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Abstract. The article addresses properties of strongly disordered elec-
tronic systems which are Anderson and often also Mott localized
Coulomb interactions are important. In the localized regime Coulomb
interactions among electrons are important due to poor screening. Parts
of the subject have been controversial, in particular with regard to
the importance of dynamic many-body effects and of the role the one-
particle density of states plays in transport. The main focus here is an
attempt to review the current status of the subject and hopefully to
contribute to a reduction in the controversies.

1 Introduction

Disordered systems became the accepted term used mainly (but not exclusively) for
non-crystalline solids. These solids are of interest because they appear overwhelm-
ingly in nature; every rock is non-crystalline, as are also biological systems. It is fair
to say that this entire, now very wide and active field, was initiated by the works
of Anderson [1], and Mott and Twose [2]. To do justice to history, let it however
be mentioned that years earlier, in 1940s, Schrödinger realized the importance in
biology of what we now call disorder [3]. Years before Watson and Crick, he foresaw
genetic material to be non-repetitive sequences of molecules which he called “ape-
riodic solids”. Disorder may be a poor word for genetic material where the specific
order is important and a small change in the sequence makes a difference between,
e.g. a human and a pig. In that sense “disorder” could be used, slightly paraphrasing
Miller [4]: “Disorder is a word we invented for order that is not understood”. Disor-
dered solids are also of practical interest as they now proliferate in technology so it
is desirable to understand their physical properties. Electrons in disordered systems
are particularly interesting because they are very much quantum particles. Disor-
dered solids are also interesting because, in contrast to traditional solid state physics,
they do not possess the symmetries which in crystals determine many of the physical
properties. This renders the subject considerably more complicated and mandates
new non-traditional approaches, some of which still stir disagreements.

The literature in this field is somewhat disordered, papers often do not connect
with each other and some aspects have been controversial for a long time, particularly
regarding dynamical properties.

The main purpose of this paper is to review the existing disagreements and
where appropriate to argue for one or the other side. Some broader recent reviews of
electrons in disordered solids are [5–7].
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2 Disorder

It is important to distinguish the disorder in a solid from, say, the disordered structure
of the liquid. In the liquid, the disorder is such that, averaged over a rather short
time, each point in space appears identical, while in the disordered solid the disorder is
frozen, often referred to as “quenched disorder”, or changes very slowly in comparison
to the electronic system under consideration here. By definition, such materials never
reach equilibrium in an observable time and are thus by definition non-ergodic.

For the sake of quantitative treatment, one must be rather specific about the
nature of disorder. One important type of disorder is the randomness in the energy of
a site; another is the randomness in the distance to other sites. To hope for any quan-
titative results one needs to know the distributions of the random energies and of the
random inter-site spacing. In many cases, on an inter-atomic scale, the material can
be nearly ordered while on a longer distance scale it is disordered. Another impor-
tant consideration is that two macroscopic disordered specimens of the same system
should exhibit similar macroscopic physical properties. Thus, statistically speaking,
for a large enough system their properties should be identical though microscopically
they are different. The scale on which they appear statistically identical is very impor-
tant. For specimens shorter than this scale one sees so called “mesoscopic effects”,
i.e. differences in behavior from specimen to specimen.

An important consequence of disorder is so called frustration. What is meant
by the term is that there is no configuration in which every particle can acquire
its lowest possible energy. The result is a phase space with many energy minima, a
situation referred to as “energy landscapes” in phase space [8] and references therein.
It must be noted that frustration is not confined to disordered systems. The classic
example of frustration in an ordered system is antiferromagnetically coupled spins
occupying a triangular lattice. At least one pair of sites in each triangle must be
occupied by parallel spins, violating their preferred mutual orientation. Experimental
and theoretical studies of frustration in ordered systems exist in the literature, see
e.g. [9,10] but they are apart from the topic of this article.

3 Anderson–Mott insulators

In the local function basis set the Hamiltonian can be written

H =
∑

εkckc
+
k +

∑
tklckc

+
l +

∑
Vklmnckclc

+
m c +

n (1)

with ck, c +
k the creation and destruction operators on site k, respectively. The first

term in H expresses the random site energies, the second expresses the quantum
tunneling between sites k and l and the last term expresses the interaction between
two electrons, one spreads (among others) between sites m,n, the other between sites
k, l. For Coulomb interaction

Vklmn = aklmn

[
〈χk(r1)χl(r1)| 1

|r1 − r2|
|χm(r2)χn(r2)〉

− 〈χk(r1)χm(r1)| 1

|r1 − r2|
|χl(r2)χn(r2)〉

]
. (2)

The first term in the square bracket is the Coulomb interaction, the second the
exchange interaction, and |aklmn | < 1 is a numerical factor to do with normalization.
The letter subscripts label sites, the numeral subscripts label electrons. To avoid very
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complicated expressions, the preceding notation did not include the electron spin. It
also implicitly invoked the tight binding approximation, allowing only a single orbital
χ on each site, as is commonly used to describe disordered electronic systems. Usually
an s function

χk (r) = exp[−(|r− rk| /ξ)] (3)

is used for simplicity. ξ is the so-called localization radius. This tight binding approx-
imation is valid when all other local site functions are sufficiently high in energy (e.g.
a 2s function well above the 1s function).

It must be pointed out that the set {χi} is not an orthonormal set since
〈χk| χl〉 6= 0. An appropriate orthonormal set is the set of Wannier functions [11,12]
formed from {χk}. The Wannier functions tend to be more localized than the local
functions because at nearest neighbors of k the Wannier “correction” to χk has an
opposite sign to that of χk. Thus, whenever orthogonality of {χk} is important it will
be assumed implicitly that {χk} refers to Wannier functions.

An additional approximation customarily made is to reasonably confine an
electron to a single site. The tight binding Hamiltonian then becomes

H =
∑
i

εini +
∑
i

ui↑i↓ni↑ni↓ +
∑

j<i;σ,σ′

uiσjσ′niσnjσ′ +
∑
i6=j

tija
+
i aj . (4)

ni = a +
i ai is the occupation number on site i limited to ni = 0, 1, 2, uii is the intra-

site interaction energy, and uij in the third term is the inter-site interaction energy.
The two terms correspond to the last term in (2). Either εi or tij or both can be
random variables. A random εi is often called diagonal disorder, a random tij off-
diagonal disorder. Notice that the last term in equation (4) is the only term involving
quantum mechanics. In many cases uii is larger than the other important energies
(corresponding to Mott localization) and tij is rather small (corresponding to Ander-
son localization); these conditions referred here as Anderson Mott insulators are the
main subject of this paper.

