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Abstract. We discuss two theoretical proposals for controlling the
nonequilibrium steady state of nanomechanical resonators using quan-
tum electronic transport. Specifically, we analyse two approaches to
achieve the ground-state cooling of the mechanical vibration coupled
to a quantum dot embedded between (i) spin-polarised contacts or (ii)
a normal metal and a superconducting contact. Assuming a suitable
coupling between the vibrational modes and the charge or spin of the
electrons in the quantum dot, we show that ground-state cooling of the
mechanical oscillator is within the state of the art for suspended carbon
nanotube quantum dots operating as electromechanical devices.

1 Introduction

Mesoscopic conductors coupled to localised, quantum harmonic resonators have now
become a commonly studied system, both experimentally and theoretically. Inter-
esting phenomena in such systems arise from the interplay between the resonator
dynamics and the quantum transport in the single electron regime. The localised
oscillator modes can be either a microwave photon cavity [1–3] or a mechanical res-
onator [4]. In the latter case, these systems operate as electromechanical systems
and they include suspended carbon nanotube quantum dots [5,6], quantum dots in
suspended semiconductor membranes [7], quantum dots coupled to a piezoelectric
nanoresonator [8], or superconducting single-electron transistors [9]. Such electrome-
chanical systems typically operate far from equilibrium and can be very strongly
nonlinear, allowing us to unveil quantum dynamical properties unexplored so far.
They are also interesting to address fundamental issues as they are expected to enter
the quantum regime at low temperature and hence open the route for fundamental
tests of quantum mechanics in massive objects [10].

Suspendnd carbon nanotube quantum dots (CNT-QD) are a priori good can-
didates for realising quantum electromechanical systems: (i) mechanical modes can
reach extremely high quality factors Q ∼ 106 without detriment of the electron trans-
port properties [11]; (ii) recent experiments showed unprecedented control of the
tunability of both electron transport and electromechanical interaction [5]. To achieve
the quantum regime of the mechanical motion, a crucial requirement is cooling the
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system to a temperature much lower than the characteristic frequency, viz. kBT � hf
with h the Planck’s constant and f the frequency of a mechanical mode. In this way,
starting from the ground state, one aims to have access and control of only few low
energy excitations of the quantum oscillator. Despite some progress, this goal still
remain to be achieved in the flexural mechanical modes of suspended CNTs. The
crucial problem is the low frequency of the flexural modes whose typical value is
around hundreds of MHz, or below. This implies that the electromechanical devices
would have to be cooled to extremely cryogenic temperature below few milli-kelvin
which is a demanding task in the low temperature electronic circuitry.

Several and interesting theoretical proposals have been analyzed for achieving
active cooling by using electron transport [13–18], exploiting the effect of the back-
action force on the oscillator due to the interaction with a mesoscopic conductor.
Most of them are closely related to the optical mechanism of the side-band cooling
[19] which, in a scattering picture, is based on the enhancement of phonon absorption
due to the matching of the oscillator’s frequency f with a resonant excitation of the
conductor.

In this paper, we discuss two proposals for cooling flexural modes of a suspended
CNT-QD using electron transport.

The first system is a nanomechanical spin-valve. The injection of spin-polarized
current has been experimentally reported in CNT-QDs in a spin-valve geometry with
gate field control and with ferromagnetic nanocontacts [20]. Moreover the spin of
discrete electron levels in the dot is theoretically predicted to couple to the flexural
vibrations due to the mediation of the intrinsic spin–orbit interaction [21] or due to
the presence of an external magnetic gradient [22]. We combine these two aspects
and propose the system sketched in Figures 1a and 1b [23,24].

