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Abstract. The formalism of Operational Dynamical Modeling [Bondar
et al., Phys. Rev. Lett. 109, 190403 (2012)] is employed to analyze
dynamics of spin half relativistic particles. We arrive at the Dirac
equation from specially constructed relativistic Ehrenfest theorems by
assuming that the coordinates and momenta do not commute. Forbid-
ding creation of antiparticles and requiring the commutativity of the
coordinates and momenta lead to classical Spohn’s equation [Spohn,
Ann. Phys. 282, 420 (2000)]. Moreover, Spohn’s equation turns out to
be the classical Koopman-von Neumann theory underlying the Dirac
equation.

1 Introduction

The Dirac equation is one of the most fundamental building blocks of relativistic quan-
tum theory describing the dynamics of spin 1/2 charged particles. The Dirac equation
has found a broad range of applications including solid state physics [42,46,56], optics
[1,57], cold atoms [2,14,65], trapped ions [13,35], circuit QED [58], and chemistry of
heavy elements [3,52]. In this paper, we revisit the foundations of relativistic quan-
tum and classical mechanics to provide a unified operational derivation of the Dirac
equation and its classical counterpart, addressing the role of spinors and antiparticles
in the classical limit ~→ 0.

The procedure of applying the limit ~ → 0 is fraught with many difficulties.
Considering that ~ is a fundamental constant with the fixed value, this limit is
a formal procedure whose physical interpretation needs to be clarified. The clas-
sical limit implies two types of analysis: one involving an equation of motion and
the other – a quantum state [9]. The limit is mathematically ill-defined requiring
auxiliary assumptions that may significantly change the underlying physical picture
[10]. A widely used method to remedy mathematical ambiguities is coarse graining,
which consists of averaging out features of a quantum state arising from interferences.
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This procedure is physically justified by decoherence: erasing quantum coherences by
coupling the quantum system to an external bath [45,75]. However, quantum evolu-
tion with decoherence recovers irreversible rather than reversible classical dynamics
[24]. In addition to the conceptual difficulties, the previous studies of the classical
limit ~→ 0 [15,50,63,64,67] require lengthy algebraic manipulations.

Our approach to the classical limit ~→ 0 of relativistic dynamics is based on the
observation that the commutator between the position and momentum of a quantum
particle is proportional to ~. This encapsulates the Heisenberg uncertainty principle
and the experimental fact that the order of measurements affects the measured out-
comes [22,60]. However, the position and momentum of a classical particle can be
measured simultaneously and observed values do not depend on the measurement
order. Mathematically, this implies that the position and momentum of a classical
particle commute. Therefore, we define the classical limit as the commutativity of
the algebra of observables. Relativity brings an additional constraint that no antipar-
ticles (i.e., negative energy states) should survive the classical limit. This intuition
can be formalized by means of Operational Dynamical Modeling (ODM) [18] – a
universal and systematic framework for deducing physical models from the evolution
of dynamical average values.

To derive equations of motion, ODM needs two inputs: observed data recast in
the form of Ehrenfest-like relations and kinematics specifying both the algebra of
observables and the definition of averages. As an outcome, ODM guarantees that
the resulting equations have the desired physical structure to reproduce the supplied
dynamical observations. For example in reference [18], we utilized this method to
infer the Schrödinger equation from the Ehrenfest theorems by assuming that the
coordinate and momentum operators obey the canonical commutation relation. Oth-
erwise if the coordinate and momentum commute, ODM leads to the Koopman-von
Neumann mechanics [28,29,36,48,55,68,69], which is a Hilbert space formulation of
non-relativistic classical mechanics where states are represented as complex valued
wave functions and observables as commuting self-adjoint operators. ODM has pro-
vided a new interpretation of the Wigner function [20,26,33], unveiled conceptual
inconstancies in finite-dimensional quantum mechanics [19], formulated dynamical
models in topologically nontrivial spaces [74], advanced the study of quantum-
classical hybrids [34,59], quantum speed limit [61], yielded new tools for dissipative
quantum systems [17,25,70,72,73], and lead to development of efficient numerical
techniques [21,23,24,47].

In the non-relativistic case, ODM relied on the fact that quantum and classical
states could be represented on an equal mathematical footing – the Hilbert space.
For the corresponding relativistic program to be carried out, the state for a spin 1/2
particle must have a similar representation in the quantum and classical realms. Since
spinors represent quantum states, the spinorial formulation of classical mechanics is
desired [5,7,16,27,43,64].

