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Abstract. Controlling the dynamics of entanglement and preventing its
disappearance are central requisites for any implementation of quantum
information processing. Many solid state qubits are affected by non-
Markovian noise, often with 1/f spectrum. Leading order dephasing
effects are captured by treating noise in the quasistatic approximation.
In this article we investigate dynamical decoupling of a two-qubit gate
studying the crossover from Zeno to anti-Zeno entanglement dynamics
obtained by varying the sequence parameters.

1 Introduction

Protecting quantum coherence and entanglement are key requirements for any quan-
tum information platform. Quantum error correcting codes set strict limits on the
allowable error rates, which may be particularly demanding for solid-state implemen-
tations suffering from material inherent noise sources often characterized by strong
coupling and memory effects [1]. Considerable progress in design and materials has led
to significant advances. In superconducting and semiconducting qubits larger decoher-
ence times are attained by operating qubits at “optimal points” where sensitivity to
low-frequency fluctuations is cancelled to lowest order [2–5]. Further improvement can
be achieved by dynamical decoupling (DD), i.e. by active control, driving the quantum
system towards specific targets while effectively decoupling it from noise sources [6,7].
Originally conceived for single qubits, dynamical control has been extended to pre-
serve entanglement in quantum registers [8,9] and during the operation of entangling
gates [10,11].

DD in the “bang bang” limit is a manifestation of quantum Zeno effect [12,13],
both being based on a strong and fast interaction with an external system or with
a measurement apparatus. Quantum Zeno subspaces are generated where non trivial
coherent evolution can take place [14]. This analogy has been pushed further since
under specific circumstances pulsed control can enhance decoherence, a situation well
known in the Zeno literature, as anti-Zeno effect [15–19]. The occurrence of anti-Zeno
behavior in the dynamically controlled evolution of qubits subject to non-Markovian
and non-Gaussian noise, under proper pulse rates and coupling regimes, has been
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predicted in references [20–22]. These concepts have been extended to bipartite open
quantum systems. Entanglement protection via the quantum Zeno effect has been
recently investigated [9,11,23–26].

In this article, we study DD during entanglement generation in the presence of
local pure dephasing 1/f noise whose spectral characteristics have been inferred
in experiments with superconducting qubits. We consider three procedures recently
implemented [27–31]: periodic DD (PDD) [6,7], Carr Purcell DD (CP) [32] and Uhrig
DD (UDD) [33] and evaluate the gate error at periodic times where the ideal unitary
evolution leads to the target entangled state. We demonstrate that, depending on the
specific gate time, either almost complete decoupling is achieved (Zeno regime) or an
enhancement of the gate error occurs for small pulse rate (anti-Zeno effect) followed
by a Zeno regime for sufficiently large rate.

2 Entangling gate and dynamical decoupling

We consider the
√
iSWAP entagling gate implemented by coupling two resonant

qubits as modeled by the Hamiltonian

H0 = −Ω

2
σ1z ⊗ I2 −

Ω

2
I1 ⊗ σ2z +

ωc
2
σ1x ⊗ σ2x . (1)

Here, σαz are Pauli matrices, Iα is the identity in qubit-α Hilbert space (α =
1, 2), we put ~ = 1. This model applies to the fixed, capacitive or inductive, cou-
pling of superconducting qubits [1,34]. Individual-qubit control allows an effective
switch on/off of the interaction. Unitary evolution starting from the factorized state

|+−〉 periodically leads to the fully entangled state |ψe〉 = ±(|+−〉− i| −+〉)/
√

2 at

times t
(n)
e = (1 + 4n)π/(2ωc) ≡ (1 + 4n) te, n ∈ N. We consider the relevant situation

[35–38] where each qubit is affected by pure dephasing local noise

δH(t) = −1

2
z1(t)σ1z ⊗ I2 −

1

2
I1 ⊗ z2(t)σ2z , (2)

where zα(t) is a stochastic process whose power spectrum

Sα(ω) =

∫ ∞
−∞

dt 〈zα(t)zα(0)〉 eiωt, (3)

is 1/f for f ∈ [γm,α, γM,α]. For the sake of simplicity, we assume identical local noise
characteristics, Sα(ω) ≡ S(ω). Noise is simulated as the superposition of random
telegraph processes with switching rates γ distributed as 1/γ in [γm, γM ] [1,39]. The
spectrum reads S(ω) ≈ A/ω, with A = πΣ2/ ln(γM/γm)), for ω ≤ γM/2π, with a
roll-off to 1/f2 behavior at higher frequencies; Σ2 is the noise variance. Under local
dynamical control the system Hamiltonian takes the form

