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Abstract. Starting from the many-body Schrödinger equation, we
derive a new type of Lindblad master equations describing a cyclic
exciton/electron dynamics in the light harvesting complex and the
reaction center. These equations resemble the master equations for
the electric current in mesoscopic systems, and they go beyond the
single-exciton description by accounting for the multi-exciton states
accumulated in the antenna, as well as the charge-separation, fluores-
cence and photo-absorption. Although these effects take place on very
different timescales, their inclusion is necessary for a consistent descrip-
tion of the exciton dynamics. Our approach reproduces both coherent
and incoherent dynamics of exciton motion along the antenna in the
presence of vibrational modes and noise. We applied our results to eval-
uate energy (exciton) and fluorescent currents as functions of sunlight
intensity.

1 Introduction

The energy transfer in the light-harvesting complex (LHC) takes place via exciton
propagation among pigments bound to the LHC proteins [1]. The exciton is created
by resonant photo-absorption in an antenna pigment, leading to electron excitation
from the ground to the excited energy level, γ+E0 → E1, Figure 1. Due to the dipole–
dipole interaction, V , the exciton then propagates between neighboring pigments to
the reaction center (RC), while all excited and unexcited sites of the antenna remain
neutral. Finally, the exciton arrives at the site N (the “donor” of the RC), where the
primary charge separation occurs. The donor becomes positively charged, and the
electron participates in chemical reactions in the RC. Finally, the donor is neutralized
(reduced) by an electron ultimately arriving from water splitting, Figure 1, and at
some time, τ , the cycle is completed.
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Fig. 1. Left: schematic picture of the electron cycle. The cycle is completed with restoration
of the donor’s neutrality (reduction). Right: the cycle is modeled by electron relaxation to
the donor’s ground state, through emission of the energy (fictitious boson) to the RC.

The dynamics of the exciton transfer along the antenna, including the primary
charge separation, is very rapid (∼ps). Otherwise, the exciton would be lost by flu-
orescence or by other (recombination) processes, taking place on the time-scale of
∼ ns. In comparison, the duration of entire cycle (τ), completed with reduction of the
oxidized primary electron donor, is much longer (∼ µs). During the charge separation
stage, no excitons occupy the RC donor. However, they can be accumulated by the
antenna pigments, and finally being lost by fluorescence, as shown schematically in
Figure 1 (left panel). Usually, at normal light intensity, the study of energy-transfer in
the LHC is limited by a single-exciton migration along the antenna pigment bed. At
the same time, the research exists which goes beyond a single-exciton approach and
which takes into account a cyclic regime and the multi-scale exciton dynamics in the
LHCs (see, for instance, Refs. [2,3]). However, the consistent quantum-mechanical
consideration of the exciton-electron cyclic regime in antenna-RC, which includes:
(i) photo-absorption, (ii) fluorescence in antenna, (iii) charge restoration of the RC
donor and (iv) both coherent and incoherent exciton-electron dynamics, does not
exist. This is mainly because all these effects occur at significantly different time-
scales, and require the development of adequate quantum-mechanical mathematical
approaches. Indeed, without a consistent accounting of all these multi-scale processes,
in the frames of quantum consideration, one cannot fully understand and describe
the exciton dynamics in the LHC [1]. In particular, it is related to accumulation of
one or more excitons inside the antenna with increase of the light intensity. These
“trapped” excitons can damage the photosynthetic apparatus through de-excitation
pathways leading to generation of oxygen singlets and other damaging products.

At first sight, exciton transport along the LHC looks similar to spinless electron
transport in a mesoscopic system. Indeed, no more than one exciton can reside on
the same site, if only one excitation is allowed for each site (hard exciton model) [4].
As a result, the exciton propagation along the antenna would be similar to electron
tunneling through coupled-dot system. The treatment of electron current through
the coupled dots can be greatly simplified by reducing the many-body Schrödinger
equation to the Lindblad-type particle-number-resolved master equations [5–8]. It is
desirable to realize this analogy and derive similar master equations for the exciton
transport in the LHC, Figure 1. However, in this case we have to include restoration of
the primary donor’s neutrality, Figure 1 (right panel), since a similar cycle dynamics
is not considered in electron transport through coupled-dot systems.

