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Abstract. Experiments with polymer latex solutions show the coexis-
tence of order-disorder structures of macroions. Because of the large
macroions’ sizes, this order–disorder phase coexistence imply the exis-
tence of very long-range attractive and repulsive forces, which cannot be
explained in terms of conventional direct interaction potentials, which
are short-range. Here, we apply an integral equations theory to a simple
model for colloidal dispersions, at finite concentrations, calculate the
particles distribution functions and the involved effective forces. We find
very long-range attractive and repulsive forces among the like-charged
macroions. The distribution functions are in qualitative agreement with
experimental results. The origin of these forces are discussed in terms
of an energy–entropy balance.

1 Introduction

The study of the interactions of charged colloidal particles or macromolecules is
relevant in the fields of physics, chemistry, biology, energy and technology [1–4].
In particular, suspensions of highly charged colloidal particles or macromolecules,
depending on the volume fractions, salt concentrations, and temperature, can form
gas, liquid and crystal structures [5–7], and order–disorder coexistence regions [8–11].
Because of the large macroions’ sizes, this experimentally found order–disorder phases
coexistence implies the existence of very long-range repulsive and attractive forces,
which cannot be explained in terms of conventional direct interaction potentials,
which are of relatively short range [12]. Particularly puzzling is the existence of
a long-range attraction among like-charged particles. To explain this long-range
attraction, semi-phenomenological long-range potentials were proposed [13–15]. Both,
the theoretical approach and the experimental results have been questioned by
different authors [16–19], either arguing the semi-phenological nature of the pro-
posed potential and/or that the experimentally observed order–disorder coexistence
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was a result of the system not being in equilibrium and/or being in confinement.
However, the criticisms to the experimental results seem to have been properly
responded [11,20–22]. Hence, the main experimental finding, i.e., there is a long-range
attraction between like-charged particles, at finite colloids concentration, is probably
correct. But, then, does this attractive force exist, and if it does exist what is the
origin of this long-range attraction? Ise et al. [13,23,24] have proposed that this attrac-
tion is due to “an intermacroion attraction through the intermediary of counterions
balanced by intermacroion repulsion”. While in this article we do not try to find
an order–disorder coexistence curve, we do address the above questions, and calcu-
late the macroion–macroion forces, through a well-established liquid theory. We do,
indeed, find a long-range attraction force. We hope to help to clarify this controversy,
and offer a mechanism to explain this attraction. In this paper, we extend our pre-
vious calculations for macroions dispersions, at finite concentrations [25], where we
studied the effect of the location of the macroions charge, and reported a long-range
macroion–macroion correlation. Here, we provide new results for macroions forces,
give a detailed analysis of their foundations, nature, and range, offer an explanation
for our reported long-range attractive-repulsive forces, and exhibit a comparison with
existing experimental data. In Section 2, we present our theoretical approach. In Sec-
tion 2.1, we outline the derivation of the integral equations. In Section 2.2, we describe
the model for a macroions solution, at finite volume fraction, and outline the formula-
tion of the electrostatics and forces in the system. In Section 3, we report the results
for the radial distribution functions (RDFs), the electrical field, and the mean forces
among the like-charged macroions. Finally, in Section 4 we give some conclusions.

2 Theory

Most studies on charged colloidal suspensions are made for isolated macroions or
two like-charged colloids particles, i.e., at infinite dilution, immersed into a model
electrolyte [26–33]. Theoretical and simulation investigations of nano-particles sus-
pensions at finite volume fractions are technically more difficult due to the large
increase of integration space (with different length scales) in theoretical equations,
or the huge number of particles in, necessarily, larger simulation boxes. Thus, many
studies used some kind of charge renormalization [34–37], colloidal suspensions with
no salt added [38], or very low salt concentration [18]. In general, these investigations
are for relatively low colloidal charge and volume fraction [39,40].

Since the pioneer development of the integral equations by Kirkwood et al. [27,41],
for homogeneous and inhomogeneous size-symmetrical electrolytes, based on a density
expansion plus a superposition approximation, other approximated integral equa-
tions based on the Ornstein–Zernike (OZ) equation [42] have been derived. Among
them is the hypernetted-chain/mean spherical approximation (HNC/MSA) [43,44],
first proposed by Carnie et al. in 1981 [45]. In this report, we solve these integral
equations for a model of three species electrolyte solution. In this section, we out-
line the derivation of the HNC/MSA equation, with which we will obtain the RDFs
of the macroions solution, describe the macroions’ model, and give the expressions
of the relevant electrostatic variables and interparticle’s mean forces, in terms of
the RDFs.

