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Abstract. The governing theory of electric signal transfer through nerve
fibre, as established by Hodgkin and Huxley in the 1950s, uses for the
description of action potential a clever combination of various concepts
of electrochemistry and circuit theory; however, this theory neglects
some fundamental features of charge transport through any conduc-
tor, e.g., the existence of a temporary charged layer on its boundary
accompanied by an external electric field. The consequences of this
fact are, among others, the introduction of a non-adequate concept of
“conduction velocity” and the obscure idea of saltatory propagation
of action potential in myelinaed nerve fibres. Our approach, based on
standard transport theory and, particularly, on the submarine cable
model, describes the movement of the front of the action potential as
a diffusion process characterized by the diffusion constant DE . This
process is physically realized by the redistribution of ions in the ner-
vous fluid (axoplasm), which is controlled by another diffusion constant
DΩ � DE . Since the action bound with the movement of Na+ and K+

cations prevailing in the axoplasm is comparable with the Planck con-
stant ~ (i.e. DΩ → ~/2M , where M is ion mass), signal transfer is
actually a quantum process. This fact accounts for the astonishing uni-
versality of the transfer of action potential, which is proper to quite
different species of animals. As is further shown, the observed diver-
sity in the behaviour of nerve tissues is controlled by the scaling factor√

(DΩ/DE), where DΩ is of a quantum nature and DE of an essentially
geometric one.

1 Introduction

Modern theory of regenerative transmission of electric signals by nerve fibres is based
on ideas and models worked out in the early 1950s by Hodgkin and Huxley [1]
as well as on the somewhat younger core conductor (“cable”) theory of Rall [2].
Now the resulting compound doctrine is used almost exclusively for the modelling
and explanation of neuronal processes for both teaching and research purposes [3,4].
Remarkably, this rather complex and essentially deterministic theory is simultane-
ously a very singular one, differing significantly from the simple physical picture of
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the transfer of electric impulses through all other types of conductors. Since we are
convinced that there is no serious reason to treat the nervous fibre in a different
way than other conductors, we hereby attempt to describe the transfer of electric
impulse by nerve fibre alternatively, in terms of a standard physical model. For the
sake of simplicity and clarity, in this short paper we address only the transfer of signal
front in non-relativistic approximation, postponing for further study the discussion
of refractory and recovery phases of the signal, which are controlled by operation of
voltage-triggered ionic channels [5,6].

There are two physical effects of fundamental significance for the transfer of
electricity by conductors; however, they are not often appreciated in literature.

– The first one is the existence of net charges on the surface of current-carrying
conductors, the purpose of which is to create a viable path for charge carriers
and completely screen the interior of the conductor from external disturbing
fields.

– These surface charges simultaneously give rise to a response in the surround-
ing medium, namely, to the appearance of external electric fields and induced
electric currents. In this context, let us mention that this is just the reaction of
surrounding tissues which plays a decisive role in most in vivo experiments with
nerve excitation.1 We are convinced that the inclusion of these two important
physical phenomena into theoretical considerations may substantially improve
the description of the transmission of electric impulses by nerve fibres and can
provide better insight into many neurophysiological experiments.

The content of this paper can thus be summarized as follows: Starting with our
generalization of Ohm-Kirchhoff’s constitutive relation [7] reflecting the existence of
surface charges in the conduction process and exploiting a slightly modified theory of
submarine cable [8], we will establish an original alternative model for the theoretical
description of the transfer of an electric signal through the nerve fibre. Accordingly,
the signal transfer has a diffusive character controlled by a couple of largely different
diffusion constants, DE and DΩ. Based on these findings, we will proceed with the
validation of the quantum nature of the diffusion of biogenic cations Na+ and K+, the
principal agents controlling intracellular and extracellular electrochemical processes
in nervous tissue. Finally, we will discuss an important consequence of our model:
scaling relations that shed new light on the structural composition and functionality
of nerve fibres.

2 Preliminary considerations

Let us begin by recalling basic facts concerning nerve fibre anatomy [9,10] (see Fig. 1).
Nerve fibres are classified into two basic groups, namely, in myelinated (or medul-
lated) and unmyelinated nerve fibres, which anatomically differ only by the presence
or absence of the myelin covering A typical myelinated nerve fibre consists of an
insulating protein tube (axolemma) filled with a complex conductive electrolyte (axo-
plasm). A myelin sheath is wrapped around the tube and is interrupted by gaps called

1Particularly, the experimental observations of these induced currents in extracellular tissue vic-
inal to the myelinated nerve fibre led to the establishment of very influential saltatory conduction
theory (e.g. [4]). Accordingly, the conduction velocity of myelinated nerve is appreciably increased
because the signal is transferred by the currents flowing through the extracellular domain, which
“jump” from one Ranvier node to the next one. This idea originally due to I. Tasaki and T. Takeuchi
(1942) and later worked-out by many others, now serves as a standard in contemporary textbooks
on neurophysiology.
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Fig. 1. A schematic view of a myelinated axon, a structure typical for the peripheral nervous
system of warm-blooded animals. Myelin, a wax-like lipoprotein substance, originates and
is part of the membrane of so-called Schwann’s cells.