Thus, the charge separation is effectively accounted for by coupling the donor’s
level EN to the acceptor, represented by a band of dense levels, ECi

(sink), as dis-
played in right panel of Figure 1. This results in irreversible tunneling of the electron
from the donor to the sink with a rate, Γ ∼1/ps. In order to describe the effect of
restoration of the donor’s neutrality on the LHC dynamics, it is not necessary to
know all details of the slow chemical reactions in the RC, initiated by the electrons.
What is relevant is a period of the cycle (τ). Therefore, for our purposes, the RC can
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be considered as a “Black Box”, absorbing the donor electron of the energy, EN , and
then emitting it (by time τ) to the same donor site, but with a different energy, E0.

This process can be modeled as a direct relaxation of an electron from the acceptor
to the donor ground state, accompanied by emission of the energy (EN −E0) to the
RC. Although the cycle is completed by an electron coming from a different source
(such as water splitting in the Photosystem II, etc.), its origin is not important for the
exciton dynamics in the LHC, in particular, since all electrons are indistinguishable.
To account this relaxation phenomenologically we add a fictitious field (bosonic bath)
to the sink Hamiltonian, weakly coupled with all acceptor levels (ECi

). If the bath is
initially empty, the electron would exponentially decay to the donor’s ground state
with a relaxation decay rate, γR = 1/τ , by emitting fictitious bosons with energy,
EN − E0, as displayed in Figure 1 (right panel).

By modeling the energy transfer to the RC via quantized fictitious field, together
with a quantized field, describing the light source and fluorescence, allows us to derive
closed master equations for exciton dynamics in a complete quantum mechanical
way. As a result, we would be able to evaluate the energy (exciton) current and
the fluorescent current as functions of the incoming sunlight intensity, and also the
probability of single and multi-exciton states inside the antenna. This approach can
be considered as a framework for the treatment of the energy transfer through any
network in the antenna complex and also in the presence of vibrations and noise.

The paper is organized as follows. In Sections 2 and 3, we describe the master
equation for the photo-absorption by a single excitonic site, as well as primary charge
separation and restoration on the donor site by using our wave-function approach.
Section 4 deals with the general case of an N -site antenna with a detailed example of
the two-site antenna. Section 5 includes an account of the vibrational modes and the
related dichotomic noise, generated by the environment. Last section is the summary.

2 Rate equations for photo-absorption

In order to understand a general structure and origin of the particle-resolved master
equations (presented in Sect. 4), describing the cyclic dynamics of the LHC, and
conditions, at which these equations can be justified, we consider separately the
exciton creation on the peripheral site and its decay to the RC from the inner site of
the LHC.

Let us start from the photo-absorption on the first site, Figure 1 (left panel),
separated from the rest of antenna. The corresponding Hamiltonian, H1, can be
written as,

H1 = E0â
†
0â0 + E1â

†
1â1 +

∑
k

ωkĈ
†
kĈk +

∑
k

(
gkB̂

†
1Ĉk +H.c.

)
, (1)

where â†1(â1) is an electron creation (annihilation) operator for the excited state, E1,

and â†0(â0) is the same for the ground state, E0, (in following we take E0 = 0), while

Ĉ†k(Ĉk) is a photon creation (annihilation) operator. B̂†1 = â†1â0 denotes an exciton
creation operator. The last term in (1) describes the electron–photon interaction in
the rotating-wave approximation.

Using a similar technique, as for derivation of the particle-resolved rate equations
for electron transport through multi-dot systems [8], we arrive to the following particle
number-resolved master equations of a form,

σ̇
(p)
00 (t) = −Γinσ

(p)
00 (t) + Γoutσ

(p−1)
11 (t), (2a)
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σ̇
(p)
11 (t) = Γinσ

(p)
00 (t)− Γoutσ

(p)
11 (t), (2b)

where σ
(p)
00 (t) and σ

(p)
11 (t) are probabilities of finding the electron in the ground state

(E0) and in the excited state (E1), Figure 1, with p photons emitted by time t. Respec-

tively, σαα(t) =
∑
p σ

(p)
αα, where α = 0, 1, are total probabilities (σ00(t) + σ11(t) = 1).