2.1 The hypernetted-chain/mean spherical equations

In our model, the particles are taken to be charged, hard spheres, with different
charges and diameters, such that one of the species is much larger than the other
two, in order to model a macroions dispersion at finite concentration. We will refer
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to his model as the colloidal primitive model (CPM) [25,46,47], which is a variant of
the well-known primitive model [48,49].

The multicomponent OZ equation for a fluid of n species is given by hij(r21) =
cij(r21) +

∑n
l=1 ρl

∫
V
hil(r23)clj(r31)dr3, where V is the system’s volume, i, j =

1, 2, . . . , n, and ρl is the number density of species l. hij(r21) ≡ gij(r21) − 1 is the
total correlation functions for two particles at r2 and r1, of species i and j, respec-
tively, with r21 = r2 − r1, such that gij(r21) is the pair correlation function, also
referred to as the RDF, which gives the probability density of finding a particle
1, of species j, at the distance r21, from the central particle 2, of species i. The
OZ equation is a probability balance, that guaranties a constant chemical poten-
tial in the whole system [50]. To solve it, closure relations for the direct correlation
functions, cij(r21) and clj(r31), are needed. These functions are basically approxima-
tions for a quasi-particle, in the context of many-body theory [51]. Among others,
two direct correlation approximations have been successfully used, the hypernetted-
chain (HNC), defined as cij(r21) = −βuij(r21) + hil(r21)− ln gij(r21), and the Mean
Spherical (MSA) as cil(r21) = −βuij(r21), where β = 1/(kT ), k is the Boltzmann con-
stant, T is the system temperature, and uij(r21) is the, unscreened, pair-interaction
potential between particles 1 and 2. If the HNC approximation is used in the first
term of the right-hand side of the OZ equation, we obtain

gij(r21) = exp

{
−βuij(r21) +

n∑
l=1

ρl

∫
V

hil(r23)clj(r31)dr3

}
.

(1)

If clj(r31), inside the integral in equation (1), is taken to be given by the MSA, for
which there is an analytical solution for charged fluids [52], we get the HNC/MSA
integral equations, for an homogeneous fluid of n-species. The use of the MSA allows
to have analytical kernels in equation (1). A detail account of the derivation of
equation (1) for the CPM is given in Manzanilla-Granados et al. [25].

2.2 The model, radial distribution functions, electrostatics, and forces

For a system of three species fluid, equation (1) becomes a set of six, coupled, non-
linear integral equations, which as we are taking advantage of the analytical solution
for the MSA can be reduced to three coupled integral equations. We numerically solve
these equations with a finite elements method developed in the past for the solution
of integral equations [25,53,54].

We solve equation (1) for the CPM, for a three species charged fluid, i.e., positive
ions, negative ions, and macroions of species +,−, and M , respectively. For simplicity,
we will assume the macroions to be positive large particles of diameter aM , and
all the little ions of equal size, including the macroions’ counterions (the case in
which the macroions are negatively charged is symmetrical to the positively charged
macroions case). Thus, the ions’s diameters are a+ = a− ≡ a. Therefore, from the
solution of equation (1) we obtain the macroion–macroion, gMM (r), macroion–anion,
gM−(r), and macroion–cation, gM+(r), RDFs. The other three distribution functions,
i.e. g−−(r), g++(r), and g+−(r), are analytically obtained from the MSA [52].

The interaction potential between two particles of species i and j, with a
separation distance r, is given by

uij(r) =

{ ∞ for r < aij
e2zizj
εr

for r ≥ aij
with i, j = +,−,M (2)
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where aij = (ai + aj)/2, e is the proton charge, zi and zj are the valences of particles
of species i and j, respectively, and ε is the solvent dielectric constant, and such that
the system is electroneutral (

∑
j=+,−,M ezjρj = 0). Both the electrolyte ions and

macroions are assumed to have the same dielectric constant as that of the solvent, to
avoid image charges. For a colloid’s valence ZM , its surface charge density is σM =
ZMe/(πa

2
M ). Hence, its unscreened charge is QM = πa2MσM . However, in general,

the colloid’s effective charge, at a distance r from its center (i.e., its bare charge QM ,
plus the induced charge in the surrounding fluid, up to a distance r), is given by

QM (r) = QM + 4π

∫ r

aM/2

ρel(t)t
2dt = −4π

∫ ∞
r

ρel(t)t
2dt (3)

where

ρel(r) ≡
∑

j=+,−,M
ezjρjgMj(r) (4)

is the charge concentration profile around the central colloidal particle, and we have
used the electroneutrality condition for the bulk fluid, given by

QM = −4π

∫ ∞
aM/2

ρel(t)t
2dt. (5)

