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Abstract. Numerical approaches are an important tool to study
strongly correlated quantum systems. However, their fragility with
respect to rounding errors is not well studied and numerically verified
enclosures of the results are not available. In this work, we apply inter-
val arithmetic to the well established numerical renormalization group
scheme. This extension enables us to provide a numerically verified
NRG excitation spectrum.

1 Introduction

Wilson’s numerical renormalization group scheme [1–5] is one of the most important
numerical schemes in the field of strongly correlated quantum systems allowing to
track the full crossover from weak to strong coupling within the Kondo problem.

The Kondo model and the associated Kondo resonance can be seen as the prime
examples for correlated quantum systems. The Kondo problem itself can be traced
back to the experiments by de Haas and van den Berg [6] in the early 1930s which
displayed an increase in resistivity of noble metals like gold or silver. It took 30 years
until Kondo [7,8] could relate the increase of resistivity to dynamical scattering at
magnetic impurities. But it was only more than 30 years later that Wilson could pro-
vide a rigorous solution of the Kondo model based on his numerical renormalization
group (NRG) technique. A few years later Andrei [9] and Vigman [10] could verify
the numerical solution of Wilson by a Bethe ansatz solution. Besides its importance
in describing magnetic impurities in metals it is also important in understanding
the transport properties of quantum dots [11] and often appears as effective model
in understanding correlated quantum systems, e.g. the dynamical mean field theory
[12,13]. For an overview see [4].

Besides being used for decades it was realized only recently [14], that numerical
rounding errors lead to the appearance of a new fixed point within the NRG. Most
strikingly this fixed point obeys a scaling law with respect to the precision of the
underlying arithmetic and behaves like a typical physical fixed point. In this work,
we investigate, whether one can use interval arithmetic to signal the breakdown of
the numerics and to provide a scaling regime where the correctness of the numerical
result can be guarantied.
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2 Interval arithmetic

Interval arithmetic was already introduced by Ramon Moore [15] in the 1960s as an
approach to bound rounding errors in mathematical computations. Within interval
arithmetic [15–18] one represents a number not by a single discretized floating point
value. Instead it is represented by two floating point values, a lower and an upper
bound presenting an enclosure of the the desired values x,

x ∈ [x, x] x ≤ x. (1)

In addition all operations ? and functions f(x) are extended on intervals in such a
way

[z, z] = [x, x] ?
[
y, y
]

: ∀x ∈ [x, x] ∧ y ∈
[
y, y
]
x ? y ∈ [z, z] (2)

[z, z] = f ([x, x]) : ∀x ∈ [x, x] f(x) ∈ [z, z] (3)

that the function values of f(x) are contained in the result for all x ∈ [x, x], and
similarly for all operations ?. For example the addition of two intervals is now given
by

[x, x] +
[
y, y
]

=
[
x+ y, x+ y

]
(4)

where x+ y is the sum x + y rounded downwards on the level of the numerical

precision, while x+ y is the sum x + y rounded upwards. Provided all operations
are implemented with the necessary rounding modes interval arithmetic allows for
an enclosure of the actual result. However, in general it is not possible to obtain the
smallest possible enclosure of equations (2) and (3). In general one should expect
that interval arithmetic overestimates the actual numerical error in cases where one
simply replaces the floating point values by interval arithmetic in a given code. A
prime example is given by the square function evaluated on an interval containing
zero, e.g. [−1, 1]

([−1, 1])
2

= [0, 1] (5)

[−1, 1] · [−1, 1] = [−1, 1] . (6)

Since the square function maps a real value on a non-negative number we obtain
equation (5) from the definition equation (3). In contrast, according to equation (2)
the evaluation of the product equation (6) has to include the negative part. One
should note, that the result of equation (6) encloses the result of equation (5). In
the following, we investigate the results of NRG simulations by simply replacing the
floating point values in [14] by an interval arithmetic.

3 Kondo model

Here, we follow precisely [14] in the description as well as the code used. Note that
the description in [14] is based on Sections VII and VIII of [1].