Here, Γin and Γout are rates of a photo-absorption, leading to electron transition
from the ground to the excited state (exciton creation), and of a photo-emission in a
reverse process (exciton annihilation). We found that Γin = n̄γ and Γout = (n̄+ 1)γ,
where n̄ = n(E1) is a number of photons with energy E1 (which we call below the
“light intensity”) and γ = 2πg2(E1)ρ(E1), with ρ being density of photon states.

It follows from our derivation that the validity of equations (2) is based on
Markovian approximation [9] (band-width is larger than γ). In this case, the contribu-
tion from the Green’s function poles dominates in the equation of motion, leading to
equations (2). However, if the band-width is very narrow (less than γ), these equations
have to be modified. This problem will be discussed in a separate publication.

Equations (2) are identical to those describing the electron transport from the
source to the drain through a single quantum dot, with Γin and Γout corresponding
to the incoming and outgoing electron rates [5–8]. Summing up these equations over
p and taking into account that σ11(t) = 1− σ00(t), one easily finds the following rate
equation for σ00(t) which can be rewritten as a single equation,

σ̇00(t) = −(2n̄+ 1)γσ00(t) + (n̄+ 1)γ. (3)

In the steady state limit, σ̇00(t→∞)→ 0, so the ground state occupation, σ̄00 =
σ00(t→∞) is σ̄00 = (n̄+ 1)/(2n̄+ 1). If the photon bath is in the thermal equilibrium
state, then n̄ = 1/(eE1/T − 1). As a result, the occupation of the ground state is
σ̄00 = 1/(1 + e−E1/T ), which is a quite known result [10].

3 Primary charge separation and restoration by emission of energy

Consider the site N (“RC donor”) of antenna, coupled to “acceptor”, represented as a
sink with dense levels, ECi

, Figure 1 (right panel). As a result, an electron, occupying
the excited level (EN ) of the RC donor, tunnels to the “acceptor”, leaving the donor
positively charged (primary charge separation). This process is very fast (∼ps) in
a comparison with the time-scales of the subsequent chemical reactions in the RC
(∼ µs). The cycle is completed when the positively charged site, N , is neutralized
(reduced) by an electron. This is modeled by a direct relaxation of the electron from
the acceptor band, ECi

, to the donor’s ground state with emission of energy EN −E0

to the RC. The latter is represented by emission of a fictitious boson, carrying this
energy. In order to describe these processes quantum-mechanically, we introduce an
effective Hamiltonian, HN , for the donor, N , Figure 1 (right panel)

HN = EN â
†
N âN +

∑
i

ECi
â†Ci

âCi
+
∑
p

ω̄pF̂
†
p F̂p

+
∑
i

(
Ṽiâ
†
Ci
âN +

∑
p

fipâ
†
0âCi F̂

†
p +H.c.

)
. (4)

Here, â†N and â†Ci
denote electron creation operators at the site, N , and at a sub-level

(i) of the acceptor, C. Respectively, â†0 ≡ â
†
0N is an electron creation operator at the

ground state of the donor (we chose E0 ≡ E0N = 0). The operator, F̂ †p , describes a
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creation of fictitious bosons, bearing the energy transferred to the RC, and Ṽi is a
tunneling coupling between the donor, EN , with the sub-level, ECi , of the acceptor,
and fip is a coupling of an electron on the acceptor with fictitious bosons.

Consider the one-electron cycle, completed with emission of one fictitious boson,
displayed in right panel of Figure 1. The wave function, describing a whole system
(electron and fictitious bosons), can be written as,

|Ψ(t)〉 =
[
bN (t)â†Na0 +

∑
i

bCi
(t)â†Ci

â0 +
∑
p

b0p(t)F̂
†
p

]
|0̄〉, (5)

where |0̄〉 ≡ â†0|0〉 is the initial (“vacuum”) state of the system, corresponding to
empty boson bath and the electron, occupying the donor’s ground state.