Equation (3) implies that as r → ∞, QM (r) → 0. While QM and QM (r) give the
macroions bare charge, and effective charge at every distance r from the center of the
reference macroion, the surface charge density is often used in the literature to report
colloids’ experimental and theoretical studies. Hence, we define the charge density
profile, σM (r), around the central macroion, as

σM (r) ≡ σM
R2

M

r2
+

1

r2

∫ r

RM

ρel(t)t
2dt, (6)

where RM = aM/2 is the macroion radius, σM is its surface charge density, and the
second term in equation (6) is the induced charge in the fluid around the central
particle from RM to r. In terms of σM , equation (5) can be written as

σM = − 1

R2
M

∫ ∞
RM

ρel(t)t
2dt. (7)

Hence, equation (6) can also be expressed as

σM (r) = − 1

r2

∫ ∞
r

ρel(t)t
2dt. (8)

By Gauss’ law, the electrical field, EM (r), at the distance r from the center of the
reference particle, is EM (r) = 4πσM (r)/ε.

On the other hand, equation (1) can be recast as [25]

gij(r21) = exp
{
−βqjψij(r21) + βωsr

ij (r21)
}
, (9)
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where ψij(r21) is the mean electrostatic potential, given by

ψ(r) =
4π

ε

∫ ∞
r

ρel(t)

(
t− t2

r

)
dt, (10)

and ωsr
ij (r21) is a mean potential of the short-range force. Thus, the potential of mean

force, given by

Wij(r21) ≡ −kT ln gij(r) = ezjψij(r21) + ωsr
ij (r21), (11)

contains the contributions from the electrostatic and short-range correlations,
between the central particle of species i and another particle in the fluid of species j.
Therefore, the total mean force is equal to the sum of the electrostatic and short-range
components, i.e.,

FT
ij (r) = F e

ij(r) + F s
ij(r), (12)

with FT
ij (r) = −d(Wij(r))/dr, F e

ij = −ezjd(ψij(r))/dr = ezjEM (r) and F s
ij =

−d(ωsr
ij (r))/dr, respectively, where we have taken advantage of the spherical sym-

metry of the system, and have omitted the subindexes for simplicity. Here, we will
refer to the short-range component of the force as the entropic component.

Although the mean force is equal to the sum of the entropic and electrostatic force
components, these two components are entangled or intertwined, through the non-
linear integral equation (9), since both components (electrostatic and entropic) are
dependent functionals of the RDF, gij(r). The entanglement of the entropy and energy
contributions to the total system energy is beyond the non-linearity of equation (9),
as can be seen from equation (11), i.e., a change in QM , ρi and ai, for any of the
ionic species, ε and/or T will modify simultaneously ψij(r21) and ωsr

ij (r21). This
entanglement of the electrical and entropic components of the fluid energy should
not be confused with its use in quantum mechanics or mathematical psychology,
among other science fields [55].

The total force between the central macroion, of species M , and an ion of
species i, FT

Mi(r), was calculated by numerical derivation of the potential of mean
force, i.e., FT

Mi(r) = −dWMi(r)/dr = kTdln[gMi(r)]/dr. Its electrostatic component,
F e
Mi(r), was calculated by numerical derivation of equation (10) and/or directly from
eZMEM (r) = 4πeZMσM (r)/ε, with the aid of equation (8). Its entropic compo-
nent, F s

Mi(r), was calculated from the difference of the total and electrical forces,
and/or through the contact values of the different RDFs, gMi(r = aMi/2), i.e., with
F s
Mi(r) =

∑
j=+,−,M ρjgMj(r; aMj/2). The contact values, of course, are different for

different values of the position r of the particle of species i. All the different procedures
for the calculations of the total force components were found to be consistent.

3 Results

With the RDFs obtained from equation (1) we calculate the total force, and its
electric and entropic components, for macroions at several colloidal volume fractions,
φ ≡ 1

6πρMa
3
M , and surface charge densities σM , i.e., several macroions’ valences, ZM .

In all cases, unless otherwise indicated, the added salt is a 1:1, 0.1 M electrolyte, with
ionic diameter, a = 4.25 Å, and the macroions’ diameter is aM = 10a. The solvent
dielectric constant is taken to be ε = 78.5, and the system temperature T = 298 K.
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Fig. 1. Electrical field and charge density profiles, around the reference macroion, measured
from its center. The circles positions, in r, coincide with the maxima in the radial distribution
function. ρsalt = 0.1M, aM = 10a.

3.1 Long-range attractive and repulsive forces: detailed analysis and charge
dependence

In Figure 1, we present the HNC/MSA results for the macroion’s charge density
profile, σM (r) = (ε/4π)EM (r), as a function of the distance, r, to the center of the

central particle, for φ = 0.12, and surface charge density, σM = 0.15 C/m
2
(ZM ≈ 53),

thus (of course), from equation (8), σM (r = 5a) = 0.15 C/m
2
, on the surface of the

central, reference particle. As was pointed out above, the limr→∞ σM (r) → 0, to
satisfy the electroneutrality of the bulk fluid, and was numerically corroborated in
our calculations.