It is well known that the Dirac equation incorporates spin, but it is uncommon to
associate classical dynamics with spin. The Lorentz group describes a fundamental
symmetry of relativistic mechanics. Spinors, also known as “half vectors,” are ele-
ments of the double cover representation of the Lorentz group [53]. Classical velocities
and accelerations can be expressed in the vector basis formed as bilinear construc-
tions of spinors [5,7,43]. Furthermore, there is a specific bilinear combination of these
spinors yielding the classical spin, whose physical significance is the subject of an
ongoing debate [71]. Note that there is no spinorial formulation of nonrelativistic
classical mechanics except for the Kepler problem [44,51].

This paper is organized as follows: Section 2 reviews classical spinorial dynamics.
Section 3 provides an ODM derivation of the Dirac equation. Section 4 presents
the derivation of the relativistic spinorial Koopman-von Neumann equation. Finally,
conclusions are drawn in Section 5.
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2 Classical mechanics

The purpose of this section is to review relativistic classical mechanics with a par-
ticular emphasis on the spinorial formulation. The time-extended Lagrangian for
relativistic classical mechanics with electromagnetic interaction is [6,32,37]

L =
m

2
uµuµ + eAµuµ +

1

2
mc2, (1)

where uµ is the proper velocity, Aµ is the four-vector potential, m is the mass and c
is the speed of light. In this formulation the shell mass uµuµ = c2 is not imposed as a
constraint but it is instead incorporated as an integral of motion. The Euler-Lagrange
equations lead to the relativistic Newton equations

dxµ

dτ
= uµ, m

duµ
dτ

= eFµνu
ν , (2)

where τ is the proper time. The canonical momentum, obtained from the Lagrangian
is

pµ = muµ + eAµ, (3)

where we identify muµ as the kinetic momentum. Note that contravariant indexes
are used for physical quantities. The time-extended Lagrangian can be used to obtain
the time-extended classical Hamiltonian H as

H =
1

2m
(pµ − eAµ) (pµ − eAµ)− 1

2
mc2. (4)

Assuming no explicit dependence on the proper time, H is a conserved integral of
motion corresponding to the shell mass condition H = 0←→ uµuµ = c2. The energy
cp0 is extracted from the shell mass as

cp0 = K(p) + ceA0, (5)

with the kinetic energy given by

K(p) =
√

(mc2)2 + c2(p− eA)k · (p− eA)k, (6)

where the Latin indices (e.g., k) take values of 1, 2, 3. The Hamilton equations are
derived from equation (4)

dxµ

dτ
=
pµ − eAµ

m
,

dpµ
dτ

=
e

m
(∂µAν) (pν − eAν) , (7)

which are equivalent to equation (2).
Classical relativistic mechanics can also be expressed in the spinorial form using

two alternative formulations: the Spacetime Algebra by Hestenes [43,44] and the
Algebra of Physical Space by Baylis [5,8]. In this paper, we adapt Hestenes’ formalism
utilizing Feynman’s slash notation. The proper velocity is defined as

u/ = uµγµ = uµγ
µ (8)
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where the gamma matrices are 4× 4 complex matrices that obey the Clifford algebra
in the Minkowski space

(γµγν + γµγν) = 2gµν1 (9)

with gµν = diag(1,−1,−1,−1). In Feynman’s notation, the Lorentz inner product is
expressed as

pµqµ = p/ · q/ =
1

4
Tr[p/q/], (10)

and the shell mass condition reads

Tr[(p/− eA/−mc)(p/− eA/+mc)] = 0. (11)

A Lorentz transformation of the proper velocity induced by the spinor L ∈
Spin+(1, 3), an element of the double representation of the restricted Lorentz group
SO+(1, 3) [53], reads as

u/→ u′/ = Lu/L−1. (12)

The spinor L redundantly stores the information. In fact, employing the Pauli-Dirac
representation of gamma matrices, we have [53]

L =

Ψ1 −Ψ∗2 Ψ3 Ψ∗4
Ψ2 Ψ∗1 Ψ4 −Ψ∗3
Ψ3 Ψ∗4 Ψ1 −Ψ∗2
Ψ4 −Ψ∗3 Ψ2 Ψ∗1

 , (13)

where the column spinor Ψ satisfying the Dirac equation is recovered as

Ψ = L
∣∣∣
leftmost column

. (14)