Ranvier nodes. The entire fibre is immersed in a highly conductive medium consisting
of tissue perfused by another electrolyte.

In order to understand the mechanism of the transfer of electric impulses by such
a structure, we have to take into account so-called phoronomic conditions from the
general theory of electricity. The prominent role among these constrains is played
by the equation of discontinuity. Accordingly, at every point at the boundary of a
leakage-less current-carrying conductor, with the exception of its terminals, there
must be

iν = 0, (1)

where iν is a normal component of current density at the surface of the conductor.
It can be further shown that condition (1) can be satisfied only if bounded electric
charges localized at the surface of the conductor do exist. This very fact, discovered at
the beginning of 19th century [11], may be elucidated as follows [12]. If two terminals
of a conductor are instantly brought into the contact with the source of electricity,
extra net charges of opposite sign appear there. The lines of force of the electric
field, which is due to these charges intersect, in general, the surface of the conductor.
This obviously prevents the charge carriers from one terminal to reach, along the
lines of force, another one and recombine there. Instead, at some point they hit the
surface of the conductor and give rise to a surface charge there. This surface charge,
however, represents an electric field perpendicular to the surface that deviates the
original lines of force into the bulk of the conductor. The process of accumulation
of surface charges continues until the inner normal component of the electric field is
cancelled and until the bundle of all the lines of force connecting terminals fills up
the interior of the conductor. Importantly, just the establishment of this structure,
sometimes called a sphondyloid (σϕoνδυλoς, Gk, “backbone”) is sine qua non for the
existence of electric flow from one terminal to another [13,14]. In other words, any
conductor is passable for electric current only if net charges and electric fields exist
on its surface [15], which are completely decoupling current lines inside the conductor
from the external space.

Another relevant question is: How fast do the conductors conduct electricity?
This question was the focus of intense interest as long ago as the early 18th century,
when the first attempts to determine the speed of electric fluid in a wire were made
(see Fig. 2). Nevertheless, it was only Lord Kelvin who, approximately one hundred
years later (1855), developed relevant measuring techniques and recognized that the
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Fig. 2. L.G. Le Monnier’s (1746) arrangement for measuring the speed of electric fluid in
conductors. A Leyden jar was discharged through the transmission line of actual length
of about 1.85 km. The transition time of the signal was then determined from the delay
between electric shocks perceived by both experimentalists [16].

progress of electric impulse through the conductor (submarine telegraph cable) is
controlled just by the stepwise build-up of surface charges, thus having a character of
diffusion [8]. In that case, however, the “conduction velocity” (or “apparent speed”)
of a signal front determined as a ratio of conductor length to the signal transit
time, being dependent on the length of the conductor, represents an entity that is
unphysical and totally misleading.

Amusingly, this quantity, the “conduction velocity”, is the central concept of mod-
ern neurophysiology [17,18], according to which different types of nerve fibres are
classified [19], and it is even used for diagnostic purposes [20]. Moreover, the observed
electric response of surrounding conductive tissue to the build-up of a charged layer
on the surface of a nerve fibre, inevitably accompanying the transit of electric impulse,
was misinterpreted as the essential component of the signal itself (saltatory conduc-
tion) [4], apparently without awareness of the actual role played by these surface
charges in any conduction process.

3 Generalization of Ohm-Kirchhoff’s law

For a realistic quantitative description of electric conduction of a nerve fibre and
especially for the construction of its consistent physical model, it is essential to discuss
first another important issue, namely, the generalized Ohm-Kirchhoff law.

The famous Ohm’s law, in fact a constitutive relation controlling linear electric
charge transport in many kinds of conductors, including nerve fibres, is probably the
most exploited physical relation that has ever been discovered [21]. In differential
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form, i.e. in terms of the local current density vector i (A/m2), it reads

i = −γ gradK, (2)

where γ (S/m) is conductivity and K is the electroscopic force (“Elektroskopische
Kraft” [22]). In Kirchhoff’s interpretation [23], which is accepted in most modern text-
books on electricity, K is identified with the scalar electrostatic potential ϕ(K ≡ ϕ).
By applying equation (2) to the steady state current flow, we can formulate the
universal law of conservation of electric charge (equation of continuity) as follows:

0 = div i = −γ div gradϕ. (3)

For constant conductivity γ, this equation is nothing but the Laplace equation [24] for
the distribution of potential ϕ in a domain containing zero net charge. Astonishingly
enough, according to Kirchhoff’s interpretation, a current carrying-conductor thus
transfers electric charge without net charge in its interior. This fact is compatible only
with the two-fluid model of electricity originally elaborated by Weber [25]. According
to this model, two streams of opposite charges move relatively in opposite directions
in such a way that every volume element within the conductor remains neutral.
Examples of such systems are ions in electrolytes, or electrons in lattices consisting
of metal cations.