H̃(t) = H0 + δH(t) + V1(t)⊗ I2 + I1 ⊗ V2(t), (4)

where Vα(t) denotes the action of a sequence of local operations on qubit α applied
at times t = ti, i ∈ {1,m}. In order to reduce the effect of noise acting along
σαz without altering the gate operation we apply an even number of simultaneous
π-pulses around the y-axis of the Bloch sphere of each qubit, denoted as πy [10]. The
pulses are applied at times ti = δite, where 0 ≤ δi ≤ 1 with i = 1, . . . ,m. For the PDD
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Fig. 1. Numerical results for quasistatic noise with Σ = 109 s−1, γm = γM = 1 s−1 under

PDD, CP, UDD. Left panel: Gate error at times t
(n)
e for n = 0, 1, 2 as a function of the

number of pulses. Filled (green) symbols t
(0)
e = te, empty dark gray (blue) t

(1)
e = 5te, empty

light gray (red) t
(2)
e = 9te. Top row ωc = 5 × 109 rad/s, bottom row ωc = 2.5 × 109 rad/s.

Rigth panel: Top row Tr[ρ2(t
(1)
e )] (tick blue), fidelity (tin blue), populations (black contin-

uous and dashed) and imaginary part of the coherence gray (green) in the factorized basis

{|+−〉, | −+〉} at t
(1)
e = 5te. Bottom row: Gate error at t

(1)
e .

sequence δi = i/m, with the last pulse applied at time t
(n)
e , the pulse interval being

∆t = t
(n)
e /m. For the CP sequences it is δi = (i − 1/2)/m, for the UDD sequence

δi = sin2[πi/(2m+ 2)]. In the limit of a two-pulse cycle, m = 2, UDD reduces to the
CP sequence.

3 Zeno and anti-Zeno regimes

In order to estimate the gate performance under DD we evaluate the fidelity with
respect to the target state |ψe〉, F , and the corresponding error ε defined as

F = 〈ψe|ρ(t(n)e )|ψe〉, ε = 1− F , (5)

where ρ(t) is the two-qubit density matrix and

〈ψe|ρ(t(n)e )|ψe〉 =

∫
D[z(t)]P [z(t)] 〈ψe|ρ

(
t|z(t)

)
|ψe〉 , (6)

with z(t) = {z1(t), z2(t)}. The path integral is evaluated by exact numerical solution
of the stochastic Schrödinger equation of the coupled-qubits under the action of the
considered DD sequences. The number of noise realizations over which the average is
performed is ≥104. Under this condition, the numeric simulation can be considered
a reliable method for calculating the gate error. For realistic noise figures, the static
path approximation, z(t) ≈ z, with statistically distributed values of z, captures the
system’s evolution for times of interest, t ≤ 1/γM [1].

Our results are reported in Figure 1 for quasistatic noise and in Figure 2 for dif-
ferent 1/f noise characteristics, either by changing the variance or the high-frequency

cut-off (up to Ω ≈ 1011 s−1). We evaluate the gate error at times t
(n)
e for n = 0, 1, 2

as a function of the number, N , of applied pulses for the considered decoupling pro-

cedures. In Figure 1 we observe that at the first entangling time, t
(0)
e ≡ te, the gate
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Fig. 2. Gate error for gate time t
(2)
e = 9te under PDD, CP, UDD for different spectral

characteristics, ωc = 5×109 rad/s. Left panel: Results for quasistatic noise γm = γM = 1 s−1

and different values of the noise variance: Σ = 109 s−1, dark gray (red), Σ = 2 × 109 s−1

light gray (orange), Σ = 1/
√

2× 109 s−1 gray (green). Right panel: Results for fixed variance
Σ = 109 s−1, γm = 1 s−1 and different high-frequency cut-off of 1/f noise. Empty (red)
symbols are for quasistatic noise, gray line for γM = 106 s−1, undistinguishable from the
quasistatic noise effect. Filled gray (dark orange) symbols for γM = 108 s−1, dark gray
(green) symbols γM = 109 s−1, gray (violet) symbols for γM = 1010 s−1.

error decreases with increasing N , indicating successfull decoupling. At the subse-

quent entangling times, t
(n)
e n ≥ 1, for small pulse numbers the gate error increases

with N . After having reached a maximum for a certain N̄(n), the error decreases
monotonically. Remarkably, N̄(n) does not depend on the decoupling sequence, nor
on the qubit’s coupling, ωc, and the noise variance Σ (Figs. 1 and 2 left panels). These
results can be interpreted as a crossover from an anti-Zeno regime N ≤ N̄(n) to the
Zeno regime for N � N̄(n).