If nk is the occupation number of electrons (or holes) then equation (4) violates
charge neutrality. To retain charge neutrality it is common to place a positive charge
eK into each site where the compensation K = (N − n)/N makes the charge on
occupied sites e(n-K) and on unoccupied sites −eK. N is the number of sites, n<N
the number of electrons. The last inequality is not compelling but is satisfied in most
cases of interest.

4 Some specific materials

The classic disordered systems, studied extensively in the fifties and sixties, are doped
and compensated crystalline semiconductors of group IV, mainly silicon and germa-
nium at concentrations below the metal–insulator transition. At small T the carriers
are confined to the impurity sites which are disordered both diagonally due to the
compensation and off-diagonally due to random impurity location. The most exten-
sive experimental studies were on transport, by Fritzsche’s group e.g. [13], by Davis
and collaborators e.g. [14] and at the Yoffe Institute in (then) Leningrad e.g. [15].
The original theoretical hopping model for transport in impurity conduction is due to
Mott [16] and Conwell [17]. The most ground breaking theoretical paper is arguably
[2] which recognized the importance of Anderson’s now famous work on localization
[1] in a disordered system as one of the important papers of the period. Following the
incipient understanding of electrons in impurity conduction, studies were broadened
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to electrons in many other disordered materials, including group IV and other amor-
phous semiconductors, granular metals, amorphous chalcogenides including phase
change materials, oxide and other glasses, organic semiconductors, conducting poly-
mers, some biological macromolecules, and very recently disordered graphene [18,19].
One of the most extensively studied disordered electronic systems is indium oxide,
microcrystalline as well as amorphous, see [20] and references therein, because of the
ease to change disorder and carrier concentration. The Hamiltonian of equation (4)
is less representative of some of those materials for several reasons, primarily because
the localized states are not identical and because they are populated by large numbers
of electrons. It must be emphasized that the localization length ξ in such materials is
not the size of the localized states but rather the decay length of the wave function
between adjacent localized states [7].

5 The one-particle density of states (DOS)

The one-particle DOS in the interacting system is defined as the spectrum of energies
into which an extra particle can be inserted while the rest of the system remains in
its original ground state. For brevity, the electrons that form the DOS will be called
immigrants and those in the ground state will be called residents. The long range
Coulomb interaction dramatically modifies the one-particle DOS by depleting states
near the Fermi level [21,22]. The basic argument is that inserting a new electron into a
system in its ground state is bound to have other electrons move in order to reduce the
interaction energy with the immigrant electron (i.e. to form a quasi-particle). Before
such relaxation the electron energy was clearly higher, i.e. some finite distance above
the Fermi level. Thus, immigrant electrons cannot be accommodated at the Fermi
level. After relaxation into a new ground state the Fermi energy cannot have moved
a finite distance (in the thermodynamic limit) because the thermodynamic DOS,
dn/dµ is gapless, as pointed out in [23]. Thus, the immigrants constitute a set of
excited electrons.

Efros and Shklovskii [24,25] derived the DOS energy dependence

N(E) =
d · |E|d−1

πe2d
(5)

from the consideration that the ground state must be stable with respect to one-
particle excitations, i.e. that no one particle transition can bring the system to a
lower energy. Efros [26] later considered stability to any n-particle excitation to derive,
within some approximations,

N(E) ∼ exp

[
−c
(
Eg
E

)1/2
]
. (6)

The DOS of equation (6) is the preferred equation over equation (5) since it refers, at
least approximately, the DOS to the ground state, as required by the definition of the
DOS. It describes a much harder Coulomb gap than (5), as a consequence of the lower
ground state energy compared to states stable to just one-electron configurations [27].

6 Specific heat

In metals the specific heat of electrons is well described by proportionality to T
because the DOS near the Fermi level can be assumed to be constant within the
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narrow energy regime of a few kT. This would be normally also expected to be true
in the Anderson localized regime. However, Coulomb interactions greatly affect the
low energy states, important for the low temperature specific heat. They tend to be
predominantly many-electron excitations [28] with a density quite different then in
a non-interacting system, thus strongly affecting the specific heat. Early computer
simulations [29] find that the specific heat at low temperatures still increases linearly
with temperature. This is confirmed later by more extensive computer simulation
studies by Tenelsen and Schreiber [30], by Möbius and coworkers [31,32] and by Yu’s
group [33]. All these authors find that at low T the specific heat increases linearly
with T but the magnitude is quite different from what is expected without inter-
action. Their results show a peak at higher temperature. Past the peak the specific
heat decreases, presumably as the system gets into a regime where the temperature
randomizes the site occupation. In [33], Overlin et al. consider systems without site
energy disorder. They generate disorder by randomly shifting sites from their posi-
tions in a perfect lattice. Möbius and coworkers [31,32] on the other hand keep a
perfectly ordered lattice and introduce site energy disorder. Interestingly, in both the
diagonal and the off-diagonal disorder cases the specific heat at low temperature and
large enough disorder appears to be linear with temperature.

As to experiment, there are very few to be found in the recent literature on hopping
systems. Two that I found are [34] and [35]. Both found that the specific heat increases
linearly with T and that the resistivity follows Mott’s variable range hopping (VRH)
law. Reference [34] measured the specific heat in a TixSi100−x (x <<100) alloy and [35]
in doped silicon. The fact that the conductance follows the Mott VRH law indicates
a finite DOS at the Fermi level, but a lack of significant electron–electron interaction
in this material. Thus, the linear T dependence would appear to be just the usual
result of a constant DOS near the Fermi level and not a support of the computer
simulation works on interacting disordered systems. However, in [34] the DOS at
the Fermi level obtained from the specific heat is two orders of magnitude larger
than that obtained from resistivity measurements. Providing the interpretations of
the experiments with the VRH picture and with a specific heat linear in T apply
to the experiment, one must conclude that most excitations do not contribute to dc
conductance. One would expect them to contribute to polarization, but unfortunately,
no polarization experiments were reported in [34]. In [35], a simple interpretation of
the experiments was found as well and was attributed to internal excitations within
the localized states. Thus, the few experiments on specific heat in disordered system
have at present no theoretical explanation.

