellegrini utilises a correlated projection operator
approach [48] and repeated quantum interaction theory [49] to derive continuous-time
OQWs as the following system of differential equations:

d

dt
ρj = −i[Hj , ρj ] +

∑
α,k

(
Rα,jk ρk

(
Rα,jk

)†
− 1

2

{(
Rα,kj

)†
Rα,kj , ρj

})
. (26)

Here, the positive operators ρj(t) ∈ B(H) describe the state of the inner degree of
freedom of the quantum walker on the site j. These operators satisfy the normalisation
condition for the probability to find the walker on the graph

∑
j Tr[ρj ] = 1. The

operators Hj ∈ B(H) denote Hamiltonians acting on the internal degree of freedom

of the walker on the site j. The set of bounded operatorsRα,jk describe transformations
of the inner degrees of freedom of the walker during the transition from the node k to
the node j, while the index α indicates the number of different ways to perform this
transition. Within the microscopic derivation of the discrete-time OQWs Sinayskiy
and Petruccione derived continuous-time OQWs and established a direct relation
between the transition operators Rα,jk and the thermodynamical parameters of the
underlying physical system [42].

Bringuier proved the CLT and formulated the large deviation principle for con-
tinuous time OQWs [50]. Similarly, to Attal et al. [8] he considered homogeneous
continuous-time OQWs on Zd and the case in which continuous-time OQWs equa-
tion (26) admit a unique stationary state. Bringuier investigated the dynamics of
the quantum trajectories of the position process (ρt, Xt)t≥0. He proved that shifted

Markov processes (Xt −mt)/
√
t will converge to a Gaussian distribution N (0, V ).

He also derived an explicit expression for the mean m and variance V of this distri-
bution. Using the Gärtner-Ellis theorem and following [13] Bringuier formulated the
large deviation principle for continuous time OQWs.

Liu and Balu studied steady states of continuous time OQWs on finite graphs [51].
They have demonstrated that for all initial states a continuous time OQW always
converges to a steady state when the graph is connected. Moreover, if the graph is
connected and regular, Liu and Balu demonstrated that the steady state is given
by a maximally mixed state. Using explicit examples of continuous time OQWs on
a regular (cycle) and irregular (star) graphs they observed very different dynamical
behaviour for the quantum walker.

Bardet et al. studied recurrence and transience of continuous time OQWs [52].
They started by defining an irreducibility of the quantum Markov semigroup and
relating this semigroup to a corresponding continuous time OQW. The main result
which they obtain is the classification of the transience and recurrence of irreducible
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continuous time OQWs. As in the case with discrete time OQWs, due to presence
of the internal degree of freedom the continuous time OQWs exhibit non-classical
behaviour, and the classification of recurrence and transience properties obeys a
“trichotomy” rather than a classical dichotomy.

4 Open quantum Brownian motion

Bauer et al. considered a scaling limit of OQWs and obtained a new type of quantum
stochastic process called OQBM [53,54]. They started by considering an OQW on Z
and rewrote the iteration rule for a small change in time and space

ρ(t+ dt, x) = B(x+ dx)ρ(t, x)B†(x+ dx) + C(x− dx)ρ(t, x)C†(x− dx). (27)

They expanded the above expression in dt and dx and chose the scaling relation ε =
dt = dx2 as in the classical diffusion equation. This leads to the following differential
equation in partial derivatives:

∂

∂t
ρ(x, t) =

1

2

∂2

∂x2
ρ(x, t)−

(
N

∂

∂x
ρ(x, t) +

∂

∂x
ρ(x, t)N†

)
− i[H, ρ(x, t)] +Nρ(x, t)N† − 1

2

(
N†Nρ(x, t) + ρ(x, t)N†N

)
. (28)

In equation (28), the positive operator ρ(x, t) describes the state of the internal degree
of freedom of the OQBM walker at position x and time t. Naturally, operators ρ(x, t)
satisfy the following normalisation condition:

∫
dxTr[ρ(x, t)] = 1 which simply means

that with probability one the OQBM walker is somewhere on the line. The first term
of the OQBM master equation (28) is just a classical diffusion term, the last two
terms of equation (28): −i[H, ρ(x, t)] + Nρ(x, t)N† −

(
N†Nρ(x, t) + ρ(x, t)N†N

)
/2

describe the unitary and dissipative dynamics of the inner degree of freedom of the
walker, where H denotes the Hamiltonian and N denotes a quantum jump operator
acting on the internal degree of freedom of the walker. The term (N∂x + ∂xN

†) is
a “decision making” term which describes the influence of the internal state of the
walker on its position. The presence of this term makes the quantum Brownian motion
“open” and this term plays the role of a “quantum coin”, which steers the position
of the walker on the line. This term is also responsible for switching between the
ballistic and diffusive quantum trajectories observed in [53] as well as the absence of
the CLT for generic OQBMs.

Sinayskiy and Petruccione suggested a microscopic derivation of OQBM for a par-
ticular case [55]. They considered an OQBM walker with a two-dimensional internal
degree of freedom. Both, internal degree of freedom and the position of the walker
are coupled to a common decoherent bosonic bath. By utilising a weak system-bath
coupling assumption and application of the Born–Markov master equation (14), they
obtained the master equation for a OQBM [55]. Sinayskiy and Petruccione studied
the steady state properties of OQBM [56]. They calculated analytically mean and
variance of the position of the OQBM walker in a long time limit. The combination
of the microscopic derivation of the OQBM and the explicit expression for the steady
state mean and variance allowed for the relation of the mean and variance of the
OQBM walker to the thermodynamical and dynamical parameters of the system.
Moreover, they found that the steady state position of the walker can be controlled
by the strength of an external classical driving field [56].
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5 Conclusion

In this paper, we reviewed the concept of OQWs. We briefly presented the formal-
ism of the discrete time OQWs and demonstrated it on an example of OQWs on Z.
We introduced the quantum trajectory approach to OQWs and demonstrated the
connection of OQWs to CRWs and UQWs. Afterwards we reviewed the results of
the application of methods from the theory of classical Markov chains to the quan-
tum trajectories of OQWs, which include CLTs, ergodic properties, passage time,
exit time and site recurrence criteria. We reported on possible generalisations and
applications of OQWs. The outline of the microscopic derivation of discrete and con-
tinuous time OQWs was presented. We introduced and mentioned some recent results
for continuous time OQWs. The scaling limit of OQWs–OQBM was introduced and
discussed.

The study of OQWs is a recent research field and it is difficult to predict the
domains of application. However, it is clear that the theory of OQWs is finding
an application in the generalisations of the theory of classical and quantum Markov
chains and quantum probability. Formulation of the microscopic derivation for OQWs
allowed a possible application of OQWs to quantum state engineering, dissipative
quantum computation and transport in mesoscopic systems. There are a lot of open
questions in the field, such as the experimental observation of OQWs, experimental
implementation of quantum state engineering and dissipative quantum computing
with OQWs, application of the repeated interaction theory to the derivation of OQWs
and OQBM, what is a generic form of OQBM, what are the asymptotic properties
of OQBM and many others.
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