However, as we have already seen above, net charges do exist in current-carrying
conductors because they are quite necessary for sphondyloid formation. These extra
net charges of density ρ (C/m3), dynamically supplied by the passing current, locally
modify the electric potential ϕ in such a way that condition (1) is satisfied. Formally,
this correction to the electroscopic force K, which is due to the temporal capture of
extra net charges in the conductor, can be written as

K = ϕ+
ρλ2

εε0
, (4)

where ε is relative permittivity of the conductor and where, for the sake of dimensional
homogeneity, a factor λ having dimension of length is added. As will be shown later,
this parameter has a physical meaning of the electrostatic screening length within
the conductor. By combining equations (2) and (4), we immediately obtain a formula
that we tentatively call generalized Ohm-Kirchhoff’s law [7], namely

i = −γ grad

(
ϕ+

ρλ2

εε0

)
. (5)

In order to make the physical meaning of the additive correction term in formula (5)
clearer, it can be (provided that the conductivity γ is constant and λ is only weakly
dependent on ρ) decomposed as follows

i = −γ gradϕ− γλ2

εε0
gradρ. (6)

The second term obviously has the form of Fick’s first law of diffusion [26] with the
diffusion constant given by

DΩ =
γλ2

εε0
. (7)
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Fig. 3. Schematic view of the submarine cable where d is the diameter of the conductive
core, a is the thickness of the insulation, and x the length of the cable segment.

We can thus interpret the second term in (5) as a diffusion term controlling the
redistribution of net charges throughout the conductor during transient periods.

4 Model of submarine cable

Let us now start the quantitative description of the transmission of electric signal
via nerve fibre by analysing anew the original model of submarine telegraph cable
[8]. It is a highly apposite model for this purpose because of many close similarities
between nerve fibre and submarine cable [2]. Indeed, in both cases we are dealing
with an insulating tube (axolemma is a perfect insulator because the conductivity γA
of a pure phospholipid bilayer membrane is as low as γA ≈ 10−13 S/m [6]) “stuffed”
with a conductor and surrounded by a continuous highly conductive medium (see
Fig. 3).

In the past, this suggestive analogy between submarine cable (“core conductor”)
and nerve fibre has led to many attempts to adapt this model for physiological
purposes and treat it mathematically. First, we should mention the imbroglio that
developed in the early 1900s between Hermann [27,28] and Hoorweg [29] concerning
their attempts to discriminate between the diffusive pseudowave-like and wave-like
transfer of electric signal through nerves. The core conductor model was very care-
fully revised again in the 1970s by Rall [2], and since that time his “cable theory” is
presented in textbooks side-by-side with the ideas of Hodgkin and Huxley providing
thus a somewhat hybridized picture [4,17]. Therefore, in order to avoid confusion,
in this paper we are staying in line rather with Kelvin’s original cable theory [8],
which is physically fairly simple and which, in contrast to Rall’s theory, enables one
to incorporate quite naturally the diffusion term from generalized Ohm-Kirchhoff’s
law (5).

Following Lord Kelvin, we then assume that current I is homogeneously dis-
tributed within the core of the cable, i.e. that I ≈ iA, where constant A = πd2/4 is
its cross section. In such case, we can rewrite Ohm-Kirchhoff’s law (2) in a simplified
form:

I = −γA∂K
∂x

. (8)
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Since the rate of build-up of the surface charge on segment dx of the cable is given by
an obvious relation −c(∂K/∂t)dx, where c is the capacity per unit length, we may
write the balance rate equation for supplied and captured charges in the form

− γA∂K
∂x

= −c∂K
∂t

dx. (9)

By then making a derivative of this relation with respect to variable x, we immediately
obtain

γA

c

∂2K

∂x2
=
∂K

∂t
, (10)

which is a parabolic equation of Fourier’s type [30] with constant factor γA/c = DE .
This factor, however, can easily be evaluated considering the well-known relationship
for the capacity per unit length of coaxial cable [24] (see Fig. 3), namely,

c =
2πεAε0

ln(1 + 2a/d)
, (11)

where εA is the relative permittivity of the insulating tube. The resulting formula
then reads:

DE =
γ

8εAε0
d2 ln

(
1 +

2a

d

)
. (12)

The formal physical meaning of parameter DE , which has a dimension of (m2/s), is
the diffusion constant2 controlling the transfer of the front of the electric impulse via
the cable.

The elementary solution of equation (10), which corresponds, for example, to the
instantaneous injection of electric charge Q ∝ K0 into one terminal of the cable, while
the second one is kept grounded, takes the form of the following source integral

K(x, t) =
K0

2
√
πDEt

exp

(
− x2

4DEt

)
. (13)

Since the times of Fourier [30], a property of this solution has been well known: The
time record of function K(x, t) taken in fixed point x has a local maximum which can
be interpreted as the passage of the signal front through this point. The mathematical
condition for this maximum obviously reads ∂K/∂t = 0, or ∂2K/∂x2 = 0 when taking
into account equation (10) and provided that DE 6= 0. These requirements lead to
the condition

K0

4
√
π(DEt)3

exp

(
− x2

4DEt

) (
x2

2DEt
− 1

)
= 0, (14)

