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Abstract. The stochastic Liouville–von Neumann equation provides
an exact numerical simulation strategy for quantum systems inter-
acting with Gaussian reservoirs [J.T. Stockburger, H. Grabert, PRL
88, 170407 (2002)]. Its scaling with the extension of the time interval
covered has recently improved dramatically through time-domain pro-
jection techniques [J.T. Stockburger, EPL 115, 40010 (2016)]. Here, we
present a sampling strategy which results in a significantly improved
scaling with the strength of the dissipative interaction, based on reduc-
ing the non-unitary terms in sample propagation through convex
optimization techniques.

1 Introduction

The notion of an open quantum system originates from the embedding of a system of
interest into a larger environment, where system and environment together are gov-
erned by ordinary unitary quantum evolution. Different abstractions and techniques,
both formal and computational have been put forward to formulate a reduced dynam-
ics of the system of interest without explicit reference to the environment beyond its
initial preparation.

Completely positive trace-preserving channels provide a very broadly applicable
formal description of the time evolution of open quantum systems [1]. The proof of
their existence is constructive; it does not, however, in itself provide a dynamical law
governing the reduced description. For a quantum system with discrete energy spec-
trum, the respective quantum master equation can be derived within the constraints
of a combined Born–Markov–secular approximation [2,3].

The dissipator resulting from this depends not only on reservoir and coupling
properties, but also on the energy spectrum and the eigenstates of the system. For
complicated spectra, its determination can be cumbersome. The simpler alternative
of adapting separate dissipators to individual parts of a system (“local” Lindblad
operators) may result in dynamics which contradicts elementary properties of thermal
environments [4,5], e.g., unphysical heat flow against a thermal gradient. Similar
problems arise in the context of driven quantum systems [6,7].
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The formal description of environmental effect through influence functionals [8,9]
has the attractive feature of describing a dissipation mechanism without direct refer-
ence to any system properties beyond specifying the coupling Hamiltonian. It is fully
applicable in the context of any driving. In fact, it is completely “agnostic” to the
nature of the free system dynamics, since it keeps the given separable structure of
the interaction Lagrangian. Direct Monte Carlo evaluation of real-time path integrals
is feasible [10,11] but numerically expensive in regimes without rapid dephasing by
the environment (dynamical sign problem). Equations of motion equivalent to the
influence functional approach can be found only at the price of introducing a large
hierarchy of auxiliary states [12,13], since the weights assigned to paths by influence
functionals are non-local in time.

On the other hand, the stochastic unraveling of the influence functional can restore
this locality, at least on the level of individual realizations of auxiliary trajectories
(which can be interpreted as Gaussian colored noise): the Feynman–Vernon influence
functional [8] has essentially the same formal structure as the generating functional
of Gaussian noise, hence it can be viewed as the noise average over exponentials of a
time-local action functional [14]. This idea has led to a variety of stochastic propaga-
tion schemes [14–18]. The corresponding numerical methods use independently drawn
samples of the auxiliary Gaussian noise trajectories. For each noise sample, the time
evolution of the reduced density matrix is obtained by integration of a Liouville equa-
tion with random terms, in a similar manner as a direct simulation of a generalized
Langevin equation. The physical density matrix of the system is recovered by taking
the average of these sample density matrices in the limit of a large number of samples.
It is to be noted that the sample density matrices are not physical quantum states;
only their expectation value with respect to the probability measure of the Gaussian
noise is to be identified with the reduced density matrix of the system.

The complete unraveling of Gaussian influence functionals introduced by
Stockburger and Grabert [14] is valid for arbitrary spectral properties and temper-
atures of the reservoir. Its direct practical application is sometimes hampered by
rapid growth of the sample variance when long propagation intervals are covered.
This problem has recently been solved for the near-universal case of a finite (not
necessarily small) correlation time of the free reservoir fluctuations [19]. The required
number of samples has thus been reduced – by orders of magnitude in some parameter
regimes. For combinations of moderate to strong coupling and long reservoir memory
times, the number of samples may be sufficiently high to require the use of parallel
computational resources.

