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Abstract. We study the thermoelectric properties of an electronic
localized level coupled to two graphene electrodes. Graphene band
structure shows a pseudogap density of states (DOS) that strongly
affects the charge transport. We focus on the Coulomb blockade regime
and derive the expression for the Onsager matrix that relates the charge
and heat currents to the voltage and temperature biases in the linear
response regime. The elements of the Onsager matrix are functions of
the transmission coefficient, which depends on the dot Green’s function.
Our self-consistent calculation of the Green’s function is based on the
equation-of-motion technique. We find a double-peak structure for the
electric and thermal responses as the dot level is tuned with an external
gate terminal, in accordance with the Coulomb blockade phenomenon.
Remarkably enough, the thermal conductance is much smaller than its
electric counterpart, giving rise to a high thermoelectric figure of merit
for certain values of the gate voltage. Finally, we discuss a large depar-
ture from the Wiedemann–Franz law caused mainly by the pseudogap
DOS in the contacts and weakly affected by interactions.

1 Introduction

Graphene, a monolayer of carbon atoms set on an hexagonal lattice, was firstly synthe-
sized more than a decade ago [1,2]. The unusual properties of graphene are due to its
Dirac-like band structure, where conduction and valence bands touch at six discrete
points at the edges of the honeycomb Brillouin zone. The relativistic (Dirac) character
of graphene electrons was pointed out by DiVincenzo and Mele [3] before graphene
was grown in the lab. In its energy band structure, only two of the six Dirac cones
are nonequivalent, being currently named as the K and K′ points [1]. The quasiparti-
cle excitations at those points obey linear energy dispersions and are responsible for
many exotic physical phenomena such as half-integer quantum Hall effect and Klein
tunneling, among others [1]. Moreover, graphene quasiparticles are chiral fermions
with potential applications in the so-called valleytronics field of research [4,5].
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An appealing graphene application is found when graphene acts as a conduc-
tive material attached to a nanostructure to create a single-electron transistor. An
example is the case of a quantum dot carved in a graphene sheet [6–9]. Here, typical
Coulomb blockade phenomenon is observed associated to transport of charges across
the localized dot level. The linear conductance exhibits peaks at the dot resonances
separated by the mean-dot level spacing and electron–electron Coulomb repulsion.
Interestingly, transport of charges in graphene-based quantum dots occur at much
higher temperatures than in traditional semiconductor dots [9]. Further, under certain
circumstances, many-body effects such as Kondo physics [10–12] could be observed.
It has been shown that graphene alters quite strongly the Kondo state [13–22]. How-
ever, much less attention has received the Coulomb blockade regime in which charge
fluctuations are the dominant events in transport. Coulomb-blockade effects are ubiq-
uitous and govern the transport properties of a large variety of systems: quantum dots
[23], molecular bridges [24], carbon nanotubes [25], etc. Coulomb blockade transport
has been investigated extensively in nanostructures attached to metallic contacts.
However, when contacts are graphene electrodes, the Coulomb blockade effect is a rel-
atively unexplored problem. Experimentally, Coulomb blockade oscillations have been
reported to occur in graphene quantum dots where the linear conductance oscillates
with the dot level position [6,7].

Whereas a great deal of works has been devoted to the study of graphene electronic
properties, the thermal and thermoelectric properties are less understood. Recent
measurements reveal that graphene shows high thermal conductance values [26]. In
this respect, graphene-based setups might offer novel opportunities to the progress
in thermoelectrics [27–30]. Good thermoelectric devices at the nanoscale should be
able to efficiently transform wasted heat into useful electricity or convert electric
currents into reversible heat [31,32]. The figure of merit ZT is a coefficient that
quantifies the efficiency in the heat-to-electricity (or electricity-to-heat) conversion
process. Importantly, the figure of merit is proportional to the square of the Seebeck
(thermopower) coefficient, namely, the ratio between the electric and thermoelectric
linear conductances under open-circuit conditions.

The purpose of our work is to analyze the thermoelectric transport through
an interacting quantum dot coupled to Dirac-like electrodes. We are interested in
a temperature regime where charge fluctuations are important and therefore we
neglect Kondo physics. Below, we develop a theoretical model that describes this
system. We will consider the linear transport regime and compute electric (G), ther-
mal (K), and thermoelectric responses L12. Our findings indicate that graphene
single-electron transistors show rather high thermoelectric efficiencies with found
values of ZT ' 8. As a byproduct, we demonstrate that due to the strong energy
dependence of tunneling rates this system shows violations of the Wiedemann–Franz
law.