2The term “diffusion” is traditionally connected with a spontaneous transfer of specific particles
through a medium. This concept, however, may also be generalized to other entities such as heat,
polarisation state, information, etc. In this paper, we are using the term “diffusion” in both its
original and its generalized meaning. Obviously, in all these cases the diffusion constant has the
same dimension (m2/s).
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from which an important relation of Einstein-von Smoluchowski’s type immediately
follows, namely

x2 = 2DEt. (15)

By then making the time derivative of this formula and defining instant speed of
signal front as u = ∂x/∂t, we obtain the remarkable relationship (cf. [31])

xu = DE . (16)

It should be stressed here that the instant speed of signal front u and similarly
the apparent speed v (m/s), i.e. “conduction velocity”

v =
x

t
=

2DE

x
(17)

of the signal, are, according to equations (16) and (17), dependent on x and as such
are not good characteristics of specific properties of the cable or nerve fibre. It is
thus quite appropriate to mention Lord Kelvin’s warning to scholars studying the
propagation of electric signals through various conductors [8], namely,

“. . . the retardations of signals are proportional to the squares of the dis-
tances, and not to the distances simply; and hence different observers,
believing they have found a ‘velocity of electric propagation,’ may well
have obtained widely discrepant results.”

5 Experimental evidence for diffusive character of signal transfer

The straightforward comparison of the formulae given above with actual propagation
of electric signal through the nerve fibre is a rather difficult task. This is especially
because of the fact that most of the published results are presented just in terms
of conduction velocity, while generally there is a lack of rough data and the details
of experiments. There are multiple arrangements ranging from rather näıve to very
sophisticated; however, the typical one, the in vitro method for measurement of signal
transfer, is based on a slightly modified two-point time of flight technique [17,32,33]
using miniaturized intracellular electrodes. The sensing electrodes are usually made
of very fine glass capillaries filled with a conducting aqueous solution of KCl (salt
bridge) and are inserted into a nerve fibre in such a way that the axolemma seals itself
around the electrode. The reference electrodes used for nerve excitation or biasing
are then placed in a surrounding perfused medium. Such an arrangement enables one
to determine with high reliability the transit time of the signal and record its shape.
Nevertheless, the distance between the sensing electrodes is not chosen intently but
purely on practical grounds. Thus, it either depends on the dimensions of the nerve
preparation at hand, or on the dimensions of the sample-holder used. For this reason,
the data obtained in different laboratories are only hardly comparable, and the results
published in compilations concerning various species and nerve types are scattered,
revealing no clear systematics [9].

Recently, an alternative and credible technique has appeared that enables one to
continuously follow the propagation of the action potential along nerve fibres. This
method, known as action potential microscopy, makes use of the fluorescence of special
molecular protein probes that can be initiated by enhancement of local electric field.
The solution of the molecular probe is added to the axoplasm, and the nerve fibre is
electrically excited in the usual manner. Then, at the point where the action potential
peak is localised, a bright fluorescence spot appears. The propagation of this bright
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Fig. 4. An example of optical measurement of the propagation of the action potential along
the unmyelinated nerve fibre [34]. Comparison of fitting using “conduction velocity law”
(blue straight dashed line) and “diffusion square-root law” (red parabola). Latency time
≈0.67 ms corresponds to the delay dictated by Maxwell’s relaxation time of the synapsis
membrane [5].

spot can be recorded in real time using a convenient optics and digital camera. An
example of a result of such an in vitro measurement performed on an unmyelinated
axon is depicted in Figure 4 [34]. From this diagram, it can be concluded that the
fitting based on the diffusion square-root law, which is equivalent to formula (15), is
evidently more successful than that based on the widely used concept of conduction
velocity v. This may be also supported by a quantitative argument. Omitting the first
point corresponding to the latency phase, during which the bright spot, before starting
to move, stays calmly close to the synapsis (nerve terminal, x ≈ 0µm), the sums of
squared deviations between actual positions of remaining 5 experimental points and
curves are 2.9 × 10−2 (ms)2 for straight line and 2.8 × 10−3 (ms)2 for parabola,
respectively. These facts, directly confirming the diffusive character of the transfer of
electrical impulses through nerve fibres, thus simultaneously justifies the applicability
of the general theory of electric conduction and, particularly, the applicability of the
model of submarine cable to these bio-systems as well.

6 Influence of leakage

There are some as yet neglected differences between the model of an idealized subma-
rine cable and a real nerve fibre. The item worth discussion is the influence of leakage
currents, traditionally a significant ingredient of the standard textbook model. Our
consideration differs, however, from the standard one and is closer to that of Lord
Kelvin [8]. Since the leakage current across the insulation should be directly pro-
portional to the potential difference between its outer and inner surface, we have to
add to the right side of equation (10), which expresses the charging-discharging rate
balance, an extra correction term, αK, i.e.