The present paper addresses this remaining problem by optimization of the noise
correlation functions, which are not entirely determined by the unraveling proce-
dure. Section 2 gives a brief overview of the unraveling of propagating functions
based on influence functionals and their transformation into a stochastic Liouville–von
Neumann (SLN) equation, including a discussion of issues related to sampling statis-
tics. In Section 3 a strategy is developed which improves sampling statistics through
minimizing the power of problematic noise components, and numerical examples are
provided. Section 4 comprises conclusions and an outlook.

2 Stochastic unraveling and SLN equation

The interacting dynamics of a system S coupled to an environment (reservoir) R is
governed by a Hamiltonian which can be partitioned as H = HS +HR +HI , where
the indices S and R stand for terms which act exclusively on system and reservoir
degrees of freedom. For the interaction we assume separability, HI = −A⊗B, where
A and B act on system and reservoir.
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We choose an initially thermal state of the environment (uncorrelated with the sys-
tem) with the intent of tracing out the reservoir degrees of freedom from the correlated
state arising from the dynamics. The unitary propagation of the global system-plus-
reservoir density matrix is the appropriate conceptual starting point for this approach.
Instead of using path integrals for this purpose [14], equivalent time-ordered expo-
nentials will be considered here. These can be considered generating functionals
of non-commuting random variables, and they simplify to Gaussian expressions in
exactly the same cases for which one obtains Gaussian influence functionals [20].

A most compact form of the dynamics1 is obtained in the interaction representa-
tion of the Liouville dynamics,

ρ̇(t) = iA+(t)B−(t)ρ(t) + iA−(t)B+(t)ρ(t). (1)

For reasons which will become clear later, a choice was made to decompose the
interaction Liouvillian into superoperators for reservoir B±, and system A± defined
through (anti-)commutators, B− = [B, ·] and B+ = 1

2{B, ·}, etc.
The formal solution of this dynamics is the time-ordered exponential

ρ(t) = exp>

(
i

∫ t

0

ds(A+(s)⊗B−(s) +A−(s)⊗B+(s))

)
ρ(0). (2)

We now consider the case of Gaussian statistics of B and an initially factoriz-
ing state, ρS(0) ⊗ ρR(0). Using the notation 〈·〉 = trR {·ρR(0)} for the partial-trace
averaging procedure, the reduced density matrix is now formally given by

ρS(t) =

〈
exp>

(
i

∫ t

0

ds(A+(s)B−(s)ρ(s) +A−(s)B+(s))

)〉
ρS(0)

= exp>

(
i

∫ t

0

ds

∫ s

0

ds′(A−(s)A−(s′)
〈
B+(s)B+(s′)

〉
+A−(s)A+(s′)

〈
B+(s)B−(s′)

〉
)

)
ρS(0). (3)

Of the four terms formally arising in a bivariate Gaussian characteristic function, two
are identically zero here because they are traces over a commutator. A key observation
at this point is the following: Had we started with a different averaging procedure –
replacing B+ and B− by c-number Gaussian noise – we would have arrived at a
similar expression.

The conditions

〈ξ(t)ξ(t′)〉 = 〈B+(t)B+(t′)〉 = <〈B(t)B(t′)〉 (4)

〈ξ(t)ν(t′)〉 = 〈B+(t)B−(t′)〉 = 2iΘ(t− t′)=〈B(t)B(t′)〉 (5)

〈ν(t)ν(t′)〉 = 0, (6)

are necessary and sufficient for the exact identification of the open-system dynamics
(3) and stochastic propagation with the substitutions B+ → ξ and B− → ν. On the
left hand side, the angle brackets stand for expectation values with respect to the
noise statistics. In practice, the stochastic equivalent of equation (3) is evaluated by
returning to the Schrödinger picture and averaging solutions of the SLN equation

˙̃ρ = LS ρ̃+ iξ(t)A−ρ̃+ iν(t)A+ρ̃, (7)

1For brevity, we use the convention ~ = 1 throughout the paper.
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Table 1. Overview of the correspondence between Gaussian quantum fluctuations of an
environment and stochastic processes with matched statistics.