The paper is organized as follows. In Section 2, we introduce our model for
an interacting dot coupled to two Dirac contacts. The Onsager matrix is com-
puted to describe electric and heat fluxes when voltage and temperature biases are
applied, and the Seebeck and ZT coefficients are accordingly defined. Since trans-
port coefficients depend on the dot Green’s function, we apply an equation-of-motion
(EOM) technique [33–36] to derive the conductances. Our results for different param-
eters are thoroughly discussed in Section 3. Finally, Section 4 summarizes the main
achievements of this work.

2 Theoretical model

We employ an Anderson-like model to describe a spin degenerate localized level with
strong on-site Coulomb interaction and coupled to two Dirac electrodes as shown in
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Fig. 1. Energy band diagram for the system under consideration. The dot level is denoted
by εdσ. For double occupancy the dot level is shifted by an amount U that describes the
Coulomb repulsion. The hybridization term Γ(ε) = γ0|ε− µ| depends on energy ε. We con-
sider undoped graphene electrodes with chemical potential µ = εF = 0 located at the Dirac
point. The electrodes can be held at different temperatures indicated by blue and red colors.

Figure 1. The full Hamiltonian reads [37,38]

H =
∑
σ

εdσd
†
σdσ + Un↑n↓ +

∑
α=L/R,s,k,σ

∫ +kc

−kc
dk(εk − µ)c†αskσcαskσ

+ Ṽ
∑
i σ

∫ +kc

−kc
dk
√
|k|
(
c†αskσdσ + d†σcαskσ

)
, (1)

where dσ(d†σ) annihilates (creates) an electron with spin σ = {↑, ↓} in the localized
level, εdσ denotes the spin-resolved energy level, and U represents the strength of
the Coulomb interaction. Here, nσ = d†σdσ is the particle number operator for the

localized level. In the graphene leads, cαskσ(c†αskσ) annihilates (creates) a relativistic
electron in contact α (= L/R for the left/right contact) with valley index s, wave
vector k, and spin σ. The energy spectrum εk = ~vF k is relatively measured with
respect to the chemical potential µ with vF ' 106 m/s being the graphene Fermi
velocity. The chemical potential µ can be tuned by doping techniques and, hereafter,
we consider µ = εF = 0. We recall that the linear dispersion εk = ~vF k leads to
the linear density of states (DOS) ρ(ε) ∝ |ε|. kc is a momentum cutoff such that
D = ±~vF kc are the energy limits inside which the graphene continuum model is
valid. Finally, the dot-lead coupling is Ṽ = V0

√
πΩ0/2π, where Ω0 is the area of the

graphene unit cell and V0 the tunneling amplitude.

2.1 Onsager matrix: transport coefficients

We now compute the transport coefficients expressed as the Onsager matrix [39] that
connects linear charge and heat currents with the (small) applied forces, which in our
case are the electrical and thermal biases:

(
I
J

)
=

(
L11 L12

L21 L22

)(
∆V
∆T

)
. (2)

Here, I and J are the charge and heat currents, respectively, generated when
an electric bias ∆V = VL − VR and a temperature difference ∆T = TL − TR are
applied between the left and right contacts. In an explicit manner, the elements of
the Onsager matrix are [40,41]
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L11 =
e2

h

∫ +∞

−∞
dε T (ε)

[
−∂f(ε)

∂ε

]
T,µ

, (3)

L12 =
e

hT

∫ +∞

−∞
dε T (ε)(ε− µ)

[
−∂f(ε)

∂ε

]
T,µ

= L21/T, (4)

L22 =
1

hT

∫ +∞

−∞
dε T (ε)(ε− µ)2

[
−∂f(ε)

∂ε

]
T,µ

, (5)

where T (ε) is the transmission probability through the dot. The response coefficients

(Lij) are now related to the linear electric G = L11, thermal K = L22 − T L
2
12

L11
, and

thermoelectric (L12) conductances. Since we focus on the linear response regime,
all responses must be calculated at equilibrium. Hence, in the above expressions
f(ε) = 1/[exp(ε/kBT )+1] is the Fermi function at equilibrium with T the background
temperature common to both graphene electrodes.