It is shown in Appendix A that

dxµ

dτ
= uµ =⇒ dxµ

dτ
= Ψ†cγ0γµΨ. (15)

Note that equation (15) is purely classical even though it resembles relativistic
Ehrenfest relations. The exclusive role of the gamma matrices is to extract the velocity
stored in the spinor

uµ = Ψ †cγ0γµΨ =
1

4
Tr(cLL†γ0γµ). (16)

However, equation (15) does not imply that the particle is moving at the speed of
±c, which are the eigenvalues of cγ0γµ. The same argument holds in the quantum
mechanical case, thus eliminating the controversy attributed to the use of cγ0γµ as
the velocity operator [31].

In a similar fashion, the relativistic Newton’s equations for the Lorentz force in
equation (2) can be recast in the two equivalent forms

m
duµ
dτ

= ceΨ†γ0γνFµνΨ,
dpµ
dτ

= ceΨ†γ0(∂µA/ )Ψ. (17)
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3 The Dirac equation

This section offers a derivation of the Dirac equation employing ODM. According to
reference [18], in order to construct a system’s dynamical model, ODM requires the
following three inputs:

1. The evolution of the average values in the form of Ehrenfest-like relations.

2. The definition of the observables’ average.

3. The algebra of the observables.

The classical spinorial equations of motion (17) are parametrized in terms of the
proper time τ . Considering that the relation to the time t is

d

dτ
= γ

d

dt
. (18)

The classical spinorial equations can be written as

dxµ

dt
= Ψ †cγ0γµΨ,

dpµ
dt

= ceΨ †γ0(∂µA/ )Ψ, (19)

where the normalization condition 1 = Ψ †Ψ has been imposed, resulting in the absorp-
tion of the γ factor in Ψ . Based on these equations, we postulate that relativistic
dynamics obeys the following Ehrenfest-like relations:

d

dt

〈
x̂k
〉

=
〈
cγ0γk

〉
,

d

dt
〈p̂k〉 =

〈
ce∂kÂνγ

0γν
〉
. (20)

Where 〈· · · 〉 denotes a physical (empirical) average, which needs to be mathematically
defined. As per item 2, we represent the expectation values by the Dirac bra-ket
“sandwich” in the Hilbert space, 〈· · · 〉 = 〈ψ| · · · |ψ〉. Hence,

d

dt
〈ψ|x̂k|ψ〉 = 〈ψ|cγ0γk|ψ〉, d

dt
〈ψ|p̂k|ψ〉 = 〈ψ|ce∂kÂνγ0γν |ψ〉, (21)

where the position xµ and momentum pµ variables are replaced by the corresponding

operators x̂k and p̂k acting on a spinorial Hilbert space of kets |ψ〉.
According to the Stone’s theorem, unitary evolution of |ψ〉 implies the existence

of a self-adjoint operator H such that

i~
d|ψ〉
dt

= H|ψ〉. (22)

Substitution equation (22) into equation (21) leads to

〈ψ| 1
i~

[x̂k, H]|ψ〉 = 〈ψ|cγ0γk|ψ〉, 〈ψ| 1
i~

[p̂k, H]|ψ〉 = 〈ψ|ce∂kÂνγ0γν |ψ〉. (23)

The expectation values can be dropped assuming that these relations are valid for all
initial states

1

i~
[x̂k, H] = cγ0γk,

1

i~
[p̂k, H] = ce∂kÂνγ

0γν . (24)
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“Quantumness” is imposed by specifying the commutation relations

[x̂j , p̂k] = −iδj k~, (25)

which specifies item 3 of ODM. Note that the negative sign in the right hand side of
equation (25) appears because the nonrelativistic momentum operator is associated

with contravariant components p̂j

[x̂k, p̂j ] = −i~δkj ⇐⇒ [x̂k, p̂j ] = i~δkj . (26)

Assuming that H = H(x̂k, p̂k), equation (24) are transformed into the following
system of differential equations

− ∂

∂p̂k
H = cγ0γk,

∂

∂x̂k
H = ce∂kÂνγ

0γν . (27)

The latter can be readily solved for the unknown generator of motion H

H(x̂k, p̂k) = −γ0γkc p̂k + γ0γνceÂν + C, (28)

where C is a constant matrix. Note that the obtained H has the dimension of energy.
Thus, the form of C can be fixed by additionally demanding that the obtained H
recovers the classical Hamiltonian when the position and momentum commutes (i.e.,
the classical limit). As shown in the Appendix of reference [23], this yields

C = mc2γ0. (29)

Finally, note that the equation of motion (22) with (28) and (29) is the sought
Dirac equation.