Substituting equation (5) into the Schrödinger equation, i∂t|Ψ(t)〉 = HN |Ψ(t)〉, we
find the system of coupled equations for the amplitudes b(t) with the initial conditions:
bN (0) = 1 and bCi

(0) = b0p(0) = 0. Using the same technique as in reference [8], we
convert these equations to the following master equations for the density matrix of
the system, σNN (t) = |bN (t)|2, σCC(t) =

∑
i |bCi

(t)|2, σ00(t) =
∑
p |b0p(t)|2,

σ̇NN (t) = −ΓσNN (t), (6a)

σ̇CC(t) = ΓσNN (t)− γRσCC(t), (6b)

σ̇00(t) = γRσCC(t) , (6c)

where Γ = 2π|Ṽ |2ρC is the charge-separation rate and γR = (2π)2|f |2ρC ρ̄∆ = 1/τ is
the rate of an entire cycle, with ρC and ρ̄ being the density of states of the acceptor
sink and the bosonic bath, correspondingly. Here, ∆ ' Γ is a width of the electron
distribution on the acceptor. Both rates are phenomenological parameters, which are
determined experimentally (1/Γ ∼ps and 1/γR ∼ µs-ms).

4 Exciton transport in N -site antenna

4.1 Master equations in general case

Now we extend our treatment on the N -site antenna chain, coupled with the elec-
tromagnetic field, describing photo-absorption and fluorescence, and with fictitious
boson bath, describing the donor charge restoration, Figure 1. The total Hamiltonian,
describing this system, is a combination of equations (1), (4), and it can be written
as,

HN =
∑
k

ωkĈ
†
kĈk +

N∑
m=1

EmB̂
†
mB̂m +

∑
i

ECi
â†Ci

âCi
+
∑
p
ω̄pF̂

†
p F̂p +Hint, (7)

where B̂†m = â†mâ0m is an exciton creation operator on the site m. Here too we assume
that the ground state energy for all sites m = 1, . . . N is zero. All notations are the
same as in equations (1), (4). The interaction term can be written as,

Hint =
N∑
m=1

∑
k

gk B̂
†
mĈk +

N−1∑
m=1

Vm B̂
†
m+1B̂m +

∑
i

(
Ṽiâ
†
Ci
âN +

∑
p
fipâ

†
0âCi

F̂ †p

)
+H.c.

Here, the electromagnetic field is coupled with all sites of antenna. However, excitons
can be generated only on the first antenna site, m = 1, by photon absorption. All
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other sites, m = 2, . . . N , are coupled with the empty photon reservoirs. Thus, the
excitons occupying these sites can only decay by the fluorescence.

Note that the exciton commutation relations [4], [B̂m, B̂
†
n] = δmn(1 − 2B̂†mB̂n),

guarantee that two or more excitons cannot occupy the same site. Therefore, the exci-
ton motion along the antenna, describing by the Hamiltonian (7), is similar to that
of the spinless electron transport trough the coupled quantum dots. The correspond-
ing master equation of the Lindblad-type can be derived from the time-dependent
multi-particle Schrödinger equation, as discussed in previous examples. It represents
a natural extension of equations (2) and (6), and can be written as (see Eq. (75) of
Ref. [8]):

σ̇
(ν,`)
αα′ = i

(
Eα′ − Eα

)
σ

(ν,`)
αα′ + i

∑
β

(
σ

(ν,`)
αβ Vβ→α′ − Vβ→ασ(ν,`)

βα′

)
− 1

2σ
(ν,`)
αα′

∑
β(Γα→β + Γα′→β) +

∑
β,β′ σ

(ν′,`′)
ββ′ Γβ→α,β′→α′ , (8)

where |α〉, |β〉 enumerate all discrete multi-exciton states in the occupation number
representation, and Eα =

∑
m∈αEm is a total energy of the state, |α〉. The upper

indices, ν and `, in the density matrix, σ
(ν,`)
αα′ (t), denote the numbers of fluorescent

photons and fictitious bosons emitted at time, t. Note that in the last (“gain”) term,
(ν′, `′) = (ν − 1, `) or (ν′, `′) = (ν, `− 1), whenever emission of fluorescence photons
or fictitious bosons takes place (cf. with Eqs. (2)).

The second term in equation (8) describes the direct exciton transitions between
neighboring sites, Vβα = Vm,m+1 ≡ Vm, via the dipole–dipole interaction. One can
realize that the first and second terms of equation (8) represent the commutator of the
density matrix with the Hamiltonian in the Lindblad equation [11]. The remaining
two terms represent loss and gain processes generated by: (a) coupling of the site (1) to
photon bath with rates Γα,β ≡ Γin,out, equations (2), and all other sites with the rate
Γα,β ≡ γ; (b) charge separation with subsequent emission of fictitious bosons, leading
to restoration of the donor’s neutrality, with the rates Γα,β ≡ Γ, γR, respectively,
equations (6).