We define the Seebeck coefficient or themopower as

S = −∆V

∆T

∣∣∣
I=0

=
L12

L11
. (6)

This is useful for the calculation of the thermoelectric figure of merit:

ZT =
S2GT

K
. (7)

An important remark here is in order. For sufficiently low temperatures the thermal
conductance is dominated by purely electronic transport and therefore we can neglect
the phonon contribution to ZT . We will later emphasize this point.

All transport coefficients are expressed in terms of the transmission coefficient

T (ε) = 2πΓ(ε)
∑
σ ρdσ(ε), (8)

where Γ(ε) = γ0|ε| with γ0 = πṼ 2ρ0 (here, ρ0 = 2/(~vF )2). ρdσ(ε) denotes the local
DOS for the interacting level which can be found as ρdσ(ε) = − 1

π=
(
Grσ,σ(ε)

)
. Grσ,σ

is the retarded Green function for the interacting localized level. In the following, we
derive a Green’s function suitable for the Coulomb blockade regime. To attain such a
goal, we employ the EOM technique [34–36] followed by a decoupling procedure. We
note that Kondo correlations are not included in our decoupling scheme.

2.2 Green’s function

The retarded Green’s function Gr(t) for fermionic operators A and B is defined as

GrA,B(t) ≡ 〈〈A,B〉〉rt = −iθ(t)〈{A(t), B(0)}〉, (9)

whose EOM in energy space takes the following form

ε+ 〈〈A,B〉〉rε + 〈〈[H, A] , B〉〉rε = 〈{A,B}〉, (10)
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with H being the Hamiltonian under consideration and ε+ = ε + i0+. For the dot
Green’s function Grσ,σ(ε) =

〈〈
dσ, d

†
σ

〉〉r
ε
, it is easy to show that

(
ε+ − εdσ

)
Grσ,σ(ε) = 1 + U

〈〈
dσnσ̄, d

†
σ

〉〉r
ε

+ Ṽ
∑
α,s

∫ kc

−kc
dk
√
|k|
〈〈
cαskσ, d

†
σ

〉〉r
ε
. (11)

The equation for
〈〈
cαskσ, d

†
σ

〉〉r
ε

is found to be

〈〈
cαskσ, d

†
σ

〉〉r
ε

=
Ṽ
√
|k|

ε+ − εk
Grσ,σ(ε) , (12)

such that the dot Green’s function becomes

(ε− εdσ − Σr0(ε))Grσ,σ(ε) = 1 + U
〈〈
dσnσ̄, d

†
σ

〉〉r
ε
, (13)

where Σr0(ε) = Ṽ 2
∑
α,s

∫ kc
−kc dk

|k|
ε+−εk is the self-energy due to the hybridization

between both graphene contacts and the localized level. The self-energy is evaluated
as

Σr0(ε) = −η
[
ε ln

∣∣∣∣D2 − ε2

ε2

∣∣∣∣+ iπ|ε|Θ(D − |ε|)
]
, (14)

where η = 2(Ṽ /~vF )2 = γ0/π.
In order to obtain the Coulomb blockade solution, we need to calculate the EOM

for
〈〈
dσnσ̄, d

†
σ

〉〉r
ε
. This is given by

(ε+ − εdσ − U)
〈〈
dσnσ̄, d

†
σ

〉〉r
ε

= 〈nσ̄〉+ Ṽ
∑
α,s

∫ kc
−kc dk

√
|k|
[〈〈
cαskσnσ̄, d

†
σ

〉〉r
ε

+
〈〈
d†σ̄cαskσ̄dσ, d

†
σ

〉〉r
ε
−
〈〈
c†αskσ̄dσ̄dσ, d

†
σ

〉〉r
ε

]
. (15)

We keep only the correlation
〈〈
cαskσnσ̄, d

†
σ

〉〉r
ε

on the right hand side and calculate its
EOM, which can be approximated as

(ε+ − εk)
〈〈
cαskσnσ̄, d

†
σ

〉〉r
ε
≈ Ṽ

√
|k|
〈〈
dσnσ̄, d

†
σ

〉〉r
ε
. (16)