A number of sequential charge inversions is observed, indicating the change of
direction of the electrical field, EM (r). The locations of the maxima and minima of the
charge density in the fluid are closely related to the macroions’ size, volume fraction,
surface charge and location, and show interesting new surface phenomena [56,57].
However, in this article we address only to the foundations, nature and range of the
forces among charged macroions.

The dimension and location of the circles shown in Figure 1 correspond exactly
to the size and most probable location of the layers of neighboring macroions, around
the reference macroion, according to the corresponding RDF (see Tab. 1). Their
location does not coincide with the inflection points of the charge profile curves,
since these are the points of zero electrical field, but not of zero force. We will come
back to this point later. Notice that the charge inversions occur before (negative)
and after (positive) the position of the positively charged macroions, indicating the
effect of the adsorbed negative ions. Because the negative ions are the sum of the salt
anions plus the macroions’ counterions, the molar concentration of the anions, for a
macroions dispersion with φ = 0.12, and σM = 0.15 C/m

2
, is ρ− = 0.3634M , which

is more than three times that of the little cations (ρ+ = 0.1M). From r = 5a, i.e.,
from the surface of the central macroion, up to r ≈ 12a the charge density is seen
to rapidly decrease down to σM (r = 11.88a) ≈ −0.028 C/m

2
. The position of this

first correlated macroions’ layer is r ≈ 13.59a = 1.359aM . Then the charge density
profile increases up to σ ≈ 0.0135 C/m

2
, at r = 16.5a. This qualitative behavior of

the charge density profile continues up to around 250a. The limr→∞ σM (r) → 0−,
which implies that the net electrical field is, overall, cohesive, but counterbalanced
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Table 1. Location of the first six maxima in the corresponding RDFs, given in units of
[a], measured from the center of the reference, central macroion, for six different macroions
charge densities, and at a fixed volume fraction, φ = 0.12. Notice that because aM = 10a,
by dividing by 10, all the distances reported in this table straightforwardly can be expressed
in terms of aM , a unit of measure used in several experimental reports of the structure of
polystyrene latex particles.

σM (C/m2) First Second Third Fourth Fifth Sixth

0.000 10.00 24.22 36.45 48.43 – –
0.005 10.00 24.47 36.95 48.93 – –
0.025 13.59 28.22 42.44 56.91 70.80 –
0.050 14.14 28.47 42.44 56.42 70.39 84.87
0.150 13.59 26.22 38.95 50.93 63.40 75.88
0.300 12.47 24.72 36.45 47.93 59.41 70.89

Fig. 2. Radial distribution function, around the central macroion, measured from its center.
The circles have the same meaning as in Figure 1. ρsalt = 0.1M, aM = 10a.

by the entropic repulsion. In Table 1, the distance to the central macroion of this
first correlated macroions’ layer increases, for very low surface charge densities, and
decreases for low to high surface charge densities. We will come back to this point
later in this article.

In Figure 2, we show RDFs for the macroions, gMM (r), little cations, gM+(r), and
anions, gM−(r), as a function of the distance r, to the center of the reference macroion,
and for the same solution parameters, as in Figure 1. The anions are strongly adsorbed
to the central macroion, while the cations and macroions are repelled to some dis-
tance away, i.e., their RDFs are below their bulk values (gMM (r) and gM+(r) are
below 1). The RDFs are oscillatory, with the first six maxima of gMM (r) located
at r/a ≈ 13.59, 26.22, 38.95, 50.93, 63.40, 75.88 (see Tab. 1). Hence, the wavelength
of the oscillation of the macroions layers is first λ ≈ 13.59a, and later λ ≈ 12.5a.
Between the second (r ≈ 13.59a) and third (r = 26.22a) layers of macroions, the
anions and cations are seen to oscillate around their bulk values, but with a rela-
tively high adsorption of anions next to the first layer of macroions, at r ≈ 13.59a,
and cations to the second layer of macroions, at r ≈ 26.22a.