7 Transport

This subject has been long controversial in relation to systems where Coulomb inter-
actions between electrons are important. The most profound disagreements relate to
the importance of many-body effects [7,36] versus [24,25] and to the role the DOS
plays in determining transport in the linear response regime [27].

Before proceeding it is useful to briefly summarize transport for cases where
electron–electron interactions can be neglected. There is little controversy there, and
the methods used can be extended to the interacting systems.

Two theories, percolation theory [37–39] and a scaling theory [40] yield com-
patible results. Both utilize the exponentially wide distribution of transition rates
Γij between two localized states, i,j. Miller and Abrahams (MA) [41] showed that
transport in the linear response regime can be mapped onto a system of random
resistances R connected between all pairs of sites. The Rij are derived from the

transition rates Γij = ω0e
−2rij/ξ−Eij/kT for E > 0 and ω0e

−2rij/ξ for E < 0, ω0 is an
attempt frequency, approximately a phonon frequency of order 10−12 sec−1 [41]. Rjk
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is also an exponential function of the random site energies and distances between the
sites

Rjk = (kT/e2)ω −1
0 exp(2rjk/ξ + Ejk/kT ),

Ejk = max(|Ej − Ek|, |Ej − EF |, |Ek − EF |).
(7)

The exponentially wide distribution suggests that the resistance of any path is dom-
inated by the path’s largest resistance and the overall resistivity determined by the
smallest of those in the total set of possible paths. Percolation theory determines
the value of that resistance. The scaling theory [40] relies on the self similarity of
certain distributions and the results are fully compatible with percolation theory.
The concept of the scaling theory is easy to understand for completely random spa-
tial and energy distributions. In such a case any realization at one concentration ν
will have a match at some other ν′ such that (in the thermodynamic limit) there
is a one to one mapping of sites in the two systems. The spacings rkl between sites
will map as rkl(ν) =αrkl(ν

′) and the site energies as Ek(ν) =βEk(ν′). The energy
range Em of hopping, and thus ν, increase with T (so one can replace the argu-
ments ν, ν′ by T, T ′). In order that paths at T and T ′ have the same probability
the number of active sites should scale as the energy ranges Em, which leads to
[r(T)/r(T ′)]−d = E(T )/E(T ′) or α−d =β (d is the dimensionality). Of interest is the
path of minimum resistance. This involves some specific Rkl, the largest resistance in
the paths. Since ln(x ) is a monotonically increasing function of x one can minimize
ln(R) = 2αr/ξ+α−dE/kT with respect to α. Substituting the resulting α into R
leads to the Mott VRH result σ = σ0 exp(−T0/T )1/(d+1).

While the above applies strictly to random distributions, the scaling procedure
can be applied to a much wider class of distributions as explained in detail in [40].
In the somewhat more general case of a random spatial distribution and an energy
distribution ∼Em,

σ = σ0 exp(−T0/T )(m+1)/(m+d+1). (8)

A widely used theory for the resistivity of interacting systems derives dc conduc-
tion from the one-particle DOS of equation (5), see [24,25,42] and references therein.
Using equation (5), compatible with the pseudo-ground states and percolation theory,
one obtains from (8) for the conductivity

σ = σ0 exp(−T0/T )1/2 (9)

as illustrated by Figure 1. The behavior expressed by (9) has been reported in many
experiments (see, e.g., Tab. 1 in [43], and [5]) and is referred to as Efros–Shklovskii
(ES) VRH.

Had percolation been applied to the more appropriate equation (6) for the DOS,
rather than to (5), the exponent in (9) would be much closer to 1. Furthermore, the
one-particle DOS is the energy spectrum of an extra particle inserted into a system
in the ground state, i.e. an excited particle as explained in Section 5. Such particles
relax in energy rather than carry the dc current. (For an experimental verification see
Fig. 2 and the discussion around it). Finally, a basic tenet of one-particle transport
theories (in this case percolation theory) is that particles move independently of each
other but interactions imply correlation in the motions of particles. This is one way
interaction reduces the entropy from the more random uncorrelated motion to a less
random correlated motion. The correlated motion mandates a description in terms of
many-body effects, which is beyond the capability of a one-particle transport theory.
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Fig. 1. Computer simulation result of percolation for the system resistance R in configura-
tion space. After Somoza et al. [47].

Two dynamic many-body effects that correlate the motion of the hopping particles
are important – many-body transitions in a single quantum mechanical process, for
which

RKL ∝ (kT/e2) exp(−EKL/kT ) exp(−
∑

rkl/ξ), (10)

and sequentially correlated transitions [21,44]. In equation (10), the capital subscripts
annotate configurations and the lower case subscripts annotate sites in the respective
configurations, with k 6= l, namely sites which differ in K and in L. The many-body
transitions come about because the interaction part of the Hamiltonian is a two-
particle operator, and the sequential correlations occur because a rearrangement of
charges, inherent in a transition, changes the interaction energy. Different sequences
of transitions traverse different intermediate states, so the characteristic rates for
different sequences are different. The general processes are thus sequentially correlated
many-body transitions. Neither of these processes can be incorporated in a one-
particle theory, e.g., in a real-space percolation theory.

Consider a simple example of a transition of two electrons in four sites. It changes
from collective to sequentially correlated with increasing temperature. The resis-
tance for a two electron transition is R ∼ exp(E/kT ) exp(r1/ξ+ r2/ξ). The successive
transition resistance is effectively the larger of

R1 ∼ exp(E1/kT ) exp(r1/ξ);R2 ∼ exp(E2/kT ) exp(r2/ξ) (11)

where r1 and r2 are the lengths of the hops of the two electrons and E1, E2 are
the associated excitation energies. In passing it is noted that the two lengths are not
uniquely determined because of different exchange ways to get from the same initial to
the same final state. Of all those exchange possibilities the important (multi-electron)
jump is the one with the smallest sum of the constituent one-electron hop lengths.

In a two electron transition E < E1, E2 when the two electrons can avoid each
other and, say,R1 >R2. Then the transition from the collective to the sequentially cor-
related process occurs at (E1 −E)/kT = r2/ξ. More generally, for a large system, as
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Fig. 2. Relaxation of conductance after excitation by gate voltage. Courtesy Z. Ovadyahu.

T increases one can expect that a general transition will see an enhanced importance
of sequential transitions and a decreasing importance of collective transitions.

There are additional reasons to question the use of the one-particle DOS for
calculating transport.