The second system is a quantum dot connected to one superconducting contact
and a normal metal as shown in Figures 1c and 1d. In this system, for energy scales
involved in the transport and smaller than the superconducting gap ∆, finite current
flows through the system due to Andreev Reflection (AR) in which, for instance,
an incoming electron from the normal lead is reflected as hole with the concurrent
formation of a Cooper pair into the superconductor. In the presence of an interaction
of the quantum dot with bosonic modes of the environment, AR can be inelastic and
experimental observations of such inelastic reflections in CNT-QD have been reported
[25]. We consider a microscopic model of charge–vibration interaction in the QD with
phonon emission or absorption in the vibration-assisted Andreev Reflection [26,27].

This paper is organized as follows. In Section 2, we start with a general, theoretical
approach to discuss the electromechanical effects in quantum dots coupled to local
resonators. We discuss how the nonsymmetrized noise of the dot’s operator coupled
to the vibration determines two important electromechanical effects: the induced
damping and the steady, nonequilibrium phonon occupation. In the following section,
we analyze the behavior of these two quantities. In Section 3, we report the results
for the first model shown in Figures 1a and 1b whereas Section 4 contains the results
for the second model shown in Figures 1c and 1d. Beyond the phase diagram of the
phonon occupation in terms of the bias voltage and of the gate voltage, we explain how
information about the resonator’s nonequilibrium state can be extracted by distinct
features of the inelastic current. In Section 5, we summarise our conclusions.

2 Electromechanical model

Quantum dots in real devices can be modeled as a single-impurity Holstein model in
which one assumes a linear coupling between the electron occupation on the quantum
dot and the oscillation amplitude of one (or more harmonic modes) representing the
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Fig. 1. A quantum dot (QD) is formed when electrons are confined to a small region
within a carbon nanotube (CNT) suspended between two conducting leads. (a) The spin
of the QD electron states is coupled to the flexural modes of the CNT suspended between
two ferromagnetic contacts of opposite polarization (see text). (b) Schematic picture of the
microscopic model for (a). The QD corresponds to two spin levels with a Zeeman splitting
and a single flexural mode to an oscillator. The spin–vibration interaction leads to vibration-
assisted inelastic spin-flip processes accompanied by the exchange (e.g. absorption) of energy
with the oscillator. (c) The charge of QD electron states is coupled to the flexural modes
of the suspended between a normal metal N and a superconductor S with gap ∆ (see
text). (d) Schematic picture of the microscopic model for (c). The QD corresponds to two
spin-degenerate levels and a single flexural mode to an oscillator. At small bias voltage
V , the charge-vibration interaction leads to vibration-assisted inelastic Andreev reflections
accompanied by the exchange (e.g. absorption) of energy with the oscillator.

local vibrations [12]. Here, we generalise this model and consider the following model
Hamiltonian

Ĥ =
∑
α=l,r

(Ĥα + Ĥα,t) +
∑
σ=↑,↓

εσn̂σ + λ F̂d (b̂ + b̂†) + ω0 b̂
†b̂ , (1)

where Ĥα is the Hamiltonian for the left and right lead (α = l, r), Ĥα,t is the tunnel-
ing Hamiltonian between the dot and the leads (we set ~ = 1). The nature of these
contacts will be specified in the next two sections, for two different cases. The oper-

ators b̂ and b̂† are the (bosonic) creation and annihilation operators of the harmonic

oscillator of frequency ω0 and d̂σ and d̂†σ are the corresponding fermionic operators

for the dot’s levels. The coupling strength of the interaction is λ. The operator F̂d is
the force acting on the oscillator. We will study the case when F̂d corresponds to the

x component of the local spin operator F̂d = ŝx = d̂†↑d̂↓ + d̂†↓d̂↑ in Section 3, whereas

in Section 4 we analyse the case when F̂d corresponds to the total charge.
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Furthermore, we assume the weak coupling limit regime given by

λ� ω0 . (2)

This means that the variation of the charge or the spin in the dot induces a displace-
ment of the energy of the order of λ which is small compared to the level separation
of the harmonic oscillator. In that case, polaronic effects are negligible and the bare
levels and states of the harmonic oscillator are meaningful starting points to deal with
in presence of the electron-vibration interaction and current flowing through the dot.
We aim to focus on sharp resonance transport regime so that we also require another
condition for the typical tunneling rate Γ controlling the hopping of the electrons
from the leads to the dot