By solving equation (8), we can determine probabilities of any multi-exciton occu-
pations, as well as the fluorescent current (in energy units), Ifl(t), and the current of
energy, Ien(t), transferred to the RC. Those are given by (cf. with Refs. [5–8]),

Ien(t) = EN
∑
ν,`

∑
αN

`σ̇(ν,`)
αNαN

(t) = ENγR
∑
αN

σαNαN
(t),

Ifl(t) =
∑
ν,`

N∑
m=2

∑
αm

Emνσ̇
(ν,`)
αmαm

(t) = γ
N∑
m=2

∑
αm

Emσαmαm
(t), (9)

where the index αm enumerates all multi-exciton states containing the site m, and

σαmαm
(t) =

∑
ν,` σ

(ν,`)
αmαm(t) is a corresponding occupation of these states, obtained

from equation (8). Note that the first antenna site, where an exciton is created, is
excluded from the fluorescent current, equation (9). Respectively, the total fluorescent
current is IflT(t) = Ifl(t) + ΓoutE1

∑
α1
σα1α1

(t), where Γout = (n̄+ 1)γ, equation (2).

4.2 Two-site antenna

As an example for application of equation (8), we consider exciton transport through
the two-site antenna, (N = 2). First, we need to enumerate all possible exciton states
of the system, {α, β} = {0, 1 . . . , 5}. These are shown in Figure 2. Note that the
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Fig. 2. Exciton states of the two-site antenna. All allowed exciton transitions for each states
are indicated.

exciton propagates coherently between the sites (1) and (2) due to the dipole–dipole
interaction, V1. All other transitions are incoherent, where the related transition rates
are shown for each of states.

Now we can rewrite explicitly the master equation (8) for the reduced density-

matrix, σαα′ ≡ σαα′(t) =
∑
ν,` σ

(ν,`)
αα′ (t), as

σ̇00 = −Γinσ00 + Γoutσ11 + γσ22 + γRσ33, (10a)

σ̇11 = iV1(σ12 − σ21)− Γoutσ11 + Γinσ00 + γ σ44 + γRσ55, (10b)

σ̇22 = iV1(σ21 − σ12)− (γ + Γ + Γin)σ22 + Γoutσ44, (10c)

σ̇33 = −(Γin + γR)σ33 + Γoutσ55 + Γσ22, (10d)

σ̇44 = −(γ + Γout + Γ)σ44 + Γinσ22, (10e)

σ̇55 = −(Γout + γR)σ55 + Γinσ33 + Γσ44, (10f)

σ̇12 = i(E2 − E1)σ12 + iV1(σ11 − σ22)− (ΓT /2)σ12 , (10g)

where ΓT = Γ + γ + Γin + Γout. One can easily verify that these equations display
the probability conservation,

∑5
α=0 σαα(t) = 1. Therefore, it is useful to replace one

of equations (10a)–(10f) by the probability conservation.
By solving equations (10), we find the energy (exciton) current to the RC,

equation (9),

Ien(t) = γRE2[σ33(t) + σ55(t)], (11)

whereas the fluorescent current (from the second site, Fig. 2) and the total fluorescent
current are given by,

Ifl(t) = γE2[σ22(t) + σ44(t)] ,

IflT(t) = Ifl(t) + ΓoutE1[σ11(t) + σ44(t) + σ55(t)] . (12)

Consider now the steady-state limit, t→ ∞. Since in this limit σ̇αα′ → 0, equa-
tions (10) become a system of algebraic equations for σ̄ ≡ σ(t → ∞), which can be
easily solved. The corresponding steady-state energy and fluorescent currents, equa-
tions (11), (12), are shown in Figure 3 as functions of the light intensity (n̄). Note
that n̄γ = Γin, equation (2), is a number of photons absorbed by the first site per
unit time. Here, we chose for illustrative examples some generic values of parame-
ters, not necessary related to a specific system, namely, γ=1/ns (fluorescent rate),
γR = 1/τ = 10−3γ = 1/µs (charge restoration rate), V1 = 103γ=1/ps (dipole–dipole
coupling between sites), and Γ = 103γ=1/ps (charge separation rate). The exciton
energy levels of all sites are taken the same, E1 = E2 = Ē.