4 Spin 1/2 Koopman-von Neumann theory

Having arrived at the Dirac equation, we now find its classical counterpart.
The classical limit of the nonrelativistic quantum state represented by the Wigner

function was identified with the Koopman-von Neumann wavefunction [20]. Conse-
quently, the nonrelativistic classical state belongs to a Hilbert space parametrized by
both the position and momentum (i.e., the phase space). The generalization of the
Wigner function to the relativistic regime has been accomplished in both relativis-
tic quantum mechanics and quantum field theory [11,12,30,39–41,62]. Now we will
construct a formalism where the classical limit of the relativistic Wigner function
corresponds to the spinorial relativistic Koopman-von Neumann wavefunction.

In this section, the physical averages are represented 〈· · · 〉 = Tr[W · · · ] in terms
of the Wigner function W for spin 1/2 particles, which is a 4 × 4 complex matrix
[23,26]. In this paper, it is convenient to define the Wigner function of a Dirac spinor
ψ(x) as

W(x, p) =
1

2π

∫
eipθψ

(
x− ~θ

2

)
ψ†
(
x+

~θ
2

)
dθ. (30)
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Fig. 1. The Wigner representation of free-particle (Aµ = 0) evolution generated by the
(classical) equation of motion (34) and (35) in the phase space. The initial state (a) obtained
by the projecting antiparticles out [Eqs. (36) and (37)] from a Gaussian state shown in
Figure 2a. The final state at t = 10 ~/MeV (b) contains antiparticles. The blue dots depict
an ensemble of point particles evolving according to the Hamiltonian equation (7). Evolution
is restricted to one dimension with x = x1 and p = p1. Red and blue colors represent,
respectively, positive and negative values.

The Wigner representation, Wν,ν – the sum of the diagonal elements of the Wigner
matrix W, will be used below to visualize dynamics (Figs. 1–3) since the real-valued
function Wν,ν is similar to the non-relativistic Wigner function.

Hence, the Ehrenfest relations (20) read

d

dt
Tr[W x̂k] = Tr[W cγ0γk],

d

dt
Tr[W p̂k] = Tr[W ce∂kAνγ

0γν ], (31)

where the trace is calculated over both the spinorial degrees of freedom and the phase
space.

Note that in references [23,26] slightly different definitions are used for the Wigner
matrix-valued function and representation; additionally, Tr denotes tracing out the
spinorial degrees of freedom only.

“Classicalness” is introduced by the condition

[x̂j , p̂k] = 0. (32)

Similar to the nonrelativistic case [18], the classical algebra must be extended to

include additional operators θ̂k and λ̂k obeying [23,24]

[x̂j , λ̂k] = −iδjk, [p̂j , θ̂
k] = −iδkj , (33)

where all the other commutators vanish.
Assuring unitarity of the dynamics, we propose the following anzats for the

equation of motion in the classical case

i
∂

∂t
W =

1

2
[γ0γν , K̂νW]+, (34)
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Fig. 2. The Wigner representation of quantum free-particle (Aµ = 0) evolution of the initial
Gaussian state (a) via the Dirac equations (22) and (28) in the phase space to the final state
(b) at time t = 10 ~/MeV . Evolution is restricted to one dimension with x = x1 and p = p1.
Red and blue colors represent, respectively, positive and negative values.

Fig. 3. The Wigner representation of free-particle (Aµ = 0) evolution generated by Spohn’s
classical equation of motion (39) and (35). The initial state (a) obtained by the projecting
antiparticles out [Eqs. (36) and (37)] from a Gaussian state shown in Figure 2a. Unlike
the case of Figure 1, the final state at time t = 10 ~/MeV (b) does not have antiparticles.
The blue dots depict an ensemble of point particles evolving according to the Hamiltonian
equation (7). Evolution is restricted to one dimension with x = x1 and p = p1. Red and blue
colors represent, respectively, positive and negative values.

where [·, ·]+ is the anticommutator and K̂ν is an unknown self-adjoint generator of
motion. Requiring that in the absence of the spinorial degrees of freedom equation (34)
should reproduce the non-relativistic Liouvillian equation in terms of the Poisson

bracket, we conclude that K̂ν must linearly depend on λ̂k and θ̂k, while remaining
an arbitrary function of x̂k and p̂k. Assuming that W sufficiently quickly vanishes at
infinity, the generator of motion satisfying the Ehrenfest relations (31) is

K̂ν = −cλ̂ν − ce(∂jAν)θ̂j , (35)

where λ̂0 = 0.
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Even though the obtained model fulfills reasonable conditions, a closer inspection
reveals that it cannot be a physically valid classical limit. As we will show below, the
equation of motion (34) and (34) produces antiparticles.