Γ� ω0. (3)

Since the inverse of the tunneling rate ~/Γ is related to the dwell time of the electron
in the dot, this condition is known as the anti-adiabatic regime, in which the fast
oscillator readjust to the variations of the charge or spin in the dot due to the quantum
tunneling. Assuming the weak coupling and anti-adiabatic regime, we calculate two
important quantities: the nonequilibrium occupancy of the harmonic oscillator n̄c and
the inelastic current through to the dot Iin due to the electron-vibration interaction
in the leading order of λ2.

2.1 Electromechanical damping

When a voltage bias is applied, the electrons tunneling through quantum dot behave
as an effective environment characterized by an electromechanical damping γ and a
force noise acting on the oscillator. Then the crucial quantity is the unperturbed,
nonsymmetrized noise of the electron force operator (charge or spin) of the dot

S(ω) =

∫ +∞

∞
dt eiωt 〈F̂d(t)F̂d(0)〉λ=0 (4)

with 〈. . . 〉λ=0 denoting the quantum statistical average taken over the electron system
for λ = 0. Then, we can express the electromechanical damping as

γ = λ2 [S(ω0)− S(−ω0)] ≡ γ+ − γ−. (5)

In other words, the absorption of an energy quantum ω0 is connected to the intrinsic
non-symmetrized noise at the positive frequency of the open dot (non interacting
with the vibration) whereas the emissions of an energy quantum ω0 is connected to
the non-symmetrized noise at the negative frequency. A simple way to understand
the relation between the non-symmetrized noise γ± and the probability of absorption
or emission of a phonon of energy ~ω0 is based on Fermi’s Golden rule. For the
probability per unit time of one phonon absorption (+) or emission (−), the Golden
rule gives

p± = 2π
∑
n

∑
i,f

Pn Pi |〈n∓ 1, ψf | Ĥint |n, ψi〉|
2
δ [ω0 ± (Ei − Ef )] , (6)

where the ψi and ψf are the initial and final states of the open dot, with energies
Ei and Ef , and Pi is the probability of occupation of the initial state whereas Pn is
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the probability of occupation of the Fock state |n〉. Using the integral representation

for the δ-function and the interaction Ĥint = λF̂d(b̂+ b̂†), one obtains for the case of
absorption

p+ = λ2
∑
n

nPn
∑
i,f

Pi 〈ψi| F̂d |ψf 〉 〈ψf | F̂d |ψi〉
∫ +∞

−∞
dt ei[ω0+Ei−Ef ]t (7)

= λ2n̄

∫ +∞

−∞
dt eiω0t〈F̂d(t)F̂d(0)〉λ=0 = γ+ n̄, (8)

in which the completeness of the dot’s states was used and we set n̄ =
∑
n nPn. A

similar calculation for the emission of one phonon lead to

p− = (n̄+ 1) γ−. (9)

2.2 Nonequilibrium steady state

In order to calculate the steady state nonequilibrium occupation n due to the charge–
vibration interaction, we neglect in a first approximation the thermal bath and use
an heurestic and phenomenological approach by assuming the following equation rate

0 =
dn̄

dt
= n̄γ+ − (n̄+ 1) γ− −→ n̄ =

γ−
γ+ − γ−

≡ n̄c. (10)

The result for n, equation (10), clearly points out that ground state cooling with
n̄c � 1 can be reached for γ+ � γ−. In other words, one needs to create a strong
asymmetry between the two processes in order to cool the oscillator. Hereafter, we
call the coefficients γ± the intrinsic rates or simply rates for the phonon emission and
absorption since they are a property of the intrinsic system without the interaction
with the resonator.