Trace reduction Stochastic reduction

State before reduction: ρ in global Liouville space Random ρ in system space
Reservoir “forces”: B+, B− superoperators ξ(t), ν(t) random ∈ C
Reduction operation: Partial trace trR Expectation value

with weight ρR w.r.t. noise probability density
〈B+(t)B+(t′)〉 〈ξ(t)ξ(t′)〉
〈B+(t)B−(t′)〉 〈ξ(t)ν(t′)〉
〈B−(t)B+(t′)〉 = 0 〈ν(t)ξ(t′)〉 = 0
〈B−(t)B−(t′)〉 = 0 〈ν(t)ν(t′)〉 = 0
Time ordering t > t′ Time ordering “by hand”

where ρ̃ is the sample density matrix associated with any particular realization of
ξ(t) and ν(t).

Averaging ρ̃ over samples provides an estimate of the physical density matrix
ρS . Since noise samples are generated independently, an accurate estimate of the
statistical error of this approach can be determined. In this context, we also note
that parallelization of the simulation method is trivial. An overview of the quantum-
stochastic correspondence is given in Table 1.

It is now crucial to observe that equations (4–6) cannot be obeyed by real-valued
noise. Only when extending at least ν to values in the complex plane can these
equations hold: ξ and ν are random variables in the sense of ordinary Kolmogorov
probability. When extending both ξ = ξ′ + iξ′′ and ν = ν′ + iν′′ to complex val-
ues, the correlations of their four real components are not completely determined by
equations (4–6). Additional non-physical correlation functions, in complex notation,
〈ξ∗(t)ξ(t′)〉, 〈ξ∗(t)ν(t′)〉, and 〈ν∗(t)ν(t′)〉 may be modified without altering the expec-
tation value of samples propagated by equation (7). However, the generic constraint
of non-negative probability does apply and sets limits to the range of choices. Conse-

quently, the solutions of equation (7) are of the form ρ̃(t) = RL(t)ρS(0)R†R(t), where
RL/R(t) is almost surely non-unitary.

As a consequence of non-unitarity, the variance of samples, expressed by observ-
ables (or a suitable metric applied to ρ̃), tends to increase with the length of the
propagation time interval. The typical asymptotic behavior, shared with many pro-
cesses involving multiplicative noise [21], is exponential growth as a function of the
interval length. Key quantities in this context are the noise spectra of ν′′ and ξ′′,
which drive both the sample trace and the Frobenius norm of ρ̃ towards a log-normal
distribution. In some parameter regimes, this is harmless, in others, a finite-memory
approach can halt this variance growth at a finite time [19]. However, there is a prob-
lem in the strong-coupling limit, where the asymptotic dependence of sample variance
on the coupling constant is exponential.

3 Optimization of stochastic driving

Varying the non-physical correlations with the aim of minimizing ν′′ and ξ′′ seems
a natural desideratum. Formally, this is an optimization problem in a function
space with explicit equality constraints and inequality constraints implied by the
non-negativity of probability measures.

With the notable exception of reference [22], this optimization was not attempted
in previous work, and the non-physical correlations were chosen with an eye to easy
numerical noise generation [14,23,24]. ξ was decomposed into a sum of independent
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terms ξl ∈ R and ξs ∈ C with

〈ξ(l)(t)ξ(l)(t′)〉 = <〈B(t)B(t′)〉 (8)

〈ξ(s)(t)ν(t′)〉 = 2iΘ(t− t′)=〈B(t)B(t′)〉+ iµδ(t− t′), (9)

where the prefactor µ of the Dirac delta function is chosen such that the time
integral over (9) vanishes.2 All other correlations are zero, except 〈ν∗(t)ν(t′)〉 and
〈(ξ(s))∗(t)ξ(s)(t′)〉, which are fixed by setting them equal to each other and assigning
them the minimal autocorrelation noise power allowed by equation (9).