DE
∂2K

∂x2
=
∂K

∂t
+ αK. (18)
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In order to clarify the properties of this corrected equation and of the physical mean-
ing of parameter α, instead of K we can introduce a modified potential function κ
using a substitution

K = exp(−αt)κ. (19)

Applying it to equation (18), we immediately obtain for potential κ formally the
same equation as (10), namely

DE
∂2κ

∂x2
=
∂κ

∂t
. (20)

The particular solutions of equation (20) are thus of the same form as those of (10)
with the proviso that potential K, in comparison with leakage-less solutions, will
exponentially decay with Maxwell’s relaxation time

α−1 =
εAε0
γA

, (21)

the value of which is proper to the material of the insulating tube. Since the relative
permittivity and the conductivity of the axolemma are εA ≈ 7, γA ≈ 10−13 S/m [6],
the decay time, being of the order of hundreds of seconds (α−1 ≈ 600 s), is thus much
larger than the signal transit times through the typical unmyelinated and myelinated
nerve fibres, which are of the order of milliseconds. Thus, in full agreement with
experimental evidence [35,36], the expected signal reduction is quite negligible.

7 Electrostatic screening in electrolytes

As we have already seen above, in Kirchhoff’s approach, the presence of domains
filled with net charges in a conductor is completely ignored. On the other hand, it
was the behaviour of the net charges that proved to be the intrinsic and essential
component of charge transport in the conductors. To achieve correct understanding
of the effects induced by net charges, we have to answer a crucial question: How and
over what distances are electric fields, penetrating into the interior of a conductor,
screened? Electrostatic screening requires the presence of a reservoir of movable excess
charge carriers, which are apt to compensate external fields by creating a proper new
distribution. This extra charge is represented in equation (4) by the diffusion term
containing the charge density ρ. In the case of electrolytes (i.e. also in the cases
of axoplasm and other body tissues), it was shown by Debye and Hückel [37] that
the dynamical equilibrium between thermally agitated diffusion of charged particles
at temperature T and the opposing external electric field give rise to a charged
“atmosphere”, where the external field is screened over the distance of length ∼λ,
which is given by

λ =

√
εε0kT

eρ0
. (22)

In this formula, εε0 means permittivity of the conductor, k is the Boltzmann con-
stant, ρ0 is the background charge density, and e the elementary electric charge
(e ≈ 1.6× 10−19 C). In terms of ionic molar concentration, [XZ ] (mole/m3) can be
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the background charge density evaluated as

ρ0 = ze[XZ ]NA, (23)

where z is the ion valency andNA is the Avogadro constant,NA ≈ 6.02×1023 mole−1.
In the derivation of formula (22), it is assumed that the electrolyte is electrically
neutral, i.e. that it contains anions and cations of various valency in amounts rep-
resented by absolutely the same background charge density |ρ0| and that the local
excess charge is due to local depletion of ions of one polarity. Under these conditions,
it can be shown that the parameter λ controls the net charge density ρ(ν) within the
charged atmosphere in the vicinity of the surface of the electrolyte according to the
exponential law

ρ(ν) = ρ(0) exp
(
−ν
λ

)
, (24)

where ν is the length of the vector normal to the surface element of the electrolyte and
|ρ(0)| ≤ |ρ0|. Thus, in the immediate vicinity of the inner surface of the conductor
there is a thin “skin” made of distributed net charge with a thickness of a few screening
lengths λ that screens external electric fields and is also apt to form the current-
carrying sphondyloid.3

8 Quantitative estimates, consistency with experimental data

In order to verify our model and the consistency of the formulae given above, it
is necessary to compare the computed quantities with experimental data obtained
from a typical real case. For such purposes, we have chosen a cat’s peripheral myeli-
nated nerve fibre with inner diameter d = 1.4× 10−5 m and myelin sheath thickness
a = 2× 10−6 m [39,40]. The mean value of the relative permittivity of the axolemma
and myelin together is assumed to be εA ≈ 2 (the relative permittivity of the
axolemma alone is ≈7 and its thickness ≈6 × 10−9 m) [6]. Taking into account the
fact that the room temperature electrical conductivity of axoplasm is practically
the same as that of isotonic saline solution, γ = 1.44 Sm−1 [41,42], we obtain from
equation (12) for diffusion constant DE , controlling electrical signal transfer, value
DE = 0.50 m2/s. Since the experimental results concerning the transfer of electrical
impulse by nervous fibre are given mostly in terms of “conduction velocity” (i.e. of
apparent speed v), the plausibility of our figure above can be compared only with
these rare works involving additional information about the experimental arrange-
ment, particularly the actual length of the studied fibre.4 For example, for a cat’s
myelinated peripheral nerve with diameter d = 1.4× 10−5 m measured over distance
x = 2 cm, the published result reads v ≈ 60 m/s [43] (cf. [44] for rabbits); however,
using our value of DE and relationship (17) for apparent speed, we obtain an esti-
mate of v ≈ 50 m/s, which is fairly near to the value given above. These reconstructed
results strongly support our belief that formula (12) for DE also correctly reflects the
quantitative aspects of electric signal transfer through the nerve fibre.

3Qualitatively the same behaviour takes place in other types of conductors, such as metals,
with the proviso that the analytical expression for λ has a different form. For metals, the so-called
Thomas-Fermi formula [38] should be used instead of (22), giving for ordinary metal screening length
in the sub-Angstrom range.