One can generalize equation (10) taking into account the (unavoidable) interaction
of the oscillator with a thermal bath with an intrinsic damping rate γ0. Then, the
general steady occupation of the oscillator is given by the competition between the
interaction of the oscillator with the effective environment – the quantum dot – and
the thermal bath

n̄ =
γ n̄c + γ0 nB

γ + γ0
, (11)

with nB the Bose distribution at frequency ω0 for temperature T of the thermal bath.
Thus ground state cooling n̄ � 1 also requires that the electromechanical damp-
ing dominates over the intrinsic damping γ0 nB � γ n̄c. The latter inequality means
γ0/γ � n̄c/nB � 1 which is a realistic condition for suspended CNT-QD which have
huge quality factors Q0 = ω0/γ0 ∼ 106.

2.3 Inelastic current

Finally, we discuss the inelastic current associated to the electron–vibration interac-
tion. This current results from vibration assisted tunneling processes in which electron
hops from a lead to the dot exchanging energy with the oscillator. Both phonon emis-
sion and phonon absorption give a contribution to the inelastic current. Hence, owing
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to the discussion of the previous section, one expects a priori the following expression
for the inelastic current

Iin = q∗ [ γ− (n̄+ 1) + γ+n̄ ] . (12)

In Section 3, we will discuss the case of a quantum dot coupled to the vibration via the
dot’s spin, F̂d = ŝx. Then, for the fully spin polarized electrons in the ferromagnetic
leads and in the limit of large applied voltage V , the inelastic current takes indeed the
form given by equation (12) with q∗ = e. Similarly in Section 4, we will discuss the case

of a quantum dot coupled to the vibration via the dot’s charge, F̂d = n̂d = n̂↑ + n̂↓.
Again, in the limit of subgap transport in which the current is mainly determined by
Andreev Reflections and in the limit of large applied voltage V (but still eV � ∆
with ∆ the superconducting gap), the inelastic current reduces to equation (12) with
q∗ = 2e since two electrons are involved in the current in order to form a Cooper pair
into the superconductor.

3 Spin-vibration interaction and inelastic spin-flip tunneling

We consider the quantum dot formed by two spin levels with effective Zeeman split-
ting ∆εz = ε↑ − ε↓ and average energy ε0 = (ε↑ + ε↓) /2. To model the spin-valve
CNT-QD embedded between ferromagnetic leads and to simplify the discussion, we
restrict to the case of fully polarized leads such that we can identify α = l ↔ σ =↓
and β = r ↔ σ =↑ in the Hamiltonian∑

α=l,r

(
Ĥα + Ĥα,t

)
=
∑
σ=↑,↓

∑
k

[εkσ ĉ
†
kσ ĉkσ + tσ ĉ

†
kσd̂σ + t∗σ d̂

†
σ ĉkσ]. (13)

We also restrict the analysis to the symmetric contacts such that the tunneling rates

Γ↑l = Γ↓r = Γ. In a simple picture, for fully polarized leads, the current can flow
through the system only if the spin is flipped when the electrons pass through the dot.
This process occurs inelastically with the absorption or the emission of one phonon
in weak coupling regime. Hence, the system acts as a nanomechanical spin-valve in
which spin-polarized electrons tunneling through the dot’s levels can exchange energy
with the oscillator by flipping their spins. At large bias voltage V compared to the
other energies (temperature T , the tunneling rate Γ and the energy spin level εσ)
the electrons flow pratically from the left to the right, as shown in the upper inset
of Figure 2a. Then the electromechanical damping can be written as γ = γ+ − γ−
The coefficients γ± correspond to the rates for vibration-assisted inelastic processes
in which a spin flip occurs for one electron tunneling from the left lead left to right
accompanied by the absorption (s = +) or emission (s = −) of an vibrational energy
quantum ω0