The Kondo model describes a local impurity coupled to a conduction band, where
the conduction band is transformed into spherical harmonics around the impurity
and only the s-wave contributions are kept. The remaining model of a spin impurity
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coupled to a half infinite chain is then discretized on a logarithmic scale. The system
is then tridiagonalized leading to the following form:

HM = J
~̂
S~̂s1 +

M∑
n=2

tn−1
∑
σ

ĉ†n,σ ĉn−1,σ + h.c. (7)

Here, we follow the usual convention of
~̂
S being the SU(2) spin operator of the

impurity, ~̂s1 is the spin operator of the first conduction band site, ĉn,σ (ĉ†n,σ) is the
annihilation (creation) operator for a conduction band fermion with spin σ in energy
shell n. J denotes the Heisenberg exchange coupling and

tn = tΛ(n−1)/2 (8)

is taken in its most simplistic form ignoring any corrections stemming from the
original band structure as we are interested in the low energy physics only. For a
justification for this Hamiltonian we refer to excellent articles by Wilson [1,2]. How-
ever, for this work it is sufficient to know that H (7) describes a single spin coupled
to a 1D like tight binding chain where the nth site represents the physics at energy
scale tΛ−(n−1)/2. In the following we have set t = 1.

The most prominent property of the Kondo model is the flow from a weak cou-
pling regime represented by a spin impurity coupled weakly to the conduction band
consisting of M sites, to a strong coupling regime, where the spin impurity forms a
singlet with the conduction band fermions leading to a singlet weakly coupled to an
effective conduction band consisting of M − 1 sites. For a discussion of the parity
effect with respect to M we refer to [14].

In order to obtain this flow the NRG starts with a system consisting of the impu-
rity spin and the first conduction band site, that is with Hamiltonian (7) setting
M = 1. One then iteratively increases the number of conduction band sites by one.
Since the associated Hilbert space will increase by a factor of four in each step one
has to introduce a truncation scheme. Within the NRG scheme one truncates the
Hilbert space after each diagonalization to the m eigen states lowest in energy. In
addition one performs a shift of the eigen values such that the lowest eigen value is
zero, E0 = 0.

Since the low energy scale of the Hamiltonian (7) decreases by Λ−1/2 in each
iteration step one rescales the Hamiltonian in order to keep the excitation energies
of order one

H̃M = ΛM/2HM . (9)

In this form one can now investigate the flow of the spectrum. Of course, in order
to get the corresponding physical scale one has to undo the scaling. The striking
feature of the Kondo model is the appearances of a scale TK

TK = D
√
J/D e−D/J (10)

with D = 4t the band width of the Hamiltonian (7) and t the band hopping element
equation (8).

As an example we provide in Figure 1 the RG flow for a Kondo system with
a spin coupling of J = 0.6. There we show the flow of the five lowest excitation
energies vs. the energy scale tM = Λ−(M−1)/2 in units of TK. In this computation the
particle number and the Sz component of the total spin were explicitly conserved by
working with a block matrix representation of the Hamiltonian and we truncated the
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Fig. 1. The RG flow of the low energy spectrum for a Kondo model with J = 0.6, Λ = 2.0,
and m = 2000, where the N and Sz conservation is explicitly enforced. The results are split
into odd conduction band sites (◦) and even conduction band sites (×).

Hilbert space to at most m = 2000 states. One clearly observes the crossover regime
at TK and the flow towards the strong coupling regime at low energies. For a detailed
description we refer to [1,2,14]. We would like to remark that m refers to taking the
mth eigenvalues as a cutoff reference and the number of states kept is increased in the
case we hit a degeneracy of the spectrum. In this way, we avoid a trivial breaking of
the symmetries [19,20]. Here, we assumed that energy differences below 10−11 signal
a degenerate energy subspace.

4 NRG with interval arithmetics

In order to track rounding issues we performed the following change to our code. We
replaced the data type from double to interval<double> which is straightforward
everywhere with the exception of the diagonalization of the Hamiltonian matrix. Here
we took the simple approach of extracting a median matrix

median ([x, x]) = (x+ x) /2 (11)

hx,y = median(Hx,y) . (12)

We then diagonalize matrix h in a standard way, as its elements are of type double.
We then take the resulting transformation matrix U as the transformation matrix
and obtain the new energy eigenvalues as the diagonal elements obtained by a base
transformation of H via U :

E = diag
(
U+ ·H · U

)
. (13)

We would like to point out that these changes are rather simple and should be
applicable to any NRG implementation.