Therefore, intermediated to two neighboring layers of macroions can be fitted
between 2 and 3.5 layers of ions. This behavior is repeated for the rest of the macroions
layers. From r ≈ 19a to r ≈ 22a, both, gM−(r) and gM+(r) are simultaneously above
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Fig. 3. Mean force among like-charged macroions, and its electrical and entropic compo-
nents, as a function of the distance to the center of the reference macroion. The circles have
the same meaning as in Figure 1. ρsalt = 0.1 M, aM = 10a.

their bulk values. This is a very unusual behavior. This effect is not observed in
bulk electrolytes [58], electrolytes next to a charged electrode [59–61], confined elec-
trolytes [62] or macroions [63,64]. An exception was reported for the interface of a

cylindrical electrode, with surface charge of 0.1544 C/m
2
, and a symmetrical 1:1 elec-

trolyte, with a relatively large ionic diameter of 7.4 Å [60], showing the relevance of
the ions excluded volume. However, a previous comparison of this theory with molec-
ular dynamics calculation shows a very good qualitative and quantitative agreement
in this feature effect [47], and clearly is a consequence of the finite concentration of
the large colloidal particles, i.e., excluded volume effect.

Whence, the structure around the central macroion seems to be a sequence of
layers macroion–anion–cation–macroion. However, as pointed out before, for these
conditions of φ and σM , ρ− = 3.63ρ+, and thence the number of anions greatly
overcomes the number of cations, around the macroions. This suggests that the
macroion–macroion attraction is, at least, partially due to the anions adsorption.

In Figure 3, the total mean force, FT
MM (r), and its electric, F e

MM (r), and entropic,
F s
MM (r), components, among the positively charged macroions, are plotted as a func-

tion of the distance r from the central macroion. The solution parameters are the same
as in Figure 1. Counterintuitively the electric force is attractive, while the entropic
force is repulsive, before the first layer of macroions, located at r ≈ 13.59, to become
both, later, oscillatory. A comparison of Figures 1–3 suggests that the first electric
attraction is due to the anions adsorbed to the macroions, and the later repulsive
electric force is due to the charge of the first layer of macroions. On the other hand,
the little negative and positive ions present before the first layer of macroions pro-
duces the entropic repulsive force, as an excluded volume effect. The entropic force
always overcomes the electric component. Notice that FT

MM (r) is two orders of mag-
nitude lower than its components, so in Figure 3 we have rescaled FT

MM (r). We have
drawn six circles, which have the same size as the macroions, and their locations
were obtained from the corresponding RDF (see Fig. 2 and Tab. 1). The position of
the circles correspond to the six first induced layers of macroions, around the central
macroion. Their centers coincide with the points of zero total force, as they should
have, which, on the other hand, corroborates the correctness of our forces calculations.

Let us see this in some more detail. The first minimum of the electrostatic
force occurs at r ≈ 12a, which corresponds to a distance around RM + 7a, from
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the center of the reference macroion. The reduced concentration profile of anions,
i.e., gM−(r) (see Fig. 2), shows a very high adsorption of negative charge, from
r = 5.5a down to its bulk value, gM−(r = 10.083a) . 1.0, thus overscreening the
central macroion charge. At r = 10a we see F e

MM (r) to begin its attractive behavior,
and then increasing the attraction intensity up to r = 12a, to then decreasing the
attraction until r ≈ 14.1205a, where F e

MM = 0. The minimum of the anions RDF is
gminimum
M− (r = 13.5a) = 0.958615. As a result, we see in Figure 1, the electrical field

going from positive values, at r = 5a, due to the central macroion charge, down to
zero, at r ≈ 7.97a, then to a minimum, at r = 12a, where the cations RDF (gM+(r))
goes from its maximum, at r ≈ 8.625, to its bulk value, at r ≈ 12.25a. Then EM (r)
increases up to zero, at r ≈ 14.16a, and then to a maximum, at r ≈ 16.25a, now due
to the first layer of macroions charge, located at r ≈ 13.5935a. The first maximum
of the entropic force occurs at r ≈ 10.92a, which seems to correspond to a maximum
of adsorbed anions plus cations, from r = 5.5a to r ≈ 11a, i.e., in Figure 2 we see a
strong adsorption of anions, much above its bulk value, from r = 5.5a, the central-
macroion-anion contact value, up to r ≈ 10.08, where they reach their bulk value
(i.e., where gM−(r = 10.08a) ≈ 1), then down to a minimum, at r ≈ 13.5, whereas
the cations go from its lower value, at r = 5.5a to their bulk value at r ≈ 7.25, and
then to a maximum at r ≈ 8.625, and then again to its bulk value, at r ≈ 12.25a.
From its maximum value F s

MM (r) decreases down to zero, for r ≈ 14.145. Notice that,
although the points of zero entropic and electric force are very close to each other,
they do not coincide. The net force, i.e., the mean force, in this region is repulsive,
implying that the repulsive entropic force overcomes the attractive electric force. We
already pointed out that a point of zero force occurs at r ≈ 13.59a.