– By definition and derivation, the DOS is the spectrum of energies at which
a new particle can be inserted into the bulk of a system in its ground state.
Transport measurements are not performed on a system in its ground state.

– Inserting particles through electrodes differs from insertion of electrons into the
bulk.

– As already mentioned, the immigrant new particle is in an excited state and
thus outside the linear response regime of the conduction measurements.

– After a few transitions the immigrant electron loses energy and its immigrant
identity when it becomes absorbed among the resident electrons. The dynamics
of the immigrants thus constitutes relaxation rather than dc conduction. This
is clearly confirmed by experiment as can be seen in Figure 2 where immigrants
are inserted by a change of a gate voltage. The DOS thus cannot be relevant
to the dc transport observed in the interacting systems.

A couple of transport theories were proposed that do incorporate many-body
effects. One is a generalization of percolation theory to configuration space (i.e. Fock
space), the other is a generalization of a scaling theory to configuration space.

It was proposed by Ortuño [45–47] that one can incorporate the many-body effects
in a percolation theory in configuration space (i.e. in Fock space) rather than in
real space. Clearly such a procedure incorporates collective transitions. A transition
between two configurations generally corresponds to a transition of a number of
electrons. It also incorporates sequential correlations – changing the sequence of two
transitions involves a different intermediate state and thus a different total transition
rate. Transition from collective hopping at low T changes to sequentially correlated
hopping at higher T.

Two necessary conditions in such a percolation process are needed to ensure that
in the sequence of transitions which constitutes the percolation path, at least one
electron is transferred through the system, and that the final step returns the system
into the original configuration. The former guarantees transport through the system,
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the latter guarantees that the entire process can be repeated indefinitely, i.e. that the
process sets up a dc current.

Such a percolation has been executed by computer simulation [47]. The result is
displayed in Figure 1 and fully in agreement with equation (9) and with experiments.

Applying the scaling method to the Fock (or configuration) space in an inter-
acting system [48], the bonds between configurations are given by equation (7).
The energies and the distances in that expression need to be scaled. It is conve-
nient to refer the energies to the ground state energy, denoted by the superscript
0 EK =

∑
i εi(n

K
i − n0

i ) +
∑
i<j(n

K
i n

K
j − n0

in
0
j )/2rij where nKi is the occupation of

site i in configuration K.
A difficulty arises with the scaling of the energies EIJ = max(EI , EJ) which

depend on random energies and on lengths via the Coulomb interactions. The diffi-
culty is alleviated at low T at which the transport is restricted to sites close to the
Fermi level where εi is small in comparison with interaction energies. At sites further
from the Fermi level nKi − n0

i = 0, because the occupation at sites far from the Fermi
level does not change at low T . Thus at low T the term

∑
i εi(n

K
i − n0

i ) drops out
from the last equation. Then EIJ simplifies to

EIJ ≈
∑
i<j

(nKi n
K
j − n0

in
0
j )/2rij (12)

where K = I or K = J in accordance with which is the higher energy. So, at low
temperature, both the energy terms EIJ and the tunneling terms rIJ of the resistances
RIJ in equation (7) are determined by the random variables rij ,i ∈ I, j ∈ J, i 6= j.
The energy term involves distances to sites that change occupation in the transition
and the tunneling term, 2Σrij/ξ ≡ 2rIJ/ξ, involves the sum of hopping distances,
minimized with respect to the different exchange alternatives of electrons transiting
between I and J. The rij in the bonds in the configuration space at T ′, ς(T ′) =
(EIJ)T ′/kT ′ + (rIJ)T ′/ξ need to be scaled by some c to become the bonds at T :

ς(T ′) = (EIJ)T ′/kT ′ + (rIJ)T ′/ξ

⇒ (1/c)(EIJ)T ′/kT + c(rIJ)T ′ = ς(T ) = (EIJ)T /kT + (rIJ)T /ξ (13)

at the temperature T ′. The bonds of interest are ζm, corresponding to the critical
resistances. The proper c is found by minimizing these ζm(T ).

c =
[(EIJ)T ′/(rIJ)T ′ ]1/2

(ξkT )1/2
(14)

which results in

ςm = 2
[(EIJ)T ′/(rIJ)T ′ ]1/2

(ξkT )1/2
= (EIJ)T /kT + (rIJ)T /ξ. (15)

Rewriting the second equality in (13),

[(EIJ)T ′ (rIJ)T ′ ]
1/2

=
1

2
[(EIJ)T /kT + (rIJ)T /ξ] (ξkT )1/2. (16)

The left hand side depends on T ′ and the right hand side on T. So, the equation
must be independent of temperature. Thus, the subscripts T ′ can be dropped from
the product EIJrIJ (but not from the individual factors). Furthermore, equation (16)
relates EIJrIJ to a critical resistance and since all critical resistances are equal,
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EIJrIJ is also independent of I,J remembering only that I,J are configurations that
bracket a critical resistance. The individual factors can of course differ from one criti-
cal resistance to another but their product remains the same. Dropping the subscripts
from EIJrIJ (but remembering that Er relates to the critical resistances) (16) finally
reduces to

ςm (T ) = 2 (Er)
1/2

/(ξkT )1/2 ≡ (T0/T )
1/2

, or

σ = σoexp
[
− (To/T )

1/2
]
, T0 = 2Er/ξk (17)

which, except for a different value of T0, corresponds exactly to equation (8). For
comparison, in the units used here (electron charge = 1, dielectric constant = 1), in
the ES theory T0 = β/ak with β = 6.2 for 2d and β = 2.8 for 3d. Er cannot be
evaluated by scaling alone and thus an expression for T0 does not yet exist. All one
can say at present is that T0 here must be smaller than that of Efros and Shklovskii
[24,25] because many-electron transitions lower the activation energy.