After straightforward algebra, we obtain

Grσ,σ(ε) =

[
1− 〈nσ̄〉

ε− εdσ − Σr0(ε)
+

〈nσ̄〉
ε− εdσ − U − Σr0(ε)

]
. (17)

The poles of Grσ,σ(ε) are located around εdσ and εdσ + U . As a consequence, this
solution properly describes the Coulomb blockade regime. The dot occupation must
be calculated self-consistently using

〈nσ〉 =

∫ +D

−D
dε f(ε)

[
− 1

π
=
(
Grσ,σ(ε)

)]
. (18)
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Fig. 2. (a) Dot density of states ρdσ(ε) and (b) transmission coefficient T (ε) as a function of
energy. We consider two distinct temperatures: kBT/D = 0.001 (solid line) and 8.2× 10−5

(dotted line). Parameters: εdσ = −U , η = 0.1, and U/D = 0.1.

3 Results

We now discuss our results for the transport properties of a graphene-based quantum
dot with the aid of the model proposed above. Unless it is indicated, we consider
the strong Coulomb blockade regime (U = 0.1D) and investigate how the transport
properties depend on the dot level position, tuned with an externally applied gate
electrode. Thus, we explore G, K, and the Seebeck and ZT coefficients.

In order to better understand the transport properties of our system, in Figure 2
we depict the behavior of the dot DOS and the transmission coefficient. It is shown
that for εdσ = −U the DOS displays two resonances located at ε ≈ εdσ +<eΣ0(ε) and
ε ≈ εdσ +U +<eΣ0(ε). The resonance around the Fermi energy (ε = 0) is very narrow
in comparison with the low-energy resonance at ε ' −0.06, which is broader. This is
explained by the fact that the hybridization depends strongly on energy. In addition,
the dot spectral function at the Fermi energy becomes maximum. Nevertheless, even if
the local DOS reaches the highest value at εF , the transmission coefficient, evaluated
at the Fermi energy, vanishes. This is illustrated in Figure 2b. The transmission
coefficient is the product of the contact and dot DOSs. The former vanishes exactly
at εF , giving rise to a vanishingly small transmission coefficient despite the fact
that the dot DOS attains at ε = 0 its highest value. The fact that the transmission
coefficient is zero at εF yields a two-dip structure for G as a function of the dot level
position, as shown below.

We next discuss the electric and thermal conductances when the dot level is tuned.
We start by showing the evolution of G as a function of the dot level for various values
of the on-site interaction U (see Fig. 3). For the noninteracting case (U/D = 0), the
conductance exhibits a dip (antiresonance) at the contact Fermi energy εF . In general,
the antiresonance occurs when the localized level aligns with εF because the contact
DOS vanishes at the charge neutrality point. In the presence of Coulomb interactions
(U > 0), there are two effective levels lying at εd and εd + U . When these two levels
align with εF , the transmission again vanishes due to the nonavailability of states of
the graphene contacts at εF . The transmission shows a dip that resembles a Fano
singularity originated from destructive interference. However, the origin of the dip
in our setup is instead due to the lack of electronic states of the graphene contacts.
Another worthy aspect of G is the fact that the peaks close to the dips are not
symmetric. Around εdσ = −U , the two maxima differ in their heights. This results
from the fact that the DOS of the quasilocalized level is not symmetric with respect
to the resonance points.
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Fig. 3. Electric conductance G as a function of the dot level εdσ for different values of the
charging energy: U/D = 0 (a), 0.025 (b), 0.05 (c), and 0.1 (d). Parameters: η = 0.1 and
kBT/D = 0.001.

We focus on the strong interacting case where Coulomb blockade phenomenon is
better exhibited and choose U/D = 0.1. Our purpose is to analyze the temperature
dependence of the electric G and thermal K conductances as shown in Figure 4a
and c, respectively. We observe that G has moderate temperature dependence as a
function of the gate voltage. In the middle of the Coulomb valley, thermal activation
is not sufficient to cause a quantitative change in G. In stark contrast, K shows a
more dramatic behavior as a function of εdσ. The first remarkable fact is the absence
of the dips at the resonance points. Even though electric transport is suppressed at
the resonance points, heat transport is mostly insensitive to the transmission dip.