The next maximum of the electrical force and minimum of the entropic force
coincide at r ≈ 16.25a. From the observation of RDFs of the macroions, anions and
cations (see Fig. 2), between r ≈ 13.59a and r = 26.22a, the positive electrical force is
due to the positive charge of the first layer of macroions, while the entropic attraction
seems to come from the pressure of the next layer of cations–anions–macroions. The
first minimum of the effective force is at r = 15a, and does not coincide with the
nearby minimum of the entropic force, while its second maximum, at r ≈ 23.75a,
coincides with the maximum entropic force component. This structure and correlation
of the RDFs, Figure 2, with the forces presented in Figure 3, are oscillatory ∀r. The
limr→∞ F j

Mi(r)→ 0, ∀j.
In between the subsequent layers of macroions, after the location of the second

layer of macroions at r ≈ 26.22a, a similar mechanism seems to occur, i.e., in Figure 2
we see first an adsorption of anions, above their bulk value, followed by an adsorption
of cations, which together with the charge of the first layer of macroions seems to be
related to the repulsive, and then attractive force of the electrical component, as a
function r. Whereas the entropic force goes first from attractive, and then repulsive.
So, why the electrical force is attractive?

To try to understand the role of the macroions charge, and volume fraction, on
the total mean force, in Figure 4 we show this force for three different charge densities
on the macroions, σM = 0.05, 0.15 and 0.30 C/m

2
, which correspond to ZM ≈ 18, 53

and 103, respectively. We keep the volume fraction constant, with φ = 0.12. The
forces are oscillatory. The higher the macroions’ charge, the more intense the force
(notice the different scales used in the figure). The higher the charge the closer and
intense is the first minima of the force among the like-charged macroions, i.e., the
stronger the attraction among like-charged particles. We have performed calculations
of the total mean force, for a fixed macroions charge, and three different volume
fractions: φ = 0.06, 0.12 and 0.24 (not shown). We find that the higher the volume
fraction, the closer the macroions, and stronger, and closer the attractive minima of
the total mean force. This is to be expected, since higher volume fraction implies less
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Fig. 4. Mean force among like-charged macroions, for different macroions’ surface charge
densities, corresponding, from lower to higher charge densities, to ZM ≈ 18, 53, and 106,
respectively. Notice the scaling factors. r is referred to the center of the reference macroion.
ρsalt = 0.1M, aM = 10a.

available volume, and stronger the entropic component of the force. However, it is
a bit puzzling why higher charge implies stronger attraction among the macroions.
The explanation we think is due to a combination of two effects: a higher adsorption
of anions in-between layers of macroions, and that the charge repulsion among like-
charged macroions also increases the excluded volume of the system, then increasing
the entropic attractive force. This like-charge excluded volume depends on the amount
of charge on the macroparticles and, clearly, of the system’s temperature [65]. The

shoulder observed around r = 20a, in the σM = 0.30 C/m
2

curve, results from the
higher gathering of the macroions, i.e., the higher the macroions charge, the closer
they become (see Tab. 1).

As discussed above, beyond the fact that equations (1) and (9) are non-linear
integral equations, the mean electrostatic potential, ψij(r), and mean potential of
the short-range force, ωsr

ij (r), are entangled, and, thus, also are entangled the electric,

F e
MM (r), and entropic, F s

MM (r), components of the total force, FT
MM (r). We have

performed calculation for a zero charge macroparticles, at, say, φ = 0.12, and find that
the entropic force (not shown), which in these conditions is equal to the total mean
force, is much more less intense and of much shorter range (see Tab. 1). Therefore, we
may conclude that higher macroions charge increases the gathering of the macroion,
due to an important adsorption of anions around the macroions, which produces an
inversion of the induced charge, σM (r), i.e., the electric field, EM (r), but also due to
an increase of the macroion–macroion electrostatic repulsion, which in turn increases
the entropic attraction, i.e., for finite macroions’ volume fractions, excluded-volume
interactions are accentuated, and like-charged repulsion contributes to an even lower
available volume.

In Table 1, we display the locations of the first six layers of macroions, as a function
of the distance r/a to the central macroion, for different macroions charge. We see

that as the charge increases, from σM (r) = 0.050 C/m
2

to σM (r) = 0.300 C/m
2
, the

macroion layers compact around the central macroion. For σM (r) = 0.000 C/m
2
,

only the entropic force is present, and the first layer of macroions is in contact with
the central macroion (gMM (r = 10a) = 1.5636). For σM (r) = 0.005 C/m

2
, the first

layer of macroions is still in contact with the central macroion, but with a bit less
probability (gMM (r = 10a) = 1.5634), and the subsequent layers spread a little bit
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Fig. 5. Electrical, F e
MM (r), and entropic, F s