8 High carrier concentration

By high concentration will be understood here carrier concentrations above 1019cm−3

or so. A large number of such systems [49] were seen to exhibit glassy effects, namely
extremely long relaxations from excited states to equilibrium that violate ergodicity,
and so-called aging which violates time homogeneity. By time homogeneity is meant
that two experiments initiated at different time give similar results, namely to depend
only on t − t0 where t0 is the initial time of the experiment. It turns out that this
expectation is not always fulfilled in disordered systems. The reason for this violation
is the violation of a very fundamental hypothesis of statistical mechanics, namely
ergodicity. The extremely long relaxation together with aging can be taken to define
the modern concept of a glass. In addition to the structural glass, known for thousands
of years, there are now a number of disordered systems that show glassy properties,
e.g. the widely studied spin glass [50], polymer glass (e.g. [51]) and others. But it is
rather unusual for the light electrons to respond so sluggishly as to violate ergod-
icity. As a group these materials are called electron glasses or sometimes Coulomb
glasses. By now there is a long list of such materials [49]. Of these, indium oxide and
some granular metals were studied most intensively, the former by Ovadyahu and
coworkers, the latter by several groups, including Grenet and Delahaye at Greno-
ble, Frydman’s group at Bar Ilan University and Goldman’s at Minnesota. The first
experiments that hinted at electron glassiness were by Adkins et al. [52] in Cambridge.

The high density systems are not accurately described by the tight binding
Hamiltonian (4) in part because ni is not restricted to 0,1,2 but can be much larger,
and because ξ is not necessarily uniform; ξ here should not be taken to be the size
of the localized wave-functions but rather the much smaller inter-site decay length
because that determines the value of tij (which is still an exponential function of a
random variable). In a simplified model, large many-electron localized states can be
considered as regions of metallic conductance, that are intermingled with the hopping
MA resistances. Since in the metal the resistivity increases with T while in hopping
the opposite is the case, it is possible that above some T the resistance will look
metallic while at lower T it will look semiconducting. Such effects have been exper-
imentally observed [53] but this experimental phenomenon has not been adequately
explored to rule out other possible causes for it.

There is a number of processes that slow down the response of electrons from their
very fast motion in crystals. In the first place it is of course the Anderson localization.
Per se, this is not enough to make them glassy – glassiness has not been observed
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in impurity conduction or in amorphous group IV semiconductors. In systems with
high electron concentration, sluggishness is strongly enhanced by collective many-
body transitions because the second exponent in equation (10) constitutes a product
of exponentially small factors. Before a dc current is established all subpercolation
clusters must polarize after an electric field is applied. At high electron concentration,
the many-electron transitions become important in the polarization of the subper-
colation clusters. (It should be mentioned that large subpercolation clusters can be
quite slow even in the absence of interaction [54,55]).

An additional, less important effect which can slow down the response (even
in non-interacting systems) is the fractal nature of the critical percolation cluster.
Thinking of relaxation rates in terms of an RC product, the conductance is confined
to a low fractal dimension, enlarging R, while the displacement vector is always
three-dimensional, enlarging C in comparison [56]. This enhanced RC time must be
overcome before a dc current can be established.

8.1 Experiment

The initial step in experiments on electron glasses is to cool the material to liquid He
temperatures, excite electrons far from equilibrium, and measure the conductance –
a property measurable with great accuracy. The conductivity in the excited state is
higher than the conductivity at equilibrium because excited electrons can decay into
more empty states than equilibrium electrons.

Excitation of the electronic system can be accomplished by several means. The
most common is by a sudden change in gate voltage, say by ∆Vg = Vg2−Vg1 in MOS
structures where the active S layer is the Anderson insulator. The simplest experiment
is to measure the time dependent in-plane current following the excitation. Most of
these experiments are performed after the sample is for hours or even days at liquid
He temperature. The result is a logarithmic decay of the excess conductance towards
equilibrium at Vg2. In indium oxide such decay has been observed for 1 sec < t <
105 sec [57]. Even after 105 sec, of the order of 1 day, there is no hint for G(t) to level
off (i.e. approach equilibrium) – the system is non-ergodic.

A frequently used protocol, called a “two dip experiment” is to hold Vg at Vg2
but scan it rapidly through an interval >∆Vg at times t1, t2, . . . tp. A typical example
of results is shown in Figure 3. Two dips in the conductance G are observed, a
diminishing dip around Vg1 and a growing dip at Vg2. The latter is just another
way to observe the logarithmic decay towards equilibrium, the former is a gradual
“forgetting” that the system was for an extended time at Vg1.

Another common experiment utilizing excitation by Vg, indicated in Figure 4, is
to return the system rapidly from Vg2 to Vg1 after a time tw, following which G(t) is
measured. The interesting result is the dependence of G(t) on tw. The expectation for
ergodic systems is G(t) = G(t− t0), i.e. for G(t) to be independent of the initial time
t0 of the experiment, due to time homogeneity. The violation of time homogeneity is
clearly shown in Figure 4. It is referred to as “aging” in the context of glass. Aging is
a consequence of the violation of ergodicity – the internal state of the system changes
slowly as it spreads through configuration space and the response to applied fields
changes with it. Interestingly, it turns out that G(t/tw) is independent of tw. This
behavior is called full aging or simple aging.

More complex experiments have been conducted by a variety of protocols following
the excitation [58,59].

Other types of excitations – electromagnetic radiation [60], longitudinally applied
high electric field [61], and thermal excitation [61] were also used in experiments. They
all show similar glassy relaxation with the exception of excitation by microwaves. A
likely cause for the latter is that the energy ~ω at microwave frequencies is inadequate
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Fig. 3. The two dip experiment (see text). Courtesy Z. Ovadyahu.
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Fig. 4. Aging experiment. The lines in the left panel are the time-dependent conductances
at t ≥ 0 for different tw. Left panel courtesy A. Vaknin.

to excite electrons far enough from equilibrium. The enhancement in conductivity
by subjecting the system to microwave radiation was attributed to enhancement
of the electric field beyond the linear response regime [62]. Recently, a new type
of experiment was performed on discontinuous metal films [63] that were prepared
at cryogenic temperatures and thus were never brought out of a glassy state. The
very interesting new results are that glassy relaxation extends at least up to room
temperature and depends not only on the temperature where it is measured but also
on the maximum temperature to which the material was warmed.

There is now a large number of disordered materials observed to be electron
glasses at low temperature and new ones keep coming up. For a relatively recent
list see [49]. To indicate the rate of proliferation, at least three new electron glasses
have been added to the list since then, conducting polymers [64], and thin films of
non-stoichiometric GeTe [65], GeSbTe [66], and GeBiTe [67].