4In this connection we would like to stress the fact that just the introduction of “conduction
velocity” led in the past to many confusions and insurmountable difficulties, when experimental
data obtained in different laboratories were compared.
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Fig. 5. Standardized shape of electrical impulse spreading through the peripheral nerve fibre
of a warm-blooded animal. Gate threshold laying ≈kT/2e (=13.4 mV) above the resting
potential prevents the transfer of spurious signals generated by thermal noise. (Adapted
according to [45].)

Table 1. Ion composition of axoplasm and extracellular fluid.

Ion Molar concentrations of ions (mole/m3)

In axoplasm In extracellular fluid

Na+ 15 150
K+ 150 5.5
Miscellaneous+ ∼0 4.5
Cl− 9 125
Miscellaneous− 156 30

Our model must also be compatible with the electric parameters proper to the
action potential impulse (see Fig. 5, [45]), which are determined by the molar con-
centrations and other electrochemical properties of ions consisting axoplasm and
extracellular fluid. Molar concentrations of ions in these fluids, which are known
to be almost the same for various warm-blooded species, are summarized in Table 1
[45].

It is immediately apparent that both these aqueous solutions are electrically neu-
tral, having the same total amount of anions and cations, Nevertheless, due to their
different chemical compositions, in equilibrium there is between these fluids a con-
tact potential difference called the resting potential, ϕR, which in the typical mammal
(cat’s) nerve attains the value ≈−70 mV (cf. Fig. 5). In direct consequence of this fact,
the potential difference ϕR (in cases where the nerve is inactive) induces permanent
equilibrium polarisation of the axolemma or myelin sheath.

Let us now evaluate some of the parameters related to the electric impulse trans-
fer in the cat’s nerve. According to equation (23), monovalent ions (z = +1) of
sodium (Na+) and potassium (K+) with an overall molar concentration in axoplasm
of 165 mole/m3 generate a background charge density of ρ0 = 1.59× 107 C/m3. This
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parameter can be further used to evaluate the screening length λ. For a normal tem-
perature of ∼37 ◦C, i.e. for T ≈ 310 K and aqueous solutions where ε ≈ 81, we obtain
from equation (22) that λ = 1.1× 10−9 m.

Of interest is also the amount of net charge redistributed during transit of the
signal through the nerve fibre. Since the amplitude of the front of the signal is
∆ϕ ≈ 85 mV (see Fig. 5), the charge q deposited on the unit length of the fibre
can be evaluated by means of relation for specific capacitance (11) i.e. q = c∆ϕ. Cor-
responding estimates are: c = 1.56×10−9 F/m and q = 1.32×10−10 C/m . Assuming,
moreover, that this net charge is contained within a thin layer (“skin”) of thickness
≈ λ adjacent to the inner surface of the axolemma, we can use for excess net charge
density ρ the obvious relation ρ ≈ q/πλd. It then follows that ρ = 2.73× 104 C/m3,
which is approximately a thousand times smaller than the background concentration
of free charge carriers inside the nerve (ρ0 = 1.59 × 107 C/m3). From this point of
view, the spreading of the electrical impulse through the nerve fibre, represented by
the temporary redistribution of space charge in close proximity to the axolemma, is
an effect characterized as a “small disturbance”. Moreover, since the amplitude of the
signal is comparable with the absolute value of the resting potential (∆ϕ ≈ |ϕR|),
the amount of redistributed charge taking part in the formation of the signal (“depo-
larisation wave”) and that which is responsible for equilibrium polarisation of the
axolemma and myelin sheath must be of the same order of magnitude.

9 Quantum control of nervous signal

As we have already mentioned above, the transfer of information by means of
electrical signal is physically realized by redistribution of free charges both inside
and outside the nerve fibre. This rather complex process is, according to general-
ized Ohm-Kirchhoff’s law (6), controlled by another diffusion constant, namely DΩ.
Considering the above computed value λ = 1.1 × 10−9 m and again using for con-
ductivity value γ = 1.44 S/m, from equation (7) we then arrive at a final estimate of
DΩ = 2.43 × 10−9 m2/s. It is a remarkable fact that the diffusion constant control-
ling information transfer via nerve fibre, DE , is about 8 orders of magnitude larger
than the diffusion constant DΩ related to the process providing its physical basis. In
order to assess the significance of this very fact, let us evaluate the mechanical action
[46] associated with diffusion of one sodium cation of mass M(Na+) in axoplasm.
Astonishingly, we obtain the rather low value

DΩ ×M(Na+) = 9.33× 10−35Js, (25)

which differs from the tiniest quantum of action, Planck’s quantum ~ = 1.05 ×
10−34 Js, by only ∼12%.

These purely quantitative facts are, however, of far reaching consequence. Accord-
ing to Sommerfeld’s criterion on mechanical action [46,47], the diffusion of Na+

cations and, as can easily be proved, also of K+ cations, namely, falls unambiguously
into the domain of quantum effects.