Antiparticles are convenient to distinguish from particles in the phase space. Since
for the latter, the momentum and velocity vectors are parallel. In other words, a
particle with a positive (negative) momentum moves into the positive (negative)
direction. However, a portion of the phase space distribution of positive (negative)
momenta moving into the negative (positive) direction is associated with antiparticles
[23]. In other words, antiparticle’s momentum and velocity vectors are antiparal-
lel, since according to Feynman’s characterization, antiparticles are particles moving
backwards in time.

So far, an arbitrary quantum or classical state W contains both particle and
atiparticle components [38] as states with positive and negative energies in the context
of relativistic quantum mechanics. However, the application of a projector P+ can
eliminate all the antiparticles [26]

W0 = P+WP+ (36)

where

P+ =
1

2

(
1 +
−γ0γkc(p̂k − eAk) +mc2γ0

K(p̂)

)
, (37)

with K(p) as the classical kinetic energy defined in equation (5). For example, the
state depicted in Figure 1a, which is the same as Figure 3a, is obtained by projecting
a Gaussian shown in Figure 2a.

Figure 1b shows a result of free-particle evolution (34) of the initial state (Fig. 1a)
containing no antiparticles. Even though the equation of motion is valid for an
arbitrary vector potential, we depict free-particle evolution as it offers the clearest
illustration for antiparticle dynamics since an external electromagnetic field con-
stantly contributes antiparticles. In Figure 1b, one observes two portions of the wave
packet containing mostly positive values of momenta but moving into the opposite
directions. The left portion consists of antiparticles, whereas particles are on the right.
This shows that equation (34) indeed generates antiparticles. As a result, the evo-
lution generated by equation (34) disagrees with the classical Hamiltonian evolution
(7) of point particles (see dark blue points in Fig. 1).

Dirac free particle dynamics is shown in Figure 2 for comparison. Since the free
Dirac evolution does not create antiparticles, all the antiparticles observed in Figure 2
coming from the non-filtered initial Gaussian state in Figure 2a.

Nevertheless, the problem of antiparticle creation can be fixed by redefining the
Ehrenfest relations as

d

dt
Tr[W x̂k] = Tr[W cγ0γkP+],

d

dt
Tr[W p̂k] = Tr[W ce∂kAνγ

0γνP+]. (38)

This leads to the new equation of motion

i
∂

∂t
W =

1

2
P+[γ0γν , K̂νW]+P+. (39)

Rewriting the latter as

W(t+ δt) =W(t)− i δt
2
P+[γ0γν , K̂νW(t)]+P+ +O

(
δt2
)
, (40)
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we see that if the initial state is free of antiparticles [i.e.,W(t) = P+W(t)P+], so is the
final state [i.e.,W(t+ δt) = P+W(t+ δt)P+]. Figure 3 illustrates that the evolution of
Wν,ν generated by equation (39) does not create antiparticles. An appearance of the
tail in Figure 3b is attributed to the small fraction of the initial wave packet (Fig. 3a)
having negative momenta. Furthermore, the wave packet dynamics [Eq. (39)] is in
agreement with the classical Hamiltonian evolution (7) of point particles, as expected
from a classical statistical theory.

Equation (39) is the classical Koopman-von Neumann theory [18,20] correspond-
ing to the quantum Dirac equation. The numerical methods for the relativistic Wigner
function [23] (used for Fig. 2) are directly applicable to propagate equation (39) as
well as equation (34).

Equation (39) has been originally derived by Spohn [64] from a different perspec-
tive, which established a consistency with the standard classical relativistic mechanics
and the Bargmann-Michel-Telegdi (BMT) equation for the classical spin [4].