8.2 Theory

Different theoretical approaches have been used by different authors. The results are
not always in agreement with each other. The current literature on the subject is
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summarized below. Pollak and Ovadyahu [68] developed a theory invoking very slow
formation of quasiparticles. This occurs due to relaxation by multi-electron transition
equation (10) (see also [7,36]). The crucial property is the exponential dependence of
the rates on random variables. First the time dependent energy relaxation ∆E from
an excited state is evaluated, using the distribution N(Γ) of transition rates Γ=e−η.
η is a random variable (made up of random hop distances and random energies)
with a distribution N(η). The distribution of Γ then is N(Γ)=N(lnΓ)/Γ. The time
dependent drop ∆E(t) is then

∆E(t) = δE

Γmax∫
0

N(ln Γ)

Γ
e−ΓtdΓ ' const.

∞∫
Γmin

e−Γt

Γ
dΓ. (18)

δE is some average drop in energy per decay. The second equality is based on N (lnΓ)
being a very slowly varying function of Γ, except that it must drop off sharply at some
Γmin, and Γmax. The latter is of the order of a phonon frequency, much larger than
measurements allow, so it may be approximated by infinity. The right hand expression
will be recognized as the exponent integral. The exact form of the drop-off is imma-
terial as long as measurements are restricted to t << 1/Γmin. The exponent integral is
then very well approximated by β− ln(Γmint). The Euler constant β is time indepen-
dent, so the energy decay is logarithmic. Γ is a many-electron transition rate; hence
Γmin can have an extremely small value. As an example, for a collective transition of
ten electrons, each of them jumping a distance 2ξ, 1/Γ ∼ 10−12 sec×e40 ≈ 2×108 sec,
or about 1 year. To appreciate the role of collective transitions: for relaxation by single
particle transitions, 1/Γ for a hop of length 2ξ is of the order 10−10 sec.

The measurable quantity is conductance rather than the energy considered so far.
A monotonic relation between the two exists – the lower the energy the more collective
is transport. Assuming a linear relation, the conductance relaxes logarithmically as
well.

Implicit in equation (18) is the assumption that each relaxation in the sequence is
to a state from which there is no further relaxation. This is not necessarily accurate
– a slow downward transition could be to a state from which a faster downward
transition is possible. But that is rather unlikely here; downward transitions become
more and more collective, and thus slower, as the energy decreases. In fact, this may
be a more appropriate interpretation of the experimental logarithmic relaxation. If
the relaxation rates Γ diminish with energy reduction as E = α ln(Γ/Γ0) (notice that
E is a negative number).

∆E =

∫
dE = α−1

∫
exp(−Γt)d

[
ln
( Γ

Γ0

)]
=

Γ0

α

∫
exp(−Γt)

Γ
dΓ (19)

which is basically the same as equation (18). This scenario is also more in keeping
with the above theory and is somewhat in the spirit of [69]. This scenario may also
account for observed departures from precise logarithmic relaxation in some systems
where the relation between Γ and E is different from the above.

Müller and Pankov [70] (see also [71]) applied Parisi’s theory [72] of the Sherring-
ton and Kirkpatrick mean field spin glass model [73] to disorder-localized electrons.
It is a mean field model in the sense that an electron on each site “sees” a simi-
lar environment, interacting with all other electrons independently of distance. The
work is a tour de force theoretically and includes many-body effects. Interestingly,
even though many-body effects are included, it recovers the soft gap of equation (5)
rather than the harder gap, equation (6).
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The dynamics in [70] do not apply to electron glasses with RIJ resistances
described by (7). As in MA resistances, equation (7) is based on phonon assisted
quantum tunneling between states. In [70], the transition rates are assumed to be
exponential functions of energies alone rather than of energies and hopping distances.
The dynamics in [73] corresponds to processes governed by hops over energy barriers
(as in the spin glass model). While such transitions have been proposed for electrons
in some disordered materials [74], it is believed that the observed electron glasses obey
(7). The quantum aspects of the transition rates contained in tij are not included
in [70]. In the spin glass model, the distance in the configuration space (in terms
of transition times) is the Hamming distance while in the electron glass it is differ-
ent and, moreover, is temperature dependent. It is also not clear how well one can
describe a very disordered real system with the assumption that all sites see a similar
environment.

Another mean field theory [75–77] does preserve the local identity of sites. It is
mean field in the sense that transitions are governed by the thermodynamic mean site
occupation at some local energy minimum rather than by the condition ni+nj = 1 for
the occupation, mandated for a transition between i and j. The theory considers the
relaxation of the site occupation from an excited state towards equilibrium occupation
and assumes that the occupation is linearly related to the conductance. It does not
include the dynamic many-body effects; in this sense it is close to the ES model and
yields the soft gap of equation (5). In a later paper [78], the authors recognize that
collective transitions must be involved in the very sluggish relaxation. The theory
bears some similarity to that of [68] in arriving at equation (18), again due to the
exponential dependence of transition rates on a random variable.

Doubts were expressed about the intrinsic glassiness of the very light electrons.
The argument made against it is that the conductivity is measurable, so the criti-
cal resistance, presumably the largest resistance of importance, does not correspond
to very long times. Say Rc is of order 108 Ohm. According to equation (10),
τ ≡ ω −1

0 exp(2rc/ξ) = Rce
2/kT ≈ 10µs. where rc is the sum of several hopping

distances and Rc the associated critical resistance. This argument against the very
slow relaxation is however not compelling for two reasons. It implicitly assumes that
the measured conductance is the equilibrium conductance. But since the system is
glassy, the measured conductance is not the equilibrium conductance, which cannot
be measured and may be orders of magnitude larger. Furthermore, relaxation towards
the very specific equilibrium state at low T may be slower than relaxation towards a
less rigidly defined percolating state.

Ovadyahu [57] suggested that the non-ergodic relaxation may be due to quantum
friction, discussed extensively by Leggett et al. [79] for a two level systems exposed
to a dissipative environment. If this suggestion proves to be correct it will be of con-
siderable interest since the microscopic situations described by the two systems seem
totally different, in particular because [79] addresses a symmetrical (or “ordered”)
two level system.

8.3 Simulations of glassy relaxation

Numerous computer simulations on glassy relaxation of various physical properties
are reported in the literature.

The section on specific heat c implicitly assumed thermodynamic equilibrium,
since c is considered to be an equilibrium property. In reality, however, the very slow
transition rates allow only a slow exploration of the phase space. These non-ergodic
effects on specific heat were studied in [80]. The computer allowed the system to
spread in phase space, while tracking the specific heat. This was done for different
temperatures, dimensionalities, disorder models, and degrees of disorder. Under the
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conditions simulated by the computer it took orders of magnitude longer than any
reasonable experiment to reach the equilibrium value of c. Interestingly, very slow
evolution of the specific heat was observed in an actual system displaying glassy
properties [81].