Analogous behaviors have been reported in reference [21] where PDD was applied
to a qubit subject to a structured environment formed by a bistable quantum impu-
rity [40] or a collection of non-Gaussian fluctuators having 1/f spectrum. It was
demonstrated that, at a general working point [41], contrary to the semiclassical
picture that expects decoupling for pulse rates ∆t < 1/γM , efficient noise compen-
sation can only be obtained if also the condition 2∆t � 2π/Ω is satisfied. Our
results for the entangling gate can be explained similarly. In fact, if the system is
initially prepared in the factorized state | + −〉, evolution under the total Hamil-
tonian (4) takes place within the bi-dimensional swap-subspace {| + −〉, | − +〉}. In
the absence of noise, the restriction of (1) to the swap-subspace can be expressed in

terms of a pseudo-spin as −ωc τx/2, with eigenstates |1〉 = (−| + −〉 + | − +〉)/
√

2,

|2〉 = (|+−〉+ | −+〉)/
√

2. Local pure dephasing noise is transverse in the entangled
basis and πy pulses maintain the system within the swap subspace. Therefore, we can
rephrase the result of reference [21] for the entangling gate and expect efficient decou-
pling for pulse intervals ∆t� min{1/γM , π/ωc = 2te}. For an entangling gate of fixed

time duration t
(n)
e = te(1 + 4n) = 2N∆t, the two conditions require 1 + 4n � 4N

and ∆t� 1/γM . Therefore, for t
(0)
e the decoupling sequences induce error reduction

for any N , instead for n > 1, a minimum number of pulses N̄(n) = (1 + 4n)/4 is
required. For N < N̄(n), pulses induce an acceleration of decay, analogous to the
anti-Zeno effect. The maximum value of the gate error is larger the longer is the gate
time and the larger is the noise strength, as measured by the noise variance. For
N > N̄(n), towards the Zeno regime, the considered procedures have different per-

formances. At te the most efficient procedure is UDD, while at longer gate times, t
(n)
e ,

for N > N̄(n) CP has a better performance than UDD (Fig. 1) Successful decoupling
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yields a pure state belonging to the dynamically generated Zeno subspace, in our
case the swap-subspace. To better emphasize the approach to the Zeno regime we

plot in Figure 1 (right panel) Trρ2(t
(n)
e ), whose logarithm is the purity, and the rel-

evant matrix elements of the two-qubit density matrix in the factorized basis, as a

function of N for t
(1)
e . Purity and fidelity to the target state actually depend on

the same matrix elements, being F = 1
2 + Im[ρ+−,−+(t

(n)
e )], S = ln{Tr[ρ2(t

(n)
e )]} =

ln{ρ2+−,+−(t
(n)
e ) + ρ2−+,−+(t

(n)
e ) + 2|ρ+−,−+(t

(n)
e )|2}. We observe that projection to

the pure state, i.e. the asymptotic Zeno regime, is indeed already reached for relatively
small numbers of pulses.

Finally we investigate the effect of higher frequency components in the 1/f
spectrum, see Figure 2 (right panel) where we consider spectra having the same
low-frequency behavior with progressively increasing γM . For small number of
pulses the gate error is conditioned by low frequency components in the specrtum,
therefore the anti Zeno regime is not influenced by the different high-frequency cut-off
of the three procedures. The gate error under PDD remain quite insensitive to the
spectrum at high frequencies also for large pulse number. This is to be expected pro-
vided it is ∆t < 1/γM . CP and UDD turn out to be much more sensitive to the higher
frequencies of the spectrum for N > N̄(n). Still these procedures guarantee about
three-orders of magnitude decrease of the average error with respect to the uncon-
ditioned evolution until γM ≈ 108 s−1. This is a remarkable result, considering that
at present 1/f noise has not been detected for frequencies higher than γM ≈ 20 MHz
[1,27,28].

4 Conclusions

In conclusion, we investigated dynamical decoupling of an entangling gate subject
to local pure dephasing 1/f noise with spectral characteristics inferred from exper-
iments with superconducing qubits and DD procedures recently implemented. We
demonstrated a crossover from a Zeno to an anti-Zeno regime for the entanglement

depending on the periodic times, t
(n)
e , where the ideal gate leads to the target entan-

gled state. The onset of the two regimes has a simple explanation within the Zeno
subspace where the dynamics takes place and the number of pulses separating the
two regimes does depend only on the chosen period, i.e. n. By evaluating the purity it
was possible to verify that the Zeno regime is achieved for relatively small number of
pulses with an efficiency depending on the noise characteristics at higher frequencies
for the most sensitive decoupling procedures, CP and UDD.
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