The steady-state energy current to the RC, Īen (solid line, black) and the flu-
orescent current of the second site, Īfl (dashed line, blue) together with the total
fluorescent current, ĪflT (dot-dashed, red), divided by the donor energy E2 = Ē, are
shown in Figure 3 in units of 1/ns, as functions of n̄. One finds from this figure that
Īen and Īfl currents reach saturation already for a very small n̄, where less than one
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Fig. 3. Left: the steady-state energy current Īen (solid, black) and fluorescent current
Īfl (dashed, blue) together with total fluorescent current (dot-dashed, red). Right: time-
dependent energy current transferred to the RC for n̄ = 0.01 (solid line, black) and n̄ = 0.001
(dashed line, blue).

photon is absorbed at the first site during one cycle (τ = 1/γR = µs). In addition,
the fluorescent current Īfl, equation (12), is found to be very small, in comparison
with the energy current, Īen, equation (11). This can be easily understood by tak-
ing into account that the energy current is the charge separation current. Indeed, it
follows from equations (10d,10f) that γR(σ̄33 + σ̄55) = Γ(σ̄22 + σ̄44). Since the flu-
orescent current, Īfl, comes from the donor site (E2), where the charge separation
takes place, it proceeds with the rate Γ, which by a factor 1000 is larger than that
the fluorescence rate from this site (γ). However, the total fluorescent current, ĪflT,
equation (12), which includes photon emission from the first site, is much larger than
Īfl, and exceeds the energy current with increase of the light intensity n̄.

One also finds from the same figure (right panel) that time for approaching the
asymptotic limit increases when the intensity of light (n̄) decreases. It is interesting
that for the light intensity n̄ = 0.001 (one photon absorbed per a cycle), the current
does not reach its steady-state value during the cycle, t = τ = 1µs.

In this paper, we restrict our consideration by calculating explicitly both the
energy (exciton) current and the fluorescent current, for different values of param-
eters. A more detailed analysis of our results, including on the ET efficiency in the
LHC, in the regime of the cyclic exciton dynamics, will be presented in a separate
paper.

5 Vibrational modes and noise

The role of vibrational modes in the exciton transport attracted recently much atten-
tion. It is now expected that discrete sets of strongly coupled modes can considerably
enhance the transport properties along the antenna (see [12] and references therein).
The reason is that the near-resonant vibrations may effectively align the electron lev-
els. We therefore consider only one vibrational state for each site, thus truncating the
Hilbert space of vibrations by two states, Em and Em + Ω, where the vibrational fre-
quency, Ω, is assumed to be the same for all sites. All other vibrations are considered
as a part of the environment, generating fluctuations between the two states of each
site (cf. with Ref. [12]). This implies that the exciton transport along the antenna
can be viewed as taking place through the time-dependent energy levels of the sites,
Em → Em(t) = Em + (Ω/2)[1 + ξm(t)] in equation (8), where ξm(t) = ±1 is jumping
randomly from 1 to −1 (or from −1 to 1) at a rate λ+ (or λ−), independently of its
previous history. This represents so-called dichotomic or “telegraph noise”, used in
many models for fluctuating environment [13–15].

If the noise is generated by a heat bath of temperature T (see for instance,
Ref. [13]), then λ+/λ− = P̄−/P̄+ = exp[Ω/(kBT )], where P̄± are probabilities for
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finding ξm(t) at the values ξm = ±1, (P̄+ + P̄− = 1). The average value of ξm(t) in
the steady-state limit is therefore

ξ̄ = 〈ξm(t)〉 =
∑
ξ=±1

P̄ξξ = (λ− − λ+)/λ =
(
1− e

Ω
kBT

)
/
(
1 + e

Ω
kBT

)
. (13)

Thus, ξ̄ = 0 for T =∞, and ξ̄ = −1 for T = 0.
Now we exemplify our procedure for the case of two-side antenna, considered in

previous section. Let us average the density matrix, σαα′(t) directly in equations (10),
where E1,2 in equation (10g) are replaced by E1,2 + (Ω/2)[1 + ξ1,2(t)]. One finds that
equations (10a)–(10f) keep the same form for the average density matrix 〈σαα′(t)〉.
The effect of noise and vibrational modes explicitly appears only in equation (10g)
via a new term 〈σ12ξ1,2〉 ≡ 〈ξ1,2(t)σ12(t)〉. This equation now reads,