Appreciable computational effort was dedicated to the evolution of the Coulomb
gap and generated controversies. For example, Yu [82–84] found that the Coulomb gap
evolves very slowly while Tsigankov and Efros [85,86] assert that it forms very rapidly.
In good part the controversy has to do with the importance of collective many-body
transitions. Arguments against collective transitions arose from a misunderstanding
about the range over which collective transitions are effective. They believe that the
authors in [87–89] allow for collective hopping over large distances which they deem
unphysical. However, equation (10) severely limits the range when the gain in energy
due to interaction outweighs the loss due to an increase in total hopping distance. In
[90], the authors of [85,86] do attribute the experimental glassy relaxation to collective
transitions between pseudoground states.

In a computational effort to assess directly the effect of multi-particle transitions
Tsigankov and Efros [85,86], like Möbius et al. [91] and Davies et al. [29] include
two-particle transitions in their simulation but do not agree with the others about
their effect. The reason for this disagreement is unclear, at least to this author.

The Murćıa group did much work on simulation of energy and of conductance
relaxation [92–94] and references therein. Collective transitions are clearly involved
in those simulations.

9 Interaction effect on localization

There has been a wide interest lately in so-called many-body localization (MBL),
inspired by the work of Basko et al. [95,102,103]. It relates to the effect of short
range and weak interaction on localization. The work is a perturbation expansion to
infinite disorder. The basic question was whether such electron–electron interactions
can delocalize the system in the absence of electron–phonon interaction or, more
generally, in the absence of any thermal bath that the electronic system interacts
with. The salient result is that low energy states are collectively localized but above
some energy there is a (many-electron) delocalization, i.e. a mobility edge. This review
focuses on Coulomb, i.e. long range interaction so the MBL problem is outside the
scope of this article.

In contrast to MBL, the effect of long range interaction on localization is still an
unsolved problem even though a number of efforts were made to tackle the problem
by different methods. The basic question is whether Coulomb interaction enhances
or impedes delocalization and under what conditions. Some of the research on the
subject arose in consequence of an experiment by Kravchenko et al. [96,97] that
appeared to indicate a transition from hopping to metallic conduction in a two-
dimensional system. For the non-interacting system delocalization in two dimensions
is ruled out by the scaling theory of Abrahams et al. [98].

Regarding the effect of the long range Coulomb interactions, early arguments sug-
gested that it must enhance localization because the randomness of 1/rij between
randomly spaced sites brings in an additional disorder energy. This is basically a
Hartree argument and leaves out important quantum effects. Inclusion of exchange by
solving numerically the Hartree–Fock (HF) equations [99–101] resulted in enhanced
localization. HF leaves out the possibility for collective delocalization, namely delo-
calization by a collective motion of the carriers, as pointed out in [27,102,103] where
it was shown that collective transitions can be antilocalizing. In contrast to the HF
diagonalization of a single determinant, this requires a many-body wave function con-
sisting of a sum of many Slater determinants – in principle the entire Fock space, or
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N !/n!(N − n)! Slater determinants for an exact solution for spinless electrons. This
is clearly an impossible task to tackle for any reasonably large N by computer. The
best efforts in that direction so far were by Fleishman and Anderson [104] and by
Epperlein et al. [105,106]. These works attempted to choose a basis set close enough
to the true eigenfunctions, with the hope that a near exact solution can be achieved
with only few Slater determinants. Reference [104] concluded that they likely favor
delocalization, while [105,106] concluded that they favor delocalization within a cer-
tain range of parameters. Pollak [107] in a different approach, Lowdin’s partitioning
method [108], found that all states become delocalized, however through a collective
motion of about 100 electrons, a highly non-ergodic process excluding any possible
measurement to verify the delocalization result [109]. Efros et al. make a similar point
on the basis of their computer simulations. Shepelyanski [110] showed that interac-
tion reduces localization for two electrons in a random medium. This spurred a large
number of works, confirming his finding by different methods. References [111–115]
are examples of such works.

One may ask what exactly constitutes delocalization in the many-body situation:
a finite conductivity as T → 0? A continuum energy spectrum? Coherent collective
motion over macroscopic distances? A finite conductivity at T=0? These criteria are
not necessarily identical in interacting systems.

In considering the problem of whether Coulomb interactions impede or enhance
delocalization it seems useful to think in terms of the Rayleigh–Schroedinger
perturbation expansion in Fock space

|J〉 = |J0〉+
∑
J

〈J0|V |I0〉
EI − EJ

|I0〉+
∑
J,K

〈J0|V |I0〉〈I0|V |K0〉
(EI − EJ)(EK − EI)

|K0〉

+
∑
J,K,L

〈J0|V |I0〉〈I0|V |K0〉〈K0|V |L0〉
(EI − EJ)(EK − EI)(EL − EK)

|L0〉+ . . . (20)

It allows an easy comparison between the interacting and non-interacting system.
The size of the successive factors of the form

〈J0|V |K0〉
EK − EJ

determine whether the series converges (indicating localization) or diverges (indicat-
ing delocalization). Interactions enhance both the numerator and the denominator.
For the non-interacting system the numerator is finite only when the bra and the
ket differ by a single electron. For the interacting system there is no such restriction.
The denominator is enhanced by the interaction because it adds to the random site
energies the additional effective random energies 1/rij (the distances being random).
The numerators increase when t is large, the denominators increase when the density
is large. The expectation thus is that interactions enhance delocalization when ξ is
large and the density is small, and localization is enhanced in the opposite case.

To study the effect of interaction on the localization problem some authors used
quantum field renormalization group theory [116–119]. These studies also led to the
conclusion that delocalization may occur in 2d systems. They pointed out as well
that the DOS is irrelevant to the dc conductivity and should be replaced by the
thermodynamic density dn/dµ. These conclusions are similar to those mentioned in
the papers discussed above. Unfortunately, no cross references between the two types
of approaches exist, so the underlying physical relationship between the two is difficult
to assess. Since references [116–119] seem modifications of the free electron transport
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(z = 1 in their notation) it seems to relate to interaction modified weak localization
[122] rather than to the Anderson–Mott localization.