5 Conclusions

In references [18,20], we have reached the conclusion that the value of the commutator
between the position and momentum is the only feature distinguishing non-relativistic
quantum from classical mechanics. Here, we have shown that the same conclusion
holds in relativistic mechanics. In particular, by starting from the Ehrenfest relations
inspired by the spinorial classical mechanics, we deduce the Dirac equation if coordi-
nates and momenta obey the canonical commutation relation. Spohn’s equation [64]
is arrived at if in addition to the commutativity of coordinates and momentum (i.e.,
the classical limit) we explicitly forbid generation of anti-particles. From this point of
view, Spohn’s equation emerges as the classical Koopman-von Neumann theory corre-
sponding to the Dirac equation. The develop methodology can be readily apply to the
analysis of other relativistic dynamical systems (e.g., governed by the Klein-Gordon
equation [49,66]).

Spin in relativistic classical mechanics plays a critical role in designing experi-
ments uttilzing high energy particle accelerators [54]. In such a setting, the classical
spin is conventionally described within the Bargmann-Michel-Telegdi (BMT) equa-
tion [4]. Note that even though the BMT equation is only valid for homogeneous
electromagnetic fields, it is employed outside this approximation. On the contrary,
Spohn’s equation [64] is valid for inhomogeneous fields. This opens an opportunity to
pursue practical applications in particle acceleration. Moreover, we currently utilize
ODM to find spinorial classical equations of motion accounting for a friction forced
induced by a dissipative interaction with a bath.

A.G.C. is supported by the Fulbright Foundation. H.A.R. acknowledges the Department
of Energy (DE-FG02-02ER15344). D.I.B. is supported by AFOSR Young Investigator
Research Program (FA9550-16-1-0254) and Humboldt Research Fellowship for Experienced
Researchers.

Appendix A: Classical spinor

In classical mechanics, a particle enquires a proper velocity u/ by applying a restricted
Lorentz transformations Spin+(1, 3) on the particle at rest u/rest = cγ0

u/rest → u/ = cLL†γ0, (A.1)
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where dt
dτ ≡ u

0 > 0 implies that the direction of time is preserved.
Any element of Spin+(1, 3) can be decomposed in terms of a Hermitian (B) and

a unitary matrix (R)

L = BR, (A.2)

where B is referred to as a Lorentz boost and R as a rotor. From equation (A.1) we
obtain the boost in terms of the proper velocity

B =

√
u/γ0

c
. (A.3)

The matrix square root can be obtained analytically as

B(u/) =
u/γ0 + 1c(signu0)√

2c(signu0)((signu0)c+ u0)
, (A.4)

where u0 > 0 for classical particles.
Multiplying equation (A.1) by γν from the right and taking the trace, we obtain

Tr[
d

dτ
xµγµγ

ν ] = cTr[LL†γ0γν ] = cTr[L†γ0γνL] = cTr[γ0γ0L†γ0γνL]. (A.5)

It follows that

4
d

dτ
xν = cTr[γ0L−1γνL], (A.6)

for spinors belonging to the restricted Lorentz transformations. Adding three traceless
terms, we have

4

c

d

dτ
xν = Tr[γ0L−1γνL] + Tr[iγ1γ2L−1γνL]

+ Tr[L−1γνL] + Tr[iγ0γ1γ2L−1γνL]. (A.7)

Defining the projector Q as

Q ≡ 1

4
(1 + γ0)(1 + iγ1γ2) = diagonal{1, 0, 0, 0}, (A.8)

obeying γ0Q = Q and iγ1γ2Q = Q, we arrive to

d

dτ
xν = cTr[Q(L†γ0γνL)Q], (A.9)

which follows from the identity QQ = Q.
The matrix LQ contains Ψ in the first column, while the remainder columns are

zero. Similarly, QL† contains Ψ† in the first row, while the remainder rows are zero.
Therefore, equation (A.9) leads to

dxν

dτ
= Ψ†cγ0γνΨ. (A.10)
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50. H. Krüger, Found. Phys. 23, 1265 (1993)
51. P. Kustaanheimo, E. Stiefel, J. Math. Bd 218, 27 (1965)
52. W. Liu, Phys. Chem. Chem. Phys. 14, 35 (2012)
53. P. Lounesto, in Clifford algebras and spinors (Cambridge University Press, 2001),

Vol. 286
54. S. Mane, Y.M. Shatunov, K. Yokoya, Rep. Prog. Phys. 68, 1997 (2005)
55. D. Mauro, Topics in Koopman-von Neumann Theory, PhD thesis, Università degli Studi
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