〈σ̇12〉 = iε〈σ12〉+ i(Ω/2)(〈σ12ξ2〉 − 〈σ12ξ1〉) + iV1(〈σ11〉 − 〈σ22〉)− (ΓT /2)〈σ12〉 (14)

where ε = E2 − E1. We consider the non-correlated noise acting on different sites,
where 〈ξ1ξ2〉 = ξ̄2, equation (13).

In order to evaluate the second term in the r.h.s. of equation (14), we multiply
each of equations (10) by ξ1,2(t), taking into account that ξ2

1,2(t) = 1. For instance,
multiplying equation (10g) by ξ2(t), we find,

〈ξ2σ̇12〉 = iε〈σ12ξ2〉+ i
Ω

2
(1− ξ̄2)〈σ12〉+ iV1(〈σ11ξ2〉 − 〈σ22ξ2〉)−

ΓT
2
〈σ12ξ2〉. (15)

This equation is still not useful, since its l.h.s. is not the time-derivative of 〈σ11ξ2
〉.

However, in the case of an exponential noise-correlator, 〈ξ(t1)ξ(t1 + τ)〉 ∝ exp(−λ τ),
one can use the following very useful “differential formula”, derived by Shapiro and
Loginov [16,17],

d

dt
〈ξ(t)R[ξ(t), t]〉 = 〈ξ(t) d

dt
R[ξ(t), t]〉 − λ 〈ξ(t)R[ξ(t), t]〉+ λξ̄R[ξ(t), t] , (16)

where ξ̄ is given by equation (13) and R[ξ(t), t] is an arbitrary functional of the noise.
In our case R[ξ(t), t] ≡ σ12(t), obtained from equation (10g) with the time-dependent
energy levels, E2 − E1 → ε + (Ω/2)[ξ2(t) − ξ1(t)]. Substituting equation (16) into
equation (15) we find,

〈σ̇12ξ2〉 = i
(
ε+ i

ΓT + 2γ

2

)
〈σ12ξ2〉+

[
λξ̄ + i

Ω

2
(1− ξ̄2)

]
〈σ12〉

+ iV1

(
〈σ11ξ2〉 − 〈σ22ξ2〉

)
〈σ12ξ2〉 . (17)

Similar results are obtained for equations (10a)–(10f), by applying the differential
formula (16). By proceeding in the same way with equations (10), multiplied by
the random variable ξ1(t), we finally obtain the closed set of the linear equations,
describing the density matrix σαα′(t), giving the energy and fluorescent currents,
equations (11), (12).

Consider the steady-state limit, σ̄αα′ = 〈σαα′(t→∞)〉, where the l.h.s. of equa-
tions (10) vanishes. Then, these equations with the account of equation (14) become
algebraic for variables σ̄αα′ and σ̄12ξ1,2 ≡ 〈ξ1,2(t)σ12(t)〉t→∞. The latter terms are
obtained from Eqs. (10), multiplied by ξ1,2(t) in the limit t→∞. For instance, these
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Fig. 4. Energy current in 2-site antenna in the presence and without vibrations and noise.

equations for σ̄12ξ1 become,

σ̄00ξ1 + σ̄11ξ1 + σ̄22ξ1 + σ̄33ξ1 + σ̄44ξ1 + σ̄55ξ1 = ξ̄, (18a)

iV1(σ̄12ξ1 − σ̄21ξ1)− Γoutσ̄11ξ1 + Γinσ̄00ξ1

+ γ σ̄44ξ1 + γRσ̄55ξ1 − λσ̄11ξ1 + λξ̄σ̄11 = 0 , (18b)

iV1(σ̄21ξ1 − σ̄12ξ1)− (γ + Γ + Γin)σ̄22ξ1 + Γoutσ̄44ξ1 − λσ̄22ξ1 + λξ̄σ̄22 = 0, (18c)

− (Γin + γR)σ̄33ξ1 + Γoutσ̄55ξ1 + Γσ̄22ξ1 − λσ̄33ξ1 + λξ̄σ̄33 = 0, (18d)