γ± = λ2Γ2

∫
dω T±(ω) fl(ω) [1−fr(ω ± ω0)] ' λ2Γ2

∫
dω T±(ω), (14)

where fl,r(ω) = 1/{1 + exp[(ω − µl,r)/T ]} are the Fermi functions at the left and
right lead, µl − µr = eV (approximately fl(ω) ' 1 and fr(ω) ' 0 for high voltage),
whereas the transmission functions read

T±(ω) =
1

π

Γ2

[Γ2 + (ω − ε↓)2]

Γ2

[Γ2 + (ω + sω0 − ε↑)2]
. (15)
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Fig. 2. Schematic picture of the phonon occupancy as a function of the bias voltage and
the average dot’s energy ε0 (controlled by the gate voltage). (a) In the nanomechanical spin-
valve, the figure represents the case of fully polarized leads and the resonance ω0 = ∆εz.
At fixed configuration of the Zeeman splitting in the dot and polarization of the leads, the
phonon absorption is enhanced at positive voltage. At the negative voltage, the opposite
regime occurs. (b) In the system with a superconducting lead, the Andreev Reflections are
mainly associated to the impinging electrons at high voltage. The phonon absorption is
enhanced when the reflected hole appears at the same energy of the incoming electron.
This is possible if, for example, the electrons enters the dot at the energy ε0 = −ω0/2 such
that it enters the superconductor at energy εe = ω0/2. Then the hole is reflected at energy
εh = −ω0/2. The opposite regime occurs when the electrons enters the dot at the energy
ε0 = ω0/2.

Equation (14) can be evaluated analytically. We report the result for the resonance
case ε↑ − ε↓ = ω0 which reads

γ+ =
λ2

2Γ
, γ− = γ+

Γ2

Γ2 + ω2
0

' γ+
(

Γ

ω0

)2

, (16)

from which we extract the minimum values of the phonon occupations that can be
achieved, namely nmin ' γ−/γ+ = (Γ/ω)

2
. The situation changes at negative voltage

where we have a region of increase of the phonon occupation n � 1 for γ+ & γ−
and an instability region when γ+ < γ−. These two regions are beyond the validity
of the perturbative approach and the phase diagram represents only a qualitative
description.

The results of equations (14)–(16) enlighten the ultimate mechanism for the cool-
ing. The two Lorentzian functions in the integral of equation (14) completely overlaps
for the case of the absorption rate s = + in the cooling region. In other words, the
inelastic spin-flip occurs through the two peaked spin levels of the dot’s density of
states. Oppositely, in the case of emission s = −, the two Lorentzian functions in the
integral of equation (14) are well separated: phonon emission is still possible but arises
through only one peak associated to the spin down whereas the passage through the
spin up can be seen as a cotunneling process whose amplitude scales as ∼ Γ/ω0 � 1.

Finally, we discuss the behavior of the inelastic current in the limit case when
the oscillator is strongly affect by the quantum dots and the steady state phonon
occupation saturates to n̄ ' n̄c. In this regime the current clearly reflects the behavior
of the phonon occupancy. At large positive voltage, in the cooling regime, we have
n̄c � 1 and γ− � γ+

IeV >0
in ' eγ− = I0

(
λ2

2ω2
0

)
(17)
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with I0 = eΓ. In the cooling regime the inelastic current is strongly suppressed with
respect to the elastic current of order I0. At negative voltage with γ+ & γ− we have
n̄c ≥ 1 such that we can approximate

IeV <0
in ' e γ n̄c. (18)

Since the phonon occupation scales as n̄c ∼ γ−/(γ+ − γ−), it increases indefinitively
as long γ+ → γ− until the instability γ+ − γ− < 0. In summary, a strong asymme-
try emerges in the inelastic current that reflects the behavior of the nonequilibrium
phonon occupation n̄c.