In [99,100], the authors went further than asking merely about delocalization but
also investigated the question of the mobility edges and their energy levels. Both
works concluded that there exist two mobility edges, the low energy one close to the
Fermi level, the upper one at much higher energies. This conclusion is qualitatively
intuitive. Since the number of states, N !/[n!(N − n)!], increases with volume very
much faster than their energy spread, an algebraic function of N, there must, in
the thermodynamic limit of infinite volume exist at least one energy domain where
states are delocalized. Quantitatively, as already mentioned, the HF method misses
collective phenomena. So, the interesting question is whether collective effects, not
accounted for in HF, can push, under certain circumstances, the lower mobility edge
below the Fermi level, in which case the Coulomb interaction would render the ground
state to be delocalized. Since the Fermi level is an equilibrium concept, collective
delocalization by many electrons may be non-ergodic, in which case it would not be
observable by definition. A definitive answer to these question presently still does not
exist. Experimentally, the question remains unanswered as well as argued below.

Das Sarma and coworkers expressed reservations regarding the interpretation of
the metal–insulator experiments by the renormalization group works. In a very inter-
esting recent paper [120], they explore experimentally the “metallic” regime in Si,
for electrons as well as for holes. The authors find that the temperature dependence
of the conductivity in the “metallic” regime, similar to those found in the other sys-
tems [96,97,123,124], can be quite well accounted for using a theory [121] based on
a Boltzman transport equation. It assumes carrier scattering by screened charged
ions, the screening depending on carrier concentration and on temperature. This is
basically a one-particle theory. It seemingly constitutes a paradox since [98] does not
allow for a metallic conduction in a 2D system in a non-interacting system. The pos-
sible resolution is that in all those experiments the sample size is smaller than the
localization length. In other words, the samples are in the mesoscopic regime. This
seems reasonable because in the regime where β < 0 but very small the localization
radius is very large. In this case, the interpretation of the [98] theorem should be
that most samples will show metallic conduction and only a few will be insulating.
Whether such an interpretation is correct could be tested by observing experimen-
tally whether the separatrix between “insulating” and “metallic” depends on the size
of the sample. However, such an experiment must be very difficult to realize because
of the challenge to produce samples which differ in size alone, while other differences
from sample to sample are in the very nature of mesoscopic systems.

If the above is the correct interpretation, then these experiments on high mobility
electrons probably relate to a melting of a Wigner solid rather than to the question
whether interactions can delocalize carriers in materials where one-particle localiza-
tion is due to disorder rather than due to the Wigner effect. If so then experiments
whether interaction can delocalize Anderson localized electrons do not yet exist.

10 Summary

The paper reviews current disagreements on electrons in strongly disordered systems.
Interactions in such systems must be important due to lack of screening by localized
electrons. A good part of the disagreements centers on the importance of many-body
effects in the interacting systems, in particular dynamical correlation effects. Argu-
ments are presented (often in agreement with existing experiments) in support of the
need to consider these effects in physical phenomena – specifically in the following.

DOS: by definition the DOS is the spectrum of energies for inserting an extra
electron on vacant sites of a system in the ground state. Much of the literature
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substitutes for the ground state a state stable to one-particle excitations only, while
the ground state is stable to all many-electron excitations. The latter DOS differs
substantially from the former as was shown by theoretical studies.

Specific heat: in contrast to non-interacting electrons, where low energy states
are dominated by single particle excitation, in the interacting systems the low
energy states are dominated by many-electron excitations. The density of low energy
excitations thus greatly differs in the non-interacting and in the interacting systems.

Conductance: the prevailing theory is a one-particle theory which ignores stabi-
lization of the ground state by many-particle relaxation, as well as a correlated motion
mandated by electron–electron interaction. Both these problems can be resolved only
by inclusion of collective transitions.

High carrier concentration: it is shown that only inclusion of collective many-
body transitions can account for the non-ergodic relaxation observed in high carrier
concentration localized systems.

Many-body delocalization: it has been argued that both Hartree and HF
approaches can only enhance localization and that only correlated many-body motion
can alleviate localization and account for possible (collective) delocalization in
two-dimensional systems.

Note added in proof. A very recent paper, [125], reports on relaxation experiments
in indium oxide with lower than previously achieved carrier concentrations. In these
the relaxation does reach equilibrium during the experimental time.

This paper is written in honor of Sir Michael Pepper’s 75th birthday. May we benefit from
many more years of his contributions to physics.
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108. P.O. Löwdin, J. Mol. Spectrosc. 10, 12 (1963)
109. A.L. Efros et al., Phys. Status Solidi (b) 218, 17 (2000)
110. D.L. Shepelyanski, Phys. Rev. Lett. 73, 2607 (1994)
111. Y. Imry, Europhys. Lett. 30, 405 (1995)
112. J. Talamantes, M. Pollak, L. Elam, Europhys. Lett. 35, 511 (1996)
113. F. von Oppen, J. Müller, Phys. Rev. Lett. 76, 491 (1996)
114. Y. Ishai, R. Berkovits, Philos. Mag. B 77, 1115 (1998)
115. M. Ortuño, E. Cuevas, Europhys. Lett. 46, 224 (1999)
116. A.M. Finkelstein, J. Exp. Theor. Fyz. 84, 168 (1983)
117. A.M. Finkelstein, J. Exp. Theor. Fyz. 86, 367 (1984)
118. C. Castellani et al., Phys. Rev. B 30, 527 (1984)
119. A. Punnoose, A.M. Finkelstein, Science 310, 289 (2005)
120. B. Hu et al., Phys. Rev. Lett. 115, 036801 (2015)
121. S. das Sarma, E.H. Hwang, Phys. Rev. B 69, 195305 (2004)
122. B.L. Altshuler et al., Phys. Rev. 9, 225 (1987)
123. Y. Henien et al., Phys. Rev. Lett. 80, 1288 (1998)
124. A.R. Hamilton et al., Phys. Rev. Lett. 87, 126802 (2001)
125. Z. Ovadyahu, Phys. Rev. B 97, 214201 (1918)

https://arxiv.org/abs/1802.03533v1

	Electrons in Anderson–Mott insulators
	1 Introduction
	2 Disorder
	3 Anderson–Mott insulators
	4 Some specific materials
	5 The one-particle density of states (DOS)
	6 Specific heat
	7 Transport
	8 High carrier concentration
	8.1 Experiment
	8.2 Theory
	8.3 Simulations of glassy relaxation

	9 Interaction effect on localization
	10 Summary

	References