MM (r), components of the mean force among
like-charged macroions, for different macroions’ surface charge densities. r is referred to the
center of the reference macroion. Notice the scaling factors. ρsalt = 0.1M, aM = 10a.

more. For σM (r) = 0.025 C/m
2
, the first layer of ions is repelled away from the

central macroion, and the subsequent layers of macroions spread further away. Also
notice that the macroions charge increases the range of the correlation. For the higher
charges displayed in Table 1, the number of detected macroions layers go as far as
r ≈ 600a. In short, for uncharged or very little charged macroions the macroion–
macroion attraction is due to the entropic force, resultant of considering the macroions
volume. Higher volume fractions increases the macroions attraction. At still some very
low macroions charge, i.e., σ = 0.025 C/m

2
, the first layer of macroions around the

central particle is repelled away, as a result of the electrical repulsion. However, for
low to high macroions charge, higher charge produces stronger macroions attraction.

In Figure 5, the electric and entropic components of the total force are presented,
for the same three different macroions charge, and at a fixed volume fraction, φ = 0.12,
as in Figure 4, showing that in both cases their minima are all more intense, and closer
to the reference macroion, for higher macroions’ charge density. Being the nature of
the electrical force among like-charged particles repulsive, a large attractive increase
in the intensity, is probably due to the very high adsorption of anions to the positive
macroions (see Fig. 2). This attraction is enhanced by the also strong attractive
contribution of the entropic force, as a result of the pressure of the external layers of
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the fluid, to the inner layers of ions. Additionally, one should keep in mind that both,
the electric and entropic components of the mean force are entangled and, hence, a
simple separation of the two contributions is not possible, since are not independent.

The shoulder seen in Figure 4 is the result of a very large increase in the first
maxima of the entropic force components. The higher the charge the longer the
macroion–macroion force correlation. This is also true for higher volume fractions
and/or larger macroions size. The behavior of the electric force, as the macroions
charge increases show its impact in the decrease of the accessible volume. Both the
electric and force components increase their intensity and correlation, with increasing
macroions charge.

3.2 Long-range attractive and repulsive forces: comparison with experimental
results

In experimental studies of polymer latex suspensions, the range of a long-range
attraction among macroions, at finite concentration, is often reported in terms of
the macroion–macroion distance of closest approach, rca, which we define here as
the location of the first layer of macroions, around the central macroion, or the first
minimum of the macroion–macroion potential of mean force, or the first point of
zero total force in Figures 3–5. We have calculated the macroion–macroion RDF for
four different macroions diameters (aM = 10a, 20a, 30a and 40a), at fixed φ = 0.12,
σM = 5.355×10−2 C/m2, ρsalt = 0.1M (not shown). Their corresponding distances of
macroion–macroion closest approach are rca = 1.41aM , 1.33aM , 1.27aM and 1.24aM ,
respectively. As a general behavior, larger macroions size implies higher concentra-
tion, of the first layer of the attracted macroions, and shorter values of rca, although
of course, in units of a, rca increases with increasing aM .

A direct comparison of our theory with experimental for very large macroions,
such as those reported for polystyrene latex particles [8,22,66,67], where the macroion
sizes are in the range of 3000 Å–8000 Å is beyond the scope of this paper. Fortunately,
however, there are some experimental data for smaller polystyrene latex particles,
such as those reported in Ottewill [7]. In Figure 6, we present a comparison of the

RDF for two different sets of parameters: (a) φ = 0.01, σM = 1.25 × 10−3 C/m
2
,

and (b) φ = 0.13, σM = 3.90 × 10−3 C/m
2
. In both cases aM = 74a = 314.5 Å, and

ρsalt = 1.0 × 10−4 M. The experimental data parameters are (a) φ = 0.01 and (b)
φ = 0.13. In both cases aMexp ≈ 310 Å ≈ 73a and ρsalt = 1.0 × 10−4 M. He did not
report measured macroions’ surface charge densities, but fitted macroions’ surface
mean electrostatic potentials, of the order 50 mV. In our calculations, the macroions’s
surface potential are both of the order of 17 mV. Hence, although we cannot make
a direct quantitative comparison with these experimental results, our calculations
parameters closely resemble those reported by Ottewill. The qualitative agreement of
our Figure 6 with the Figure 4 of Ottewill’s paper is very good. Moreover, he reported
values of rca of 1000 Å = 3.22aMexp and 500 Å = 1.61aMexp, obtained from his RDFs

for his φ = 0.01 and φ = 0.13, respectively. In our case, we find rca of 1145.8 Å =
3.64aM and 483 Å = 1.54aM , for φ = 0.01 and φ = 0.13, respectively.