4 Charge-vibration interaction and inelastic Andreev Reflection

The model Hamiltonian for a superconductor/ normal metal quantum dot is

formed by the Fermi reservoir Hl = HN =
∑
k εkσ ĉ

†
kσ ĉkσ and the BCS Hamiltonian

Hr = HS =
∑
k[εkσ f̂

†
kσ f̂kσ + ∆(f̂†k↑f̂

†
−k↓ + h.c.)] and the tunneling Hamiltonian

ĤN,t + ĤS,t =
∑
σ=↑,↓

∑
k

(
tN ĉ
†
kσd̂σ + tS f̂

†
kσd̂σ + h.c.

)
. (19)

In the strong subgap regime, defined by the condition that the gap ∆ is the largest
energy scale in the problem, the charge transport through the quantum dot occurs
via Andreev Reflection (AR) whose transmission amplitude is independent of ∆. In
this case, the relevant quantity are the tunnelling rates from the normal lead to the
dot ΓN and the tunnelling rates from the superconductor to the dot ΓS .

An electron at energy much lower than the energy gap and and tunnelling on the
quantum dot from the normal metal can be either simply inelastic reflected either
inelastic reflected as hole (AR). Thus the electromechanical damping is associated to
these two inelastic process γ = γNR + γAR. However, the normal reflection (NR) can
drive the oscillator only to the thermal equilibrium: in these processes, the oscillator
is affected by only one fermionic reservoir at unique temperature T . Hence inelastic
normal reflection forms an additional mechanism of normal damping and γNR adds
to the intrinsic damping γ0. By contrast, the inelastic ARs can drive the resonator
towards a nonequilibrium steady state. From now on we focus on the inelastic AR
processes. Setting the chemical potential of the superconductor µ = 0, we consider
the high voltage limit (but still eV � ∆) in which the current can be described as
given by impinging electrons that are reflected as holes. Then the emission/absorption
rates read

γ± = λ2 Γ2
N

∫
dω T±(ω) f(ω)

[
1−f̄(ω ± ω0)

]
' λ2 Γ2

N

∫
dω T±(ω), (20)

where, beyond the Fermi occupation function f(ω) = 1/{1 + exp[(ω − eV )/T ]} ' 1,
we have introduce the occupation function for the holes f̄(ω) = 1/{1 + exp[(ω +
eV )/T ]} ' 0, and the transmission function

T±(ω) =
1

4π
|Ge (ω)F ∗ (ω + sω0)− F (ω)G∗h (ω + sω0)|2, (21)

with the Green functions defined as

Ge/h(ω) =
ω ± ε0 + iΓN

(ω + ε0 + iΓN ) (ω − ε0 + iΓN )− Γ2
S

, (22)
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F (ω) =
ΓS

(ω + ε0 + iΓN ) (ω − ε0 + iΓN )− Γ2
S

. (23)

The square modulus of the anomalours Green function F (ω) plays the role of trans-
mission function in the formula for the elastic current associated to ARs through the
dot (for instance, an incoming electron at energy ω). Thus one can regard it as the
effective amplitude for the AR. The other two functions Ge/h(ω) are the electron
and hole Green functions of the dot in tunneling contact with the superconductor
and they play the role of transmission function in the tunneling in the normal case
(for instance, an incoming electron at energy ω). In other words, the transmission
function consists of a coherent sum of two amplitudes that are associated to the two
possible paths in which the phonon is emitted or absorbed before or after an AR.
The integral of the transmission function in the last term of equation (24) can be
done analitically and we obtain

γ±(ε0) = λ2 Γ2
S ΓN

(
E2
A +

ω2
0

4 + 5Γ2
N

)
(E2

A + Γ2
N )
(
ω2

0

4 + Γ2
N

)
× (±ω0/2− ε0)

2
+ Γ2

N[
(±ω0/2)− EA2

+ Γ2
N

] [
(±ω0/2 + EA)

2
+ Γ2

N

] (24)

with EA =
√
ε20 + Γ2

S and s = +/− for the absorption and emission. Remark-
ably, the rate for phonon emission is strongly suppressed at ε0 = −ω0/2 such
that the resonator approaches the ground state with minimum phonon occupation
nmin = γ−/γ+ ' (ΓN/ω0)

2
, see Figure 2b. At the symmetric point ε0 = ω0/2, the

rate for phonon absorption is strongly reduced and we are in the full region of insta-
bility γ+ � γ−, see Figure 2b. The final result equation (24) is a consequence of
the form of the transmission function equation (21): ground state cooling is achieved
due to the destructive interference of the two amplitudes associated to the charge
transmission with phonon emission.