In result, we now obtain an interval for each energy value where the width of the
interval

width ([x, x]) = x− x (14)

provides an error bar for the calculation.
In Figure 2, we provide the results for an interval version of the results presented

in Figure 1. Figure 3 corresponds to the same system with Λ = 3.0 and m = 500. The
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Fig. 2. The RG flow of the low energy spectrum for a Kondo model with J = 0.6, Λ = 2.0
and m = 2000, where the N and Sz conservation is explicitly enforced. The lines correspond
to the results to a standard NRG using double arithmetics as presented in Figure 1. The
◦ correspond to the median of the obtained excitation energies. The error bars correspond
to the width of the excitation energy intervals. In the left part of the figures, the error is
smaller then the symbol size. The energy values provided on athe left y-axis are taken from
Wilson’s original work [1] for the lowest eigen values in the large M limit in the case of
Λ = 2.

Fig. 3. The RG flow of the low energy spectrum for a Kondo with J = 0.6, Λ = 3.0 and
m = 500, where the N and Sz conservation is explicitly enforced. The lines correspond to
the results to a standard NRG using double arithmetics. The ◦ correspond to the median
of the obtained excitation energies. The error bars correspond to the width of the excitation
energy intervals.

first observation from these results is that one can actually perform an interval version
of the NRG scheme and the median of the energy eigenvalue intervals corresponds
to those of an NRG with standard double arithmetics during the complete crossover
to the strong coupling regime and verified that this crossover is not due to rounding
errors. As a benchmark for our implementation we added the energy values for the
lowest excitation in the large M limit on the left y-axis in Figure 2 as provided in
[1].

In Figure 4, we provide the width of the energy eigenvalue intervals corresponding
to the results in Figure 3. Here, we witness a power law increase of the width of the
energy eigenvalue intervals with respect to the low energy scale. Once the width of
the energy intervals gets larger than the actual level splitting the interval arithmetic
signals the end of a numerically verified spectrum of the NRG scheme. We would
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Fig. 4. The width of the energy eigenvalue intervals RG corresponding to the results of
Figure 3. The line is a power law fit resulting in an exponent of α ≈ −2.26.

like to point out that this does not imply that a corresponding NRG calculation
within double arithmetic breaks down. As pointed out in the introduction the interval
scheme employed here will overestimate the corresponding numerical error and tighter
bounds should be possible.

5 Summary and outlook

In this work, we extended Wilson’s NRG scheme to interval arithmetics which allows
us to provide a numerical guarantee on the obtained NRG spectrum, provided the
width of the energy eigenvalue intervals do not signal a break down. We presented
results keeping m = 2000 states after each NRG step. This is sufficiently large enough
to demonstrate, that one is not restricted to toy calculations. The approach presented
provides a measure to assure that the result is not dominated by the finite precision
arithmetic as the parity breaking fixed point in [14].

The numerics presented here proofs numerically that the Kondo scale is not an
artefact of the numerics. While this is not questioned within the Kondo model, the
technique presented here could be useful in situations where the physics is not well
understood.

One of the main advantages of the NRG scheme is its clear foundation and the
stability of the NRG procedure and the stability and problems have been analyzed
[1–5,20]. The numerics presented in this work can be seen as a worst case scenario
where rounding of intermediated results is performed in a way to obtain the largest
possible deviation due to rounding errors. The results should therefore be seen as a
warning that even in the case of such a well defined and stable scheme as the NRG
results can be spoiled by the underlying arithmetic and one should always accompany
numerics with benchmark results.

Within the scheme employed here we observe a power law increase of the width
of the energy eigenvalue intervals with respect to the inverse RG scale which cur-
rently limits the applicability of the verified NRG scheme to not too small energy
scales. We therefore had to choose a rather large Kondo coupling, J = 0.6. For signif-
icantly smaller couplings the error would blow up before the strong coupling regime
is reached.

It remains an open question whether this could be significantly improved by the
application of an interval version of the diagonalization tailored to obtain smaller
bounds on the eigen values and therefore leading to a verified NRG scheme applica-
ble in the whole parameter regime. Alternatively one could apply a multi-precision
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interval library in a similar way as in [14] to extend the range of applicability of the
approach presented in this work.

This work was supported by ERC-StG-Thomale-TOPOLECTRICS-336012. We are grate-
ful to the Rechenzentrum Würzburg for providing computational resources through DFG
funded compute server Julia, INST 93/878-1, of the University of Würzburg. The numerics
is performed using the Eigen 3 library [21] and g++ from the Gnu compiler collection [22].
We used the interval library from boost.org [17] and FILIP++ [18]. Both libraries provide
very similar results.
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