When minimizing the spectral noise power of ν′′ and ξ′′, one needs to consider
the full matrix of correlation functions after a Fourier transform,

Σ(ω) = F


 〈ξ′(t)ξ′(t′)〉 〈ξ′(t)ξ′′(t′)〉 〈ξ′(t)ν′(t′)〉 〈ξ′(t)ν′′(t′)〉
〈ξ′′(t)ξ′(t′)〉 〈ξ′′(t)ξ′′(t′)〉 〈ξ′′(t)ν′(t′)〉 〈ξ′′(t)ν′′(t′)〉
〈ν′(t)ξ′(t′)〉 〈ν′(t)ξ′′(t′)〉 〈ν′(t)ν′(t′)〉 〈ν′(t)ν′′(t′)〉
〈ν′′(t)ξ′(t′)〉 〈ν′′(t)ξ′′(t′)〉 〈ν′′(t)ν′(t′)〉 〈ν′′(t)ν′′(t′)〉


 . (10)

The rows and columns of Σ will be naturally labeled by indices ξ′, ξ′′, ν′ and ν′′. With
the notations S(ω) = F [〈ξ(t)ξ(t′)] and D(ω) = −iF [〈ξ(t)ν(t′)], the operator-noise
identifications (4)–(6) now read

Σξ′ξ′ + iΣξ′ξ′′ + iΣξ′′ξ′ − Σξ′′ξ′′ = S (11)

Σξ′ν′′ + Σξ′′ν′ = D (12)

Σξ′ν′ + Σξ′′ν′′ = 0 (13)

Σν′ν′ + iΣν′ν′′ + iΣν′′ν′ − Σν′′ν′′ = 0. (14)

Because the spectra of real-valued correlation functions are considered at this point,
pairs (−ω, ω) must be considered in the optimization. As a consequence, condition
(5) leads to two separate equations (12) and (13).

The condition of Σ being positive semidefinite cannot easily be stated in the
form of a simple algebraic expression. However, optimization problems involving
semidefinite Hermitian matrices and linear constraints are special cases of convex
optimization. These can be solved efficiently and reliably with modern numerical
methods, implemented in packages such as CVX [25,26], which we used to minimize
Σξ′′ξ′′ + Σν′′ν′′ , subject to all of the constraints mentioned above.

The numerical solutions invariably show specific features which guide us towards
an analytic solution:

1. Σ is block diagonal; the pairs (ξ′, ν′′) and (ξ′′, ν′) are independent.

2. Each block is a rank 1 matrix.

With these provisos, the solution of the optimization problem can be written in closed
form,(

Σξ′ξ′ Σξ′ν′′

Σν′′ξ′ Σν′′ν′′

)
=

(
A+ S D − C
D∗ − C∗ B

)
,

(
Σξ′′ξ′′ Σξ′′ν′

Σν′ξ′′ Σν′ν′

)
=

(
A C
C∗ B

)
(15)

2This must be compensated by a Hamiltonian term quadratic in A.
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Fig. 1. Comparison of simulation data for the spin-boson system. Smoother lines (black)
are with 5000 optimized noise samples; jagged lines (gray) with 5000 conventional samples.
Parameters (with unit ∆ = 1) are β = 5, ωc = 10 and dissipation constant K = 0.05.

with

A =
R2

1− 2R
S B = (1− 2R)|D|2/S

C = RD R =
1

2

(
1− 1√

4|D|2/S2 + 1

)
.

For an Ohmic reservoir, the resulting noise powers Σξ′′ξ′′ and Σν′′ν′′ are always
smaller than in the previously used construction using (8) and (9) by at least 30%. The
most significant advantage occurs in the case |D| < S, where the optimized values are
Σν′′ν′′ ≈ |D|2/S and Σξ′′ξ′′ ≈ |D|4/S3, while the old approach had Σξ′′ξ′′ ≈ Σν′′ν′′ ≈
|D|/2. In the limit |D|/S → 0, the optimal result coincides with the ansatz Σξ′′ξ′′ = 0
made by Imai et al. for certain frequency ranges [22].