We did perform calculations for macroions as large as 340aM , for different salt
concentrations, macroions’s charge and volume fractions (not shown), and as a gen-
eral trend we find that the rca parameter scales with the macroion’s size, and that
increasing aM and/or φ and/or σM and/or ρsalt, decreases rca. Nevertheless, dif-
ferent combinations of these parameters can produce very large values of rca, as
we have shown. Clearly, the larger the macroion’s size, the larger the location of
the first attractive minimum in the macroion–macroion potential of mean force.
Experimental results for macroions of 6000 Å of diameter, and surfaces charges of
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Fig. 6. Radial distribution function, around the central macroion, for two different vol-
ume fractions and surface charge densities. r is referred to the center of the corresponding
reference macroion.

σ = 2.7 × 10−2 C/m
2
, and σ = 3.0 × 10−3 C/m

2
, reported by Tata et al. [22], have

values of rca = 2.42aMexp and rca = 2.47aMexp, respectively. Those reported by

Ise et al. [8] show similar results for their 4190 Å diameter, and σ = 7.25×10−2 C/m
2
,

polystyrene particles, i.e., for φ = 0.0075 and φ = 0.112, they find rca = 3aMexp and
rMexp = 1.695aMexp.

While our rca results confirm the existence of a long-range macroions attraction,
and have a good qualitative agreement with some experimental data, we wish to
emphasize the relevance of the truly very long range of the oscillatory macroion–
macroion RDF and force, which may have relevant consequences in several soft
condensed matter and biological systems [56,57].

4 Discussion

The objective of this research was to explore the nature of the mean forces present
in a highly charged macroions solution, at a finite volume fraction, φ, with a well-
established liquid theory. The experiments of Ise et al., where an order–disorder
coexistence regions are reported [8–11], imply the existence of long-range attractive
forces among like-charged macroions. However, these long-range forces cannot be
explained in terms of conventional direct interaction potentials, which are of short
range [12]. Semi-phenomenological long-range potentials have been proposed in the
past [13–15]. Ise et al. [13,23,24] have proposed that this attraction is due to “an
intermacroion attraction through the intermediary of counterions balanced by inter-
macroion repulsion”. While in this article we did not pretend to find a coexistence
curve, and do not take a strong position on the details of the experimental results,
we solved the well-established HNC/MSA liquid theory, applied to a CPM, obtained
the macroion–macroion, macroion–anion and macroion–cation RDFs, and calculated
the electrical field and the mean forces among the like-charged macroions. Our study
shows that higher macroions charge increases the gathering of the macroions, due to
an important adsorption of anions around the macroions, which produces an inver-
sion of the induced charge, σM (r), i.e., the electric field, EM (r), but also due to
an increase of the macroion–macroion electrostatic repulsion, which in turn increases
the entropic attraction, i.e., for finite macroions’ volume fractions, excluded-volume
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interactions are accentuated, and like-charged repulsion contributes to an even lower
available volume.

Our findings are in agreement with two aspects of the experimental results of
Tata et al. [11,20–22]: like charged particles get closer among them with higher elec-
trical charge, and there is a very long-range attractive–repulsive correlation. Our
calculations are with no assumption of a long-range attractive potential or confin-
ing wall, and the system is certainly at equilibrium, since the integral equations are
basically a chemical potential balance equation. While our results seem to indicate
that the high adsorption of anions in between two neighboring layers of macroions
explain in part the attraction among the like-charged macroions, as proposed by Ise
et al. [13,23,24], the fact that the electrical and entropic forces are entangled, through
the non-linearity of the RDFs equations of the CPM (Eqs. (1) and (9)), imply that
the electrical component also contributes to an excluded volume effect, and, hence,
is also in part responsible for the attractive force among like-charged macroions.

In particular, our RDF calculations, for macroions’ parameters corresponding to
those of the experimental RDFs reported by Ottewill [7], show a very good qualita-
tive agreement. In particular, in relation to the range of the macroions long-range
attractive interaction.

As a general result we find that the range of the attractive-repulsive forces, among
the macroions, scales with the macroion’s size, and that increasing the macroion size
and/or their volume fraction and/or charge and/or the salt concentration, increases
the macroions attraction. Nevertheless, different combinations of these parameters
can produce very long-range macroion–macroion attractions, as we have shown.
Clearly, the larger the macroion’s size, the larger the range of the first attractive
minimum in the macroion–macroion potential of mean force.

As a main conclusion we stress that our theoretical calculations are based on
a well-established integral equation theory, shown in the past to be in agreement
with computer simulation data, we have not used any adjustable parameter, and
have proved the existence of very long-range attractive–repulsive forces, in macroions
dispersions at finite volume fraction, and that are in agreement with experimental
results.

We gratefully acknowledge the support of CONACyT, Mexico, through the Project 169125.
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