Simultaneously, the diffusion constant DΩ is very near to the quantum diffusion
constant DQ of a particle having mass M , which is defined as [47,48]

DQ =
~

2M
. (26)

For the sodium ion, DQ attains a value of ∼1.37× 10−9 m2/s, which is comparable
with the corresponding DΩ.
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It is convenient to interpret the above facts in the frame of stochastic electrodynam-
ics (SED) [49], a conceptual alternative to quantum mechanics. When the diffusion
constant of a particle approaches its theoretically lowest possible value, the so-called
Fürth’s limit (DΩ ≈ DQ, [47]), it is assumed that diffusion is not due to collisions
with surrounding molecules, which are not very frequent, but rather to interactions
with omnipresent zero-point electromagnetic fluctuations of vacuum (ZPF) [50]. The
characteristic feature of this entity is its ultimately low action ≈~/2 per mode, corre-
sponding to the temperature-independent part of black-body radiation. The drop of
action of a particle to this extremely low level and the sharing of its action with ZPF
give rise to observable effects, which are generally known as quantum behaviour [49].
Based on these robust quantitative arguments, we can thus claim that the redistribu-
tion of Na+ and K+ ions in nerves and extracellular fluid are controlled by quantum
effects, i.e. by collisions with the universal zero-point electromagnetic fluctuations of
vacuum.

Interestingly enough, the universality of this quantum constrain puts serious lim-
itations on the biophysical properties of axoplasm and extracellular liquid as well.
Indeed, their possible variability is controlled generally by two factors, namely, by
the chemical composition and by the chemical kinetics. Taking now into account the
fact that the chemical composition of the Global Ocean, which is the cradle of all
living creatures, determined their common material basis, the further degrees of free-
dom for their development must depend on the choice of chemical kinetics. However,
as was already shown in [47], for the cations Na+ and K+ in aqueous solution it is per-
missible only diffusion-controlled kinetics of Nernst-Brunner type, which is due just
to the presence of universal zero point electromagnetic fluctuations. The following
conjecture may be thus formulated:

The chemical composition of the liquids consisting nervous tissue of all
living creatures is derived from the global seawater while the ionic kinetic
processes there are controlled by universal zero-point electromagnetic
fluctuations of vacuum.

One of the direct consequences of this conjecture may be the observed universality
[51] of the response of nervous tissue of all terrestrial animals to external stimuli. This
is, as we believe, an idea with significant epistemological impact.

10 Scaling relations

Finally, we would like to add some considerations concerning so-called scaling rela-
tions [52]. The significance of these relations lies not in the exact description of signal
transmission via nerve fibre but rather in the visualization of the general properties
of electrically excitable tissue, which may be of interest in medicine or evolutionary
biology, for instance.

As we have seen above, the process of signal transfer is described by two quantities,
DE and DΩ, explicitly involving universal constants, macroscopic material constants,
and geometrical parameters. Of course, by evaluating these two quantities we can
account for observed behaviour in any particular case. Nevertheless, being aware
of the large structural variability of nervous tissue of different species and, at the
same time, of the conspicuous contrast with its almost universal functionality, such
a result is not very ambitious. In order to obtain greater insight into these problems,
it is helpful to study the influence of various quantities of different nature and origin
separately. Inspecting, for example, formula (12) for the diffusion constant DE , two
parts are immediately distinguishable: the purely geometrical part d2 ln(1+2a/d) and
the part depending on the material constants of axoplasm and the nervous body. The
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Fig. 6. Correlation between diameters of cat (circles) and kitten (triangles) myelinated
nerve fibres and distances between Ranvier nodes. The curves correspond to the scaling
relation (27) with a = 2 × 10−6 m (full line) and a = 1 × 10−6 m (dashed line). Data are
taken from [43].

geometrical part representing the local properties of building blocks or segments of
some larger integral system should scale with certain structural length characteristics
Λ belonging to the system as a whole [52]. Since such a relationship must satisfy the
general requirements of dimensional homogeneity [53], its simplest expected form is
the following one:

Λ2 ∝ d2 ln

(
1 +

2a

d

)
. (27)

Experimentally, this scaling relation for quantity Λ can be applied to the branching of
nervous fibres or to the modular structure of Ranvier nodes (cf. also [54]). The latter
case can be illustrated by the dependence of distance between Ranvier nodes on fibre
diameter in Figure 6 [43]. Both curves in this figure are traced in accordance with
scaling relation (27) in such a way that they have the same pre-factor and differ only
by parameter a, corresponding to the thickness of the myelin layer. The result is very
instructive. While the curve corresponding to parameter a = 2 × 10−6 m (full line)
satisfactorily approximates the behaviour of thicker nerves of adult cats, the one with
parameter a = 1× 10−6 m (dashed line) better fits the thinner nerves of either cats or
kittens. The significance of these facts is obvious: the evolutionary younger thinner
nerve fibres also likely have thinner myelin layers and smaller distances between
Ranvier nodes. During growth, these parameters then change proportionally.