In the context of Ohmic dissipation at finite temperature, the low-frequency
behavior is quite relevant: it is a most important parameter determining the growth
of the sampling variance discussed above. At frequencies below the thermal energy,
the noise powers of ξ′′ and ν′′ are now smaller by a factor of βω, i.e., the noise powers
Σξ′′ξ′′ and Σν′′ν′′ now vanish quadratically in the infrared (instead of linearly). The
comparison shown in Figures 1 and 2 demonstrates the extremely beneficial effect
of this on the convergence of simulation data, using the spin-boson system [27,28]
as an example. The symmetric spin-boson system is defined through HS = −∆

2 σx
and A = σz, using Pauli spin matrices. The reservoir is characterized by an Ohmic
spectral density parameterized by UV cutoff frequency ωc and a dimensionless dissi-
pation constant K [9,23]. Figure 1 shows simulation results with identical parameters,
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Fig. 2. Exponential increase of sample variance of the observable σx with time. An exces-
sively long propagation interval has been chosen to demonstrate exponential growth; the
vertical line indicates ∆t = 40, a time at which all examples have come close to equilibrium.
The uppermost curve is from the conventional simulation shown in Figure 1 while the other
four curves are from optimized simulations. Parameters are (unit ∆ = 1) β ∈ {5, 2, 1, 1/2}
(blue, light blue, green, yellow, red, top/left to bottom/right), ωc = 10 and K = 0.05.

Table 2. Performance characteristics without (left of double line) and with noise optimiza-
tion. The number of samplesa results from demanding an absolute error of 0.01 for the
simulation result 〈σx〉. All data are for a symmetric spin-boson system with K = 0.05.

β∆ = 5 β∆ = 5 β∆ = 2 β∆ = 1 β∆ = 0.5

Variance growth rate (∆) 0.20 0.10 8.6× 10−2 5.5× 10−2 2.5× 10−2

Variance at ∆t = 40 3× 103 5.2× 102 1.8× 101 5.5× 100 1.7× 100

Extrapolated number
of samples at ∆t = 40 3× 107 5.2× 106 1.8× 105 5.5× 104 1.7× 104

aMaking use of a finite time window for reservoir correlations [19], the absolute number of
samples will be significantly smaller.

including number of samples using the optimized noise statistics, equation (15), rep-
resented by smoother lines and the conventional statistics (8)–(9), represented by
lines indentifyable by visible growth of their noise amplitude.

Figure 2 and Table 2 compare the performance characteristics of the old and new
methods in further detail. Depending on temperature, the new approach reduces the
growth rate of the sample variance significantly. The resulting savings factor in the
required number of samples is therefore also an exponential function of simulation
time. Savings factors of up to three orders of magnitude allow simulations extend-
ing up to approximate equilibration, using optimized samples. The savings factor is
largest for high temperature and strong coupling. However, the asymptotic numerical
cost still grows exponentially in the limit of very strong coupling.
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4 Conclusions

The noise samples used in an SLN-based propagation of open quantum systems can
be optimized towards small imaginary parts. The resulting reduction in the number
of required samples can be several orders of magnitude. No additional numerical costs
arise from the optimization since it has an analytic solution. The range of applications
for SLN simulations thus widens in virtually all parameter regimes, moderate or high
temperature being the regime with the greatest benefit. With increasing availability
of parallel computing resources, SLN-based methods are becoming an attractive,
versatile tool for the dynamics of open quantum systems.

The authors would like to thank two anonymous referees for valuable suggestions. K.S.
showed that standard methods of semidefinite programming apply to the noise optimization
and obtained the numerical optimization results, J.T.S. derived the analytic result (15).
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