Importantly, the thermal conductance is three orders of magnitude smaller than
G when compared with their respective quanta. This is a noticeable feature inas-
much normal conductors typically possess high electric and thermal conductances
simultaneously. Good thermoelectrical devices are those that display poor thermal
conductances and high electric conductances just like our graphene single-electron
transistor. In metallic conductors, the Wiedemann–Franz law

K
GT

=
π2

3

(
kB
e

)2

, (19)

is satisfied in a wide temperature range. By utilizing graphene contacts, such a rela-
tion between G and K is violated. Consequently, the Seebeck coefficient attains much
higher values. This fact is precisely illustrated in Figure 4b, where the Seebeck
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Fig. 4. (a) Electric conductance G and (b) thermal conductance K versus dot level εdσ
for various values of the temperature kBT/D, and (c) Seebeck coefficient S versus εdσ for
various kBT/D. Parameters: η = 0.1 and U/D = 0.1.

coefficient is displayed as a function of εdσ for various background temperatures
T . We find that the Seebeck coefficient reaches high values, S & 4 in units of
kB/e = 86µV/K [42]. As expected, S vanishes at the resonance points εdσ = εF
and εdσ + U = εF . Around these points, S is an odd function of εdσ. Related with S
is the figure of merit ZT . In equation (7), the thermal conductance K contains the
electronic and phonon contributions (i.e., K = Ke + Kph). Through this work, Kph
is neglected since we assume the low temperature case. Furthermore, in graphene
the thermal conductance due to phonons can be tailored to very low values even at
room temperature by employing anti-dots or nanoribbons [43]. Therefore, it is safe
to neglect the phonon contribution in our calculations of the thermal conductance.

The reported large values of ZT indicate that heat-to-electricity conversion pro-
cess is performed with high efficiency. Good thermoelectrical conductors can exhibit
ZT & 1. Our device shows ZT values close to 8 as illustrated in Figure 5b, which
might have important consequences for practical applications. These results for the
figure of merit ZT can be compared with those achieved for the case of a localized
level tunnel coupled to normal contacts with an energy independent tunneling rate
Γ. Such comparison is performed in Figure 5a, where the ZT values for the normal
dot case are displayed. We observe that much smaller ZT values are reached and
therefore the graphene leads play a crucial role in the generation of high ZT values.

In Figure 6, we investigate the Wiedemann–Franz law. As anticipated, the
Wiedemann–Franz law is not fulfilled. To pinpoint the main source of such violation,
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Fig. 5. Figure of merit ZT as a function of εdσ. Comparison between metallic contacts (a)
when kBT/Γ is changed and graphene contacts (b) when kBT/D is changed. Parameters
for metallic contacts: D/Γ = 100, and U/Γ = 2. Parameters for graphene contacts: η = 0.1,
and U/D = 0.1.

Fig. 6. Violation of the Wiedemann–Franz law as a function of εdσ for U/D = 0 (noninter-
acting case), η = 0.1 (a) and U/D = 0.1 (interacting case), η = 0.1 (b). As shown, several
temperatures are considered.

we consider U = 0 and U > 0 cases. We observe that the violation of the Wiedemann–
Franz is not connected to electron–electron interactions [44] but instead is due to the
Dirac-like energy dispersion relation of the contacts. We recall that equation (19)
is based on a Sommerfeld expansion, which is valid for transmissions T (ε) weakly
dependent on ε around the Fermi energy. This condition may hold for metallic leads
with flat DOS but is broken in our system due to the pseudogap in graphene.

4 Conclusions

In closing, we have analyzed the linear electric, thermal, and thermoelectric lin-
ear responses for an interacting localized level coupled to Dirac-like electrodes as
in graphene. Our results support the prospect that Dirac-like electrodes lead to more
efficient thermoelectric devices with large values for both the Seebeck and ZT coef-
ficients. The latter can reach values as high as ZT ' 8. Indeed, due to the strong
energy dependence of the DOS at the electrodes our graphene-based device displays
an anomalously low thermal conductance in contrast to the values reached for the
electric conductance. These two facts yield high thermoelectric figures of merit. More-
over, such energy dependence is responsible for the violation of the Wiedemann–Franz
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law. We believe that our reported values for the ZT in graphene coupled quan-
tum dots will motivate their experimental verification using present technology (e.g.,
using graphene bilayer dots [45]). Future works should examine the role of strong
correlations or larger electric and thermal biases [46].

This work was supported by MINECO Grant No. MAT2017-82639.
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