The physical meaning of the material-related monomial (γ/8εAε0) in equation (12)
is evidently an inverse of Maxwell’s relaxation time of the system consisting of axo-
plasm and the surrounding tube. Since the possible range of quantity γ is strongly
limited by the condition for osmotic equilibrium between axoplasm and extracellular
fluid, and εA ranges from 2 to 8, the possible changes in material properties alone
provide only a small amount of room for variability of the nerve tissue.

Valuable scaling relations can also be obtained by direct comparison of the dif-
fusion constants DE and DΩ. In close analogy with the construction of the so-called
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Péclet’s number known from thermal kinetics [55], we can introduce a dimensionless

monomial
√
DE/DΩ as a new variable. Then, using equations (7) and (12), we can

write

d

λ
=

√
8εA

ε ln(1 + 2a/d)

√
DE

DΩ
. (28)

Considering that a = 2 × 10−6 m, εA = 2 is typical for myelinated nerve and
a = 6× 10−9 m, εA = 7 is typical for unmyelinated nerve [56], it is possible to esti-
mate the range of the pre-factor in equation (28). It varies, from the tiniest fibres to
giant ones, i.e. for diameters d ∈ (5× 10−7, 5× 10−4) m, from ∼0.3 to ∼5 for myeli-
nated and from ∼5 to ∼170 for unmyelinated fibres. Thus, again, we can clearly see
that in addition to nerve diameter, nerve myelination is the most effective vehicle for
changing the transport properties of a nerve fibre. For any particular class of nerve
fibre, however, we obtain from equation (28) the following scaling relation

d

λ
∝
√
DE

DΩ
. (29)

Since the diffusion of electrical signal or spreading of the surface polarisation/depolar-
isation wave and the diffusion of ions are inevitably synchronous processes, the right
side of equation (29) thus represents the ratio of paths diffused during the same
time by the signal and ions, respectively (cf. Eq. (15)). As such, scaling relation (29)
can be applied to any electrically excitable tissue, particularly, for instance, to the
extracellular domain, with the proviso that quantity d is interpreted as its external
Hausdorf’s measure. Direct application of relation (7) then leads to the essentially
macroscopic and quite general scaling relation

DE ∝
γ

εε0
d2, (30)

according to which signal transmission is controlled by inverted Maxwell’s relaxation
time of the axoplasm and nerve cross-section. Despite this, relationship (29) also
allows for a microphysical approach. Indeed, since the diffusion constant DΩ, due
to its quantum nature, may be substituted with high precision by DQ, a universal
“quantum” scaling relation for DE is obtained, namely

DE ∝
~

Mλ2
d2. (31)

The plausibility of both relations (30) and (31) can be tested immediately.
Firstly, the pre-factors should be approximately the same, and secondly, both for-
mulae should yield the correct order of magnitude estimates for DE [53]. Indeed,
by evaluating the corresponding pre-factors, we obtain γ/εε0 ≈ 2.01 × 109 s−1 and
~/Mλ2 ≈ 2.26 × 109 s−1, i.e. values which are very close to each other. Moreover,
the direct application of formulae (30) and (31) to the “mean” mammal nerve (e.g.
that of a cat) of diameter d = 1.4 × 10−5 m provides estimates DE ≈ 0.39 m2/s
and DE ≈ 0.44 m2/s, respectively, which are not too far from those obtained from
analytic formula (12). (Let us recall, in this case DE ≈ 0.50 m2/s).

It is also worth mentioning another fact that may be of far-reaching practical
significance. It is apparent that the pre-factors in (30) and (31), having a dimension
of s−1, can be interpreted as a collision frequency between ions and electromagnetic
ZPF background radiation. The frequency band responsible for such an interaction,



Non-Equilibrium Dynamics 2345

which according to our estimates above is centred at ∼2 GHz, inevitably overlaps with
many mobile network communication channels.5 Of course, the possible consequences
of such a remarkable coincidence is very difficult to analyse; nonetheless, their very
existence should be taken seriously.

11 Conclusions

We have developed an approach to the transfer of electrical signals via nerve fibres
that is alternative to the purely descriptive standard theories of Hodgkin and Huxley
[57] and Rall [2]. Our theory, which is based on generalized Ohm-Kirchhoff’s law
and a modified model of submarine cable, enables one to extend, quite naturally, the
description into the microphysical domain. It has been proven that, in contrast to
the standard theory, but in agreement with the experimental evidence, the transfer
of the signal front has a character of diffusion with diffusion constant DE .

It has been further shown that this process, actually the forming of a current-
carrying sphondyloid, is physically realized by diffusion of Na+ and K+ cations in
axoplasm with diffusion constant DΩ � DE . According to our numerical estimates
DΩ → ~/2M , where M is ion mass and ~ Planck’s constant, we can thus conclude
that a signal transfer through nerves is essentially a quantum process. In addition
to this, our model also provides useful scaling relations that give deeper insight into
general problems concerning electrically excitable tissues.

As for our future plans, we are going to extend our physical model to describe
the refractory and recovery phases of nerve excitation and also to improve the
understanding of the electrical response of extracellular tissue to nerve signals.
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46. J.-M. Lévy-Leblond, F. Balibar, Quantics: Rudiments of Quantum Physics (North-

Holland, Amsterdam, 1990)
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