(γ + Γout + Γ)σ̄44ξ1 + Γinσ̄22ξ1 − λσ̄44ξ1 + λξ̄σ̄44 = 0, (18e)

− (Γout + γR)σ̄55ξ1 + Γinσ̄33ξ1 + Γσ̄44ξ1 − λσ̄55ξ1 + λξ̄σ̄55 = 0, (18f)

i
(
ε+ i

ΓT
2

)
σ̄12ξ1 +

[
λξ̄ − iΩ

2
(1− ξ̄2)

]
σ̄12 + iV1(σ̄11ξ1 − σ̄22ξ1) = 0 , (18g)

where equation (18a) is obtained from the probability conservation. Respectively,
equations for σ̄12ξ2 are the same with a replacement ξ1 → ξ2 and Ω→ −Ω in equa-
tion (18g). By solving these equations, we can find the steady-state currents in the
system, equations (11), (12).

An example of such calculations is presented in Figure 4. Left panel presents
steady-state energy current, Ien/E2, as a function of the vibration frequency, Ω, for
misaligned levels (ε = 60 ps−1) and the light intensity n̄ = 0.001, corresponding to
one photon absorbed by the first site per a cycle (1 µs). Three curves correspond
to different values of the noise-spectrum width: λ = 0.001, 0.1, 10 ps−1 (dot-dashed
red, dashed blue and solid (thin) lines, respectively). The noise is taken at room
temperature. For a comparison, thick solid line (black) shows the result for aligned
levels, but without vibrations and noise. We should point out that the effect of noise
disappears in the limit λ→ 0 and also for λ→∞ (not shown here).

Right panel shows the energy current as a function of the light intensity for
misaligned levels without the noise and vibrations (thin solid line black) and with the
noise at the resonance (Ω = 2ε, dashed line blue). Thick solid line (black) displays the
result for aligned levels without the noise. The results shown in Figure 4 demonstrate
that incoherent fluctuations between vibronic levels can greatly increase the energy
current without stringent resonance condition.

6 Summary

Although most investigations of energy (exciton) transport in the LHCs concentrate
on one-exciton motion along the antenna, without inclusion of a very slow cyclic
dynamics, we demonstrated that it is not sufficient for a consistent description of
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exciton dynamics. Therefore, we extended the Hamiltonian by including additional
parts, describing the exciton creation and the fluorescence, through the interaction
with the electromagnetic field, charge separation on the donor site, and the charge
restoration after completing the corresponding cycle of the chemical reactions in the
RC. The latter part is described phenomenologically, as an electron relaxation from
the RC to the donor’s ground state by emission of fictitious bosons, representing the
energy transfer to the RC.

Since our cycled master equations represent a more detailed description of the
LHC dynamics, one can evaluate important effects, which cannot be treated by other
methods. For instance, despite a very rapid exciton transfer along the antenna, ∼ ps,
a very slow cyclic dynamics strongly affects the exciton current. This is unavoid-
able, since the current does not reach its steady value during a cycle. Moreover,
the slow cycle dynamics enhances very drastically the loss of exciton due to fluores-
cence (taking place on the scale of ∼ ns). The reason is that the excitons are trapped
during the cycle, and even one exciton trapping decreases the energy current very
strongly. The multi-exciton trapping, appearing at stronger light intensity, increases
the fluorescent current furthermore. These states can also be relevant for artificial
photosynthetic systems.

The influence of vibrational structures on exciton transport in LHC attracted
considerable attention last years. Indeed, near-resonance under-damped vibrations
can considerably enhance transport properties. This assumes, however, a fine adjust-
ment between coherent vibration frequency and a mismatch between the energy
levels of neighboring sites, carrying the exciton current. In this work, we consid-
ered a different approach, where interaction with the thermal environment turns
the coherent vibrations into incoherent fluctuations between the vibronic levels. As
a result, the exciton transport along the antenna can be described by the (time-
dependent) tunneling Hamiltonian, where the energy levels of each site are under
the dichotomic (telegraph) noise, which is in the thermal equilibrium with the envi-
ronment. We demonstrated here that the dichotomic noise can be treated exactly,
without additional complications of the equations of motion.
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