As for the previous system, we discuss the behavior of the inelastic current in the
limit case when the oscillator is strongly affect by the quantum dots and the steady
state phonon occupation saturates to n̄ ' n̄c. In contrast to the previous system of
Section 3, the current has a sharp dependence on the dot’s energy levels ε0. We give
an example assuming the case ΓS � |ε0|, ω0 and |ε0| ≈ ω0/2. In the cooling regime,
with ε0 < 0, we have n̄c � 1 and γ− � γ+ and we can approximate Iin ' 2 e γ−. For
ε0 ≈ −ω0/2, the inelastic current shows a peak

Iin (ε0 ≈ −ω0/2) = I−in ' 2e
8λ2Γ2

SΓ3
N

ω4
0

[
(ε0 + ω0/2)

2
+ Γ2

N

] . (25)

In the regime ε0 > 0 with γ+ & γ− we have n̄c ≥ 1 such that we can approxi-
mate Iin ' 2eγn̄c. Close to ε0 ≈ ω0/2 (but far away the instability region), we can
approximate the peak of the inelastic current to

Iin (ε0 ≈ ω0/2) = I+in ' 2e
8λ2Γ2

SΓ3
N

ω4
0

[
(ε0 − ω0/2)

2
+ Γ2

N

] n̄c(ω0/2)

nmin
. (26)

In such nonequilibrium regime of the oscillator, we conclude that the peak around
ε0 ≈ ω0/2 will be higher than the peark at ε0 ≈ −ω0/2 since the first one is enhanced
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by the phonon occupation n̄c(ω0/2) ≥ 1 and by the factor nmin = (Γ0/ω0)
2
. Fur-

thermore, since the phonon occupation scales as n̄c ∼ γ−/(γ+ − γ−), it increases
indefinitively as long γ+ → γ− until the instability occurs γ+ − γ− < 0.

To summarize, in the case of a quantum dot with charge-vibration interaction
inducing inelastic ARs, the effect of the coupling with the resonator appears in the
sub-gap transport as sharp, vibrational side band peaks which are not broadened by
the temperature of the normal leads. Moreover a strong asymmetry of the two peaks
points out clearly the nonequilibrium state of the oscillator.

5 Conclusions

To conclude, we have presented two theoretical proposals for controlling the nonequi-
ibrium steady state of nanomechanical resonators integrating quantum dots. One of
the main results is that ground state cooling of the resonator can be realistically
achieved using spin-polarised current [23,24] or a superconducting contact [23,24].
For the two different proposals, we have also shown how the nonequilibrium states
of the resonator can be readily detected by simple measurements of the dc current.
Finally, we remark that the on-site charging energy, that we have neglected in our
analysis, does not break qualitatively our findings. For the case of the spin–vibration
interaction, correlation effects associated to the double occupation eventually set the
charge flow but do not prevent the occurrence of inelastic spin-flip tunneling [24]. For
the charge–vibration interaction, the Andreev Reflections rely on superconducting
correlations in the quantum dot. Indeed, in the superconducting gap limit ∆ → ∞
and high voltage limit (but still eV � ∆), it is still possible to establish a BCS-like
state in the quantum dot even in the presence of strong Coulomb repulsion when the
tunneling coupling between the superconductor and the quantum dot is larger than
the tunneling coupling with the normal lead [28].

We thank Pascal Stadler for useful discussions. This work was supported by the Excellence
Initiative through the Zukunftskolleg and by the DFG through